用户名: 密码: 验证码:
沁南地区煤层气排采井间干扰的地球化学约束机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以沁水盆地南部煤层气生产区为例,以生产井区流体化学场监测与系统的流体地球化学分析测试为技术手段,在煤层气生产区煤储层地质背景、煤层气井压裂和排采条件的基础上,研究了不同生产时刻煤层气组分、煤层气甲烷碳、氢同位素、地层水中离子浓度、地层水中元素含量,分析了煤层气组分、煤层气甲烷同位素、地层水中离子、地层水中元素的空间演化及其影响因素,探讨了不同流体化学场与井网排采条件下井间干扰的耦合关系,阐明了井间干扰的地球化学响应机理,提出了煤层气组分、甲烷同位素、地层水中离子及元素约束井间干扰的地球化学模式。本次研究取得的主要研究成果如下:
     (1)建立了煤层气井网排采井间干扰地球化学监测方法体系
     以现代地球化学测试分析为手段,对煤层气组分含量、煤层气稳定同位素比值(甲烷碳、氢同位素比值)、地层水中离子浓度、地层水中元素含量进行测试分析,较好地实现了对煤层气井间干扰阶段及程度的判断,首次确立了煤层气井网排采井间干扰的地球化学监测方法体系。
     (2)揭示煤层气排采流体化学场、动力场特征演化及其耦合关系
     煤层气井产水能力受煤储层渗透率、地层水位及排采工作制度的影响,产气量受煤层含气性、储层物性、地质构造、压裂效果及排采工作制度的影响;未产气前,井底流压主要由液柱压力控制,产气后主要受套压控制;套压、液柱压力、井底流压均与累计排水量、日产气量呈一定相关性;地下水流体势整体上由东向西及由南向北降低,监测时段内储层压力经历了反转期、分异期及不均衡压降期3个阶段,与煤层气生产的无井间干扰期、弱井间干扰期及不均衡井间干扰期相对应;在生产监测区内初步形成了井间干扰,且井间干扰处于不均衡井间干扰期,干扰程度相对较弱。
     煤层气组分、煤层气稳定同位素、地层水的总矿化度、地层水电导率、地层水碳酸盐硬度、地层水中元素含量呈周期性波动变化;地层水水化学类型主要为Na-HCO3型,部分井在局部生产时段产出地层水为Na-Cl型;不同采样时刻排出地层水的来源为煤层水、煤层水与砂岩水的混合水;煤层气组分和稳定同位素变化与煤层气组分分馏、同位素分馏、排采速率及井间干扰有关,产出地层水的离子浓度、矿化度、硬度及元素含量变化与煤层气井排采强度、井间干扰、物源及元素自身的性质有关。煤层气组分、稳定同位素的波动性变化、离子浓度整体变化的一致性反映了区域性井间干扰的影响。
     煤层气甲烷组分和二氧化碳组分的空间展布方向在采样时段内均多次改变,组分浓度的空间展布受局部煤层气产出组分浓度的影响;煤层气稳定同位素的空间展布主要经历了南北向展布及东西偏转的过程,碳、氢同位素的空间展布具有相似性,甲烷氢同位素的演化滞后于碳同位素;组分浓度差异及碳、氢同位素差异缩小揭示了井间干扰的影响,组分及同位素空间演化的多变性揭示了井间干扰处于初期且干扰程度较弱;地层水离子、元素的空间展布整体均表现出南北向及东西向的周期性偏转,矿化度的空间展布表现为由南向北降低,不如离子浓度的空间演化对井间干扰敏感,元素的演化滞后于离子的演化;离子、元素的空间演化及两者演化不一致的原因可能有:元素及离子本身的性质、物源影响、排采井间干扰的影响,
     甲烷组分浓度的空间展布与二氧化碳组分浓度的空间展布的叠合揭示二者的分布及演化基本不同步,不同步的原因主要与煤层气发生组分分馏及不均衡井间干扰期形成的不稳定流场产生气源补给的变化有关;煤层气甲烷碳、氢同位素比值的空间演化具有一致性,但氢同位素的空间演化滞后于甲烷碳同位素;甲烷组分浓度的空间演化与甲烷碳同位素比值的空间演化的叠合表明两者演化并不完全同步,主要与煤层气组分分馏、同位素分馏、井网排采条件气源的补给及地下水动力条件的改变有关。
     不同液相流体参数之间的叠合分析显示两者在空间叠迭上并不完全一致,主要原因可能为:地层水中离子与元素的性质、井网排采过程与井间干扰的作用、地层水来源的不同;不同液相流体参数之间的叠合揭示了两者不同步的真正原因为井间干扰初级阶段的不稳定性;气相流体化学场与液相流体化学场的演化具有明显的一致性,明显受井间干扰的影响,两者耦合时表现出明显的正相关。
     不同相态流体化学场中参数的空间演化与煤层构造、煤储层压裂裂缝主缝长的叠合关系分析揭示了排采的流体化学场与煤层构造及压裂主裂缝的缝长没有直接的联系,进一步揭示了流体化学场方向的变化是由排采所形成的井间干扰引起的。
