用户名: 密码: 验证码:
不同气氛下煤矸石热解特性及热解动力学机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石是目前排放量最大的工业固体废弃物之一,具有低挥发分、高灰分、低热值和难燃烧等特点,从而限制了煤矸石大规模能源化利用,采用低热值气体与煤矸石混合燃烧可有效提高其燃烧效果。在燃烧过程中,低热值气体组分对煤矸石热解特性有重要影响,合理气氛下煤矸石的热解对提高燃烧效率有重要作用。目前,关于这方面的研究比较少,对煤矸石在不同气氛下的热解特性与机理也未被充分的认识和理解,阻碍了煤矸石能源化技术的进一步应用和发展,因此,研究煤矸石在不同气氛下的热解特性及动力学机理是非常必要的。
     于此,本文在深入分析煤矸石和低热值气体利用现状和形势的基础上,对煤矸石特性进行了分析,考察了煤矸石组成成分的特点。采用非等温热重法对4种不同产地的煤矸石进行了热重试验分析。研究了不同煤矸石种类,不同升温速率,不同试样粒径,不同压力和CO2或CH4与N2的混合比例为10%,30%,60%,100%的混合气氛等试验参数对煤矸石热解特性的影响,并在此基础上,进行了煤矸石在不同气氛下热解动力学机理研究,得出以下主要结论:
     (1)不同产区的煤矸石成分差别比较大。其中,煤矸石挥发分含量在9.69%~13.26%,固定碳含量在6.35%~30.3%,灰分含量在54.67%~82.4%。煤矸石C元素含量在39%~55%,H元素含量在1.1%~2.3%,氧含量在1.9%~6.5%之间。
     (2)煤矸石在热解过程中随温度的升高经历三个阶段:低温失重阶段,主要热分解阶段和二次脱气阶段。热解温度是影响煤矸石热解反应最主要的因素。
     (3)煤矸石热解的挥发分初析温度、挥发分析出最大速率及其对应的温度,以及挥发分析出特性指数D随煤矸石种类、样品粒径、热解升温速率、压力和气氛的不同差别较大。
     (4)不同气氛对煤矸石的热解影响是分段进行的。不同的温度段有不同影响程度,提出可用N2气氛下与其它气体组分下热解失重百分率之差ΔW =ΔWN 2?ΔW气氛来判定不同气氛对煤矸石热解转化率的影响。
     (5)CH4气氛对煤矸石的热解促进作用存在着一个最佳温度段△Topt。CH4在析碳温度之前,对煤矸石的热解均表现为促进作用。
     (6)不同气氛下煤矸石热解过程很复杂,均不能用一步反应描述。在煤矸石热解第一阶段,热解反应服从三维球形扩散模型(D4模型);热解第二阶段受液化反应的控制,热解过程服从级数为2的化学反应(F2模型)模型;热解第三阶段根据煤种的不同而不同,含碳量高的煤矸石热解过程服从级数为2的化学反应模型(F2模型),含碳量低的煤矸石(C<10%)服从级数为1的化学反应模型(F1模型)。
     (7)不同气氛下,煤矸石活化能均呈现出在热解第一、第三阶段较小,第二阶段最大现象。不同煤矸石在相同的热解阶段的活化能差别较大。
     (8)CO2气氛下,煤矸石活化能在热解第一、第二阶段随着CO2浓度的增高而增大,第三阶段随着CO2浓度的增高而降低。而在CH4气氛下,活化能在热解的第一阶段随着CH4浓度的增高而降低,在第二阶段活化能随CH4浓度增加而升高。
     本文通过煤矸石在不同气氛下的热解特性的研究,为煤矸石与低热值气体的混合热解技术的发展建立了一定的理论基础,也为今后的深入研究提供了有价值的参考依据。
Coal residue is one of the most quantity industrial solid residues,with the characteristics of lower volatile, high ash, lower heat value and hard-to-burn. So, the large scale utilization of coal residue is limited. Co-combustion of low caloric gas and coal residue could improve the combustion efficiently. In the combustion, the component of low caloric gas influence the characteristics of coal residue pyrolysis greatly. Pyrolysis in the appropriate atmosphere is important to the combustion efficiency. So far, research in this field is limitted and the characteristics and mechanisms of coal residue pyrolysis in different atmosphere are covered and un-recognized, which hindering the further utilization and development. So, it is necessary to study the characteristics and mechanisms of coal residue pyrolysis in different atmosphere.