     (3)建立了煤层气排采井间干扰地球化学响应模式
     井网排采的流体化学参数、流体化学场与井间干扰存在响应关系,流体化学参数表现出的波动变化特征,对井间干扰的形成过程起到响应作用,流体化学场的分布特征及演化特征对井间干扰的不同阶段均有不同的响应。
     在排采初期未形成井间干扰阶段,煤层气中轻组分先升后降,重组分先降后升,稳定同位素先偏轻后偏重,绝大部分离子浓度、矿化度、电导率、元素含量先升后降,同一生产时刻不同煤层气井产出煤层气的组分、稳定同位素、离子浓度、元素含量、矿化度、电导率等差异明显;井间干扰初步形成阶段,煤层气组分、稳定同位素及绝大部分离子浓度、矿化度、电导率、元素含量呈周期性波动上升与下降,同一生产时刻不同煤层气井产出煤层气的组分、稳定同位素、离子浓度、元素含量、矿化度、电导率差异减小;井间干扰稳定阶段,煤层气组分及稳定同位素仍呈波动性周期变化,不同煤层气产出的煤层气组分及稳定同位素具有趋同效应,组分及同位素的变化规律具有同步性,离子浓度、矿化度、电导率、元素含量变化呈周期性波动,邻井产出地层水中离子浓度、元素含量变化具有同步性,远井表现出变化相似性。
     气相流体化学场通过发生偏转或倒转,响应煤层气来源的多源性及网排采下井间干扰过程;不同组分的空间演化关系通过叠合时叠迭关系交错或重叠反映其它煤层气来源的影响,从而响应井间干扰;不同液相流体化学参数的空间演化关系通过叠合时叠迭关系的变化反映不同地层水来源,从而响应井网排采条件下井间干扰过程。
     (4)科学评估了煤层气生产井区井间干扰作用及其生产控制
     以煤层气排采流体动力场、流体化学参数及化学场为基础,确立了煤层气井生产井区井间干扰评价的原则和方案,判定了煤层气生产区排采井间干扰阶段及程度,评价方案能适用于不同煤层气生产区,为煤层气开发提供了生产控制上的技术支撑。
     该论文有图80幅,表12个,参考文献169篇。
With CBM production of southern Qinshui basin as an example, the fluid geochemical field of the production well area and systematic testing and analysis of geochemistry was chosen as technical method. Based on geological setting of coal reservoir, fracturing and drainage of CBM well in CBM production area, CBM components, CBM carbon and hydrogen isotopes, ion concentration of formation water, element content of formation were studied. The spatial evolutions and affecting factors of CBM components, CBM methane isotopes, ion concentration, and element content were analyzed. Coupled relation of different fluid chemical field and well interference during drainage under well pattern was discussed, the constrained mechanism of well interference was illustrated, and the geochemical response model on well interference from CBM components, methane carbon and hydrogen isotopes, ion and element of formation water were proposed. The main research achievements are concluded as follows:
     (1) Geochemical monitoring method of well interference during drainage under well pattern was established.