     Based on the deeply analysis of the status of utilization and the situation of coal residue and low caloric gas, the characteristics of coal residue was analyzed. The experiments of coal residue pyrolysis have been investigated on 4 kinds of different coal residues by non-isothermal thermogravimetric method, researching the effects of experiment parameters, such as different heat rate, different sample diameter, different pressure and different gas mixture of CO2 or CH4 with N2 with the concentration of 10%, 30%, 60%, 100%, to the pyrolysis characteristics, then analyzing the kinetic characteristics. The main conclusions are as follow:
     (1) The component of different coal residues changed. The content of volatile is 9.69%~13.26%, the content of Fixed Carbon is 6.35%~30.3%, the content of Ash is 54.67%~82.4%. The content of constituent is Carbon 39%~55%,Hydrogen 1.1%~2.3%,Oxygen 1.9%~6.5%.
     (2) With the rise of the temperature, coal residues pyrolysis experienced three stages: low temperature weight loss stage; main decomposes stage and second release gas stage. Temperature is the main factor to influence the coal residue pyrolysis.
     (3) The primary pyrolysis temperature, (dw/dt)max and its temperature, quality number D vary with different coal residues, sample diameter, heat rate, pressure and atmosphere.
     (4) The influence of atmosphere is different at respective pyrolysis phases.ΔW =ΔW N 2 ?ΔWatmosphere is used for judging the degree of percent conversion.
     (5) A most optimum pyrolysis temperature phase△Topt exists in the pyrolysis process in the CH4 atmosphere. Before the carbon deposition temperature, CH4 improves the pyrolysis,ΔW CH4could express that.
     (6) The coal residue pyrolysis is very complicated in the different atmosphere; the whole process can not be described by one step reaction. The results show that in the first stage, the pyrolysis reaction obeys the mechanism of three-dimensi onal spherical diffusion(D4); In the second stage, the reaction obeys the liquefaction reaction and the progression of chemical reaction is 2(F2);in the third stage, the pyrolysis of high Carbon coal residues still obeyed F2, but the lower Carbon’s(C<10%) obeyed the chemical reaction with the progression of 1(F1).
     (7) In the different atmosphere, the activation energy is lower in the fist and third stage, the higher in the second stage. The same stage of different coal residues have the different activation energy.
     (8) In CO2 atmosphere, the activation energy is higher and higher with the higher CO2 concentration in the first and second stage, but lower in the third stage. Whereas, in the CH4 atmosphere, the activation energy is lower and lower with the higher CH4 concentration in the first stage and higher in the second stage.
     The conclusion from above experiments and analysis of coal residue pyrolysis in the different atmosphere are helpful to the development of co-pyrolysis of coal residue and low caloric gas and supply valuable reference data for more research in this field.
引文
[1]陈宏刚,李凡,谢克昌.中国洁净煤技术的研究与开发[J].煤炭转化,1997,20(3).
    [2]文忠和,卢清兰.煤矸石资源化开发利用途径[J].萍乡高等专科学校学报, 2002, (4):56-59.
    [3]李琦,孙根年,韩亚芬等.我国煤矸石资源化再生利用途径的分析[J].煤炭转化, Jan. 2007, Vol. 30, No. 1,.
    [4]朱宝忠,谢承卫.煤矸石综合利用的研究进展[J].贵州大学学报. Sep. 2007, Vo.l.24. No. 5.
    [5]郭小电.煤矸石综合利用技术途径的探讨[J].中州煤炭, 2007, 2.
    [6]曹永新,尹育华.露天采矿技术[J].煤矸石综合利用技术, 2007, (4):P65.
    [7] G. Domazetis, P. Barilla, B. D. James, R.Glaisher. Treatments of low rank coals for improved power generation and reduction in Greenhouse gas emissions. Fuel processing technology 89(2008)68–76.
    [8] Dinesh Malav. Rajive Ganguli, Sridhar Dutta, Sukumar Bandopadhyay. Non-impact of particle size distribution on power generation at a pulverized coal power plant burning low rank Alaska coal. Fuel Processing Technology xx(2007)xxx-xxx
    [9]董德恩.煤矸石热值检测及燃烧特性分析[J].清净煤技术, 2006 12 (l)
    [10]张敏,白强.循环流化床锅炉掺烧煤矸石试验研究[J].热力发电, 2007, (4):P56.