     The modern geochemical testing and analysis was chosen as the method. The content of CBM components, the ratio of stable isotope of CBM, ion concentration of formation, element content of formation water were tested and analyzed, the stage and the degree of well interference of CBM wells were distinguished, geochemical monitoring method of well interference during drainage of CBM under well pattern was established.
     (2)The evolution characteristics and coupled relation of fluid chemical field, fluid dynamic field during drainage of CBM wells were revealed.
     Flowing bottom-hole pressure is controlled by Hydrostatic pressure before gas generation, but is controlled by casing pressure after gas generation. Casing pressure, hydrostatic pressure, flowing bottom-hole pressure have a certain correlation with accumulative water drainage. The underground water flows from the east to the west and from the south to the north. Coal reservoir pressure undergoes three stages: reversal period, differential period, unbalanced pressure drop period in monitoring time; it is correspond to the period of without well-interference, weak well-interference period, unbalanced well-interferenced period of CBM production. The well-interference occurs, but the well interference is unbalanced, may be in the initial stage, and its interference is relatively weak.
     CBM components, methane carbon and hydrogen isotopes, the ion concentration, total mineralization, the conductivity, the hardness, the element content have cyclical fluctuation with drainage time. Hydrochemical types of formation water from different CBM wells are mainly Na-HCO3, but partial hydrochemical type of formation water of partial CBM wells are Na-Cl with some special period, the sources of formation water are mainly coalbed water, the mixed water of coalbed water and sandrock water. The fluctuation of CBM components, the stable isotopes of methane may be related to component fractionation, isotope fractionation, drainage and well interference. The fluctuation of ion concentration, the mineralization, the conductivity, the hardness and the element content may be associated with drainage of CBM wells, well interference, the source of formation water, the properties of element and ion. The fractionation of CBM components, the stable isotopes, and the consistency of the variation of ion concentration reflects the effect from well interference.
     The spatial distribution of methane, carbon dioxide undergoes several changes in the sampling period. The spatial distribution of the concentration of CBM components is affected by the concentration of CBM produced by partial wells. The spatial evolution of the stable isotopes of CBM undergoes the course the distribution of the north-south and the deflection of the east-worth. The spatial distribution of carbon isotope is similar to the spatial distribution of hydrogen isotope, the evolution of methane hydrogen isotope falls behind methane carbon isotope. The decreasing difference of CBM components, methane carbon and hydrogen isotopes reveal the effect of well interference. The variability of the spatial evolution of CBM components and methane isotopes reveal that well interference in the initial stage, and the interference. The spatial distribution ion, element of formation water is characterized by cyclical deflection with the NS trending and the ES trending. The spatial distribution of the mineralization decrease from the south to the north, it is not sensitive than the spatial evolution of ion concentration on well interference, the spatial evolution of element falls behind the spatial evolution of ion. The spatial evolution of ion and element, their inconsistency are related to the properties of ions and elements, the source of formation water, well interference.
     The composite between the spatial distribution of methane and carbon dioxide shows the distribution and evolution of them is basically asynchronous, because the spatial distribution of methane and carbon dioxide are mainly related to component fractionation of CBM, the supply of CBM caused by the instable fluid field in the initial stage of well interference. The spatial evolution of carbon isotope ratio is consistent with the spatial evolution of hydrogen isotope ratio, but the spatial evolution of hydrogen isotope lags behind the spatial evolution. The composite relation of the spatial evolution of CBM component is consitent with the spatial evolution of methane carbon isotope demonstrates, which is related to component fractionation of CBM, isotope fractionation, the supply of gas source and the change of hydrodynamic condition of ground water.