    [11]秦广明.循环流化床锅炉混烧煤矸石的分析与比较[J].广东电力, Vol. 20No. 4, 2007.
    [12]李静.洗煤泥与煤矸石流化床混烧技术的应用[J].科学试验, 2003, (3):5-7.
    [13] Folgueras, M. Belen, María Díaz. R, Xiberta, Jorge. Sulphur retention during co-combustion of coal and sewage sludge. Fuel, 2004,83(10):1315-1322.
    [14] Datin Fatia Umar, Hiromoto Usui, Bukin Daulay. Change of combustion characteristics of Indonesian low rank coal due to upgraded brown coal process. Fuel Processing Technology 87 (2006) 1007–1011.
    [15] Sonia Helle, Alfredo Gordon, Guillermo Alfaro, Ximena García and Claudia Ulloa. Coal blend combustion: link between unburnt carbon in fly ashes and maceral composition. Fuel Processing Technology, Volume 80, Issue 3, 15 March 2003, Pages 209-223.
    [16] Hari B. Vuthaluru and Dong-ke Zhang. Effect of coal blending on particle agglomeration and defluidisation during spouted-bed combustion of low-rank coals. Fuel Processing Technology, Volume 70, Issue 1, April 2001, P 41-51.
    [17]池涌,严建华,蒋旭光等.洗煤泥煤矸石流化床混烧过程基础研究与工业应用[J].洁净煤技术, 2002, 8(1).
    [18]牛奔.煤矸石和煤层气循环流化床混烧特性试验研究[J].重庆大学硕士学位论文. 2005.
    [19]刘定平. SC-DF燃烧器节油稳燃机理及应用[J].武钢技术, 2002, 237(1):47-45.
    [20] J. Faundez, A. Arenillas, F. Rubiera, X. Garc?a, A. L. Gordon, J. J. Pis. Ignition behaviour of different rank coals in an entrained flow reactor Fuel 84 (2005) 2172–2177.
    [21]茅艳,许波.利用煤矸石生产建筑材料及其对性能特性的分析[J].中国矿业, 2004, 13(8):48-51.
    [22] Chen H K, LiB Q, Zhang B J. Decomposition of Pyrite and the Interaction of Pyrite with Coal Organic Matrix in Pyrolysis and Hydropyrolysis. Fuel, 2000, 79(13): 1627-1631.
    [23] Yuan-Yao Lia, Tsuyoshi Nomurab, Akiyoshi Sakoda b, et al. Motoyuki Suzuki. Fabrication of carbon coated ceramic membranes by pyrolysis of methane using a modified chemical vapor deposition apparatus [J]. Journal of Membrane Science, 2002(1-2).
    [24] Hunter N R, Prabawono D, Gesser H D. The carbon dioxide reforming of methane in a thermal diffusion column reactor (TDCR) and a pyrolysis reactor (PR) [J]. Catalysis Today, 1998(3).
    [25] Sugawara T, Katsuyasu E, Synchrotron J et al. XANES Analysis of Sulfur Form Change During Pyrolysis of Coal [J]. Fuel, 2001, 80(8) : 955~957.
    [26]罗鸣,张建民,高梅杉.煤与天然气的高温共热解[J].煤炭科学技术, May, 2006. Vol. 34, No.5
    [27]景晓霞,常丽萍,谢克昌.反应气氛对煤热解过程中NH3释放的影响[J].煤炭转化, Jan. 2005. Vol. 28 No. 1
    [28]高梅杉,张建民,罗鸣.褐煤在甲烷气氛下热解特性及硫析出规律研究.煤炭转化,2006, Vol.28 No.4.
    [29]高梅杉,张建民,罗鸣.煤在还原性气氛下热解硫的析出机理研究进展.洁净煤技术, 2005, Vol 11No. 1:34-38.
    [30]王锦平,张德祥,高晋生.煤中氯在不同气氛下的热解析出.煤炭转化, Apr. 2003. Vol. 26, No. 2,
    [31]范晓雷,张薇,周志杰,王辅臣,于遵宏.热解压力及气氛对神府煤焦气化反应活性的影响[J].燃料化学学报, Oct. 2005,Vol. 33, No. 5,.
    [32]卢平,徐生荣,祝秀明,顾洲.再燃烧条件下煤粉热解过程中C、H、N释放特性[J].热能动力工程,2005年20卷3期:284-287.
    [33]廖洪强,孙成功,李保庆.焦炉气气氛下煤加氢热解研究进展[J].煤炭转化, Vol. 20 No. 2 Apr. 1997.
    [34]廖洪强,孙成功,李保庆,刘泽常.富氢气氛下煤热解特性的研究[J].燃料化学学报,第26卷第2期1998年4月.
    [35]廖洪强,李保庆,张碧江,刘泽常.煤焦炉气共热解特性研究IV[J].甲烷和一氧化碳对热解的影响.燃料化学学报, Vol. 26, No. 1, Feb. 1998.
    [36]廖洪强,李保庆,张碧江.煤—合成气共热解特性的研究[J].煤化工,第3期(总第88期),1999年8月.
    [37] PRAMODC.THAKUR, HAROLDG. Little globle coalbed methane recovery and use. Energy Convers,1996, 37(6-8):789-794
    [38]于世航.煤层气的燃烧技术与设计[J].中国煤层气, Vol. 2, No. 2, Apr. 2005.
    [39]黄盛初、朱超.煤层气综合利用技术方案[J].中国煤层气, 1996年第1期.
    [40]刘子龙.阳泉矿区煤层气的特点与利用[J].矿业安全与环保, 2003年第1期.
    [41]牛福安.高炉煤气发电项目的评价方法及推广前景[J].中国能源,1999,(3):9-11.
    [42]马晓茜,刘文龙等.低热值煤气的利用及强化燃烧技术的探讨[J].能源研究与利用,1995,(01):10~11.
    [43] L.Price,J. Sintona, E.Worrella. Energy use and carbon dioxide emissions from steel production in China. Energy 27(2002):429-446.
    [44]杜凤祥.高炉煤气余压发电装置在邯钢的应用[J].冶金动力,2002,(1):37-39.
    [45]尹建威,孙国龙.高炉煤气燃烧发电的现状和展望[J].燃气轮机技术, 2002, 15(1):27-29.
    [46]韩陈. 75t/h煤粉锅炉全烧高炉煤气改造设计[J].冶金动力, 2001, (5):3-6.
    [47]安锦民,杨敏,贾文义等.锅炉合理掺烧高炉煤气试验分析[J].内蒙古电力技术, 2001, (5):11-12.
    [48]刘定平,裴振林.高炉煤气在200MW电站燃煤锅炉中掺烧应用[J].中国电力, 2002, 35(3):16-19.
    [49]沈一平,顾顺波. 220t/h煤粉锅炉掺烧高炉煤气技术的开发和应用[J].冶金能源, 1999, (5):44-47.
    [50]蒋苏生.燃用高炉煤气的150MW联合循环发电机组[J].华东电力, 1996, (7):21-25.
    [51]吴文渊,张子栋等.高炉煤气与煤混烧的热电联产用流化床锅炉[J].冶金能源, 1994, (9):40-43.
    [52]陈冬林,鄢晓忠,符慧林等.湘钢热电厂WGZ75/39-6煤粉锅炉改烧煤气的工程实践[J]. 51热力发电, 2001, (6):36-40.
    [53]邹祖桥.高炉喷吹煤粉燃烧特性实验研究与数值模拟.华中理工大学博士论文,华中科技大学图书馆, 2000.
    [54] Ernst Worrell,Lynn Price,Nathan Martin. Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector. Energy,2001,26:513-536.
    [55] J.Y. Shina,Y. J. Jeon,D.J. Maeng,etc. Analysis of the dynamic characteristics of a combined-cycle power plant. Energy, 2002,27:1085-1098.
    [56]朱之培,高晋生,煤化学[M],上海科学技术出版, 1984:171-172.
    [57] Saxena S C,Devolatilization and combustion characteristics of coal particles,Prog EnergyCombust. Sci,1990,(16):55-94.
    [58] Solomon P R,Serio M A,Suuberg E M. Coal pyrolysis:Experiment,kinetics rates and mechanisms, Prog Energy Combust Sci,1992,(18):133-220.
    [59] GavalasG R, Coal Science and Technology4, Coal Pyrolysis, Elsevier, New York, 1982:19-33.
    [60] Thoms P E, PhilliP F B, BuehananⅢA C, Does decarboxylation lead to cross-linking in low-rank coals, Energy & Fuels, 1996, 10(6):1257-1261.
    [61] Miura K and Maki T, A simple method for estimating f(E) and ko(E) in the distributed activation energy model, Energy&Fuel 1998,12, 864.
    [62] Solomon P.R, Hamblen.D.G, etal., Can coal science be perdictive, Fuel Chem. Prep. 1991,36:268-297.
    [63]张建雨,王波,颜涌捷等.煤裂解特性研究[J],华东理工大学学报, 2000, 26(6):642-645.
    [64] Donskoi E, McElwain, D. L. S, Optimization of Coal Pyrolysis Modeling, Combustion and Flame, 2000, 122, 359-367.
    [65]候栋歧,冯金梅,陈春元等.混煤煤粉着火和燃尽性能的试验研究[J].电站系统工程, 1995, 11(2):30-34.
    [66]煤炭科学研究总院. GB/T212-2001煤的工业分析方法[S].北京:中国标准出版社, 2002.
    [67]陈业飞.煤质评价与煤质标准化[J].煤质技术, 2006,(1):12-15.
    [68] Warne S. St. J. Thermal analysis and coal assessment: an overview with new development[J]. Thermochimica Acta, 1996, 34(5):17~21.
    [69]煤炭科学研究院.煤炭化验手册.煤炭工业出版社, 1981.
    [70]孙学信燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社, 2002.
    [71]虞继舜.煤化学[M].北京:冶金工业出版社, 2000:180-182.
    [72]李余增.热分析.北京:清华大学出版社,1987,75-81.
    [73]徐跃年,煤热解反应动力学研究[J].热能动力工程, 1995, 10(3):154-157.
    [74]樊俊杰,金晶,钟海卿等.煤粉燃烧时NOx析出规律的试验研究[J].锅炉技术, 2005, 5, 36(3):38-41.
    [75]庞雁原等,影响煤化工转化过程中酚类产生的因素,煤炭转化1994, 17(1):89-93.
    [76] Anthony D B. Rapid devolatilization and hydrogasification of pulverized coal. Sc. D. Thesis, Dept of Chemical Engineering, M IT, MA, 1974.
    [77]邱发礼,燃料化学学报. 11(1), 10. (1983).
    [78] Egiebor N. O, Gray M R. Evidence for Methane Reactivity During Coal Pyrolysis and Liquefaction. Fuel, 1990, 69 (10) : 1276-1282.
    [79]姚昭章.不同煤化度的热解动力学参数[J].煤化工[J], 1994,(2):34-40.
    [80]郭嘉,混煤热解特性及热解机理的热重法研究,锅炉技术[J]. 1994, (8):5-7.
    [81]胡荣祖、史启祯主编,热分析动力学,北京:科学出版社, 2001.
    [82] Li Chung-Hsiung. An integral approximation formula for kinetic analysis of nonisothermal TGA data. AIChE Journal, 1985, 31(6):1036~1038.
    [83].李余增,热分析,清华大学出版社, 1987.
    [84]刘乃安,生物质材料热解失重动力学及其分析方法研究,博士论文5-8, 11-12, 55-63
    [85]胡荣祖,史启祯.热分析动力学.第1版.北京:科学出版社, 2001.
    [86] Prasad T.P., Kanungo S.B, Ray H.S. Non-isothermal kinetics: some merits and limitations. Thermochimica Acta,1992, 203(I):503-514.
    [87] Qrtega. A Some successes and failures of the methods based on several experiments. Thermochimica Acta, 1996, 284(2):379-387.
    [88] Koga N, Tanaka H. Conventional kinetic analysis of the thermogravimetric curves for the thermal decomposition of a solid. Thermochimica Acta, 1991, 183(l):125-136.
    [89] L. Reich, J. Polymer Sci, PartA-2, 1261, 1964. [90」P. K. Chatterjee, Thermal Anal., 5, 253, 1973.
    [91] GGyulai, J.Thermal Anal.6, 279, 1974.
    [92] T. P. Bagchi, et al., Thermochimica Acta, 18, 273, 1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700