     The composite analysis of different liquid fluid parameters show there are not entirely consistent in the spatial distribution of the two parameters of liquid fluid, the main reason may be related to the properties of ion and element, drainage under well pattern, well interference, the different source of formation water. The composite analysis between different liquid phase fluids also reveals the real reason of the inconsistency of different liquid phase fluid is the instability of the initial well interference. The evolution of chemical field of gas phase fluid is obviously consistent with the evolution of chemical field of liquid phase fluid, they are affected by well interference obviously, and there is an obvious positive correlation between them during coupling.
     That fluid chemical field is not related to the structure of coal bed directly, the length of main artificial fracture by fracturing, which reveals the variation of fluid chemical field is caused by well interference formed by drainage.
     (3) The geochemical response model of well interference during drainage of CBM was established.
     There is a response relationship between fluid chemical parameters, fluid chemical fields and well interference, fluctuation change characteristics of fluid chemical parameters responds the forming process of well interference, the distribution characteristics of fluid chemical field and evolution characteristics of fluid chemical flied also respond the different stages of well interference. The deflection and the inversion of chemical field of chemical field reflect the multiple sources of CBM, response the course of well interference.
     (4) The action of well interference in CBM production area and its production was assessed scientifically.
     On the basis of fluid dynamic field, fluid chemical parameters and chemical field during drainage of CBM, the principle and the scheme of assessment on well interference of CBM wells in production area, the stage and the degree of well interference in CBM production area during drainage was judged. The assessment scheme can apply to different CBM production area; it can provide the technical support for CBM development in production control.
引文
[1]金安信,王峰明,李国富,田永东,刘刚.根据地下水动力学原理指导煤层气井的排采工作[J].中国煤层气,1996,2:152-153.
    [2] Pashin, J.C., Groshong Jr, R.H.. Structural control of coalbed methane production in Alabama [J]. International Journal of Coal Geology, 1998, 38(1-2):89-113.
    [3]曹立刚,郭海林,顾谦隆.煤层气井排采过程中各排采参数间关系的探讨[J].中国煤田地质,2000,12(1):31-35.
    [4]杨秀春,李明宅.煤层气排采动态参数及其相互关系[J].煤田地质与勘探,2008,36(2):19-25.
    [5]李国富,田永东.煤层气井排水采气机理浅探,中国煤炭,2002,7:33-36.
    [6]刘曰武,张大为,陈慧新,宫欣.多井条件下煤层气不定常渗流问题的数值研究[J].岩石力学与工程学报,2005,24(10):1679-1686.
    [7]何伟钢,叶建平.煤层气排采历史地质分析[J].高校地质学报,2009,9(3):385-389.
    [8]田永东.试论煤层气地面开发的规模性[J].科技情报开发与经济,2005,15(13):163-165.
    [9] Harrison, S.M., Gentzis, T., Payne, M. Hydraulic, water quality, and isotopic characterization of Late Cretaceous-Tertiary Ardley coal waters in a key test-well, Perbina-Warburg exploration area, Alberta, Canada [J]. Bulletin of Canadian Petroleum Geology, 2006,54(3):238-260.
    [10]康永尚,赵群,王红岩,刘洪林,杨慎.煤层气井开发效率及排采制度的研究[J].天然气工业,2007,27(7):79-86.
    [11]杨焦生,李安启.樊庄区块煤层气井开发动态分析及分类评价[J].天然气工业,2008,28(3):96-98.
    [12]冯文光.煤层气藏工程[M].北京:科学出版社,2009:72-74.
    [13]李金海,苏现波,林晓英,郭红玉.煤层气井排采速率与产能的关系[J].煤炭学报,2009,34(3):376-380
    [14]王国强.影响煤层气井生产特征的关键因素分析—以沁水盆地南部潘河地区为例.2008年煤层气学术研讨会论文集[C],北京:地质出版社,2008,360-369.
    [15]王兴隆,赵益忠,吴桐.沁南高阶煤煤层气井排采机理与生产特征[J].煤田地质与勘探,2009,37(5):19-24.
    [16]杨新乐,张永利,肖晓春.井间干扰对煤层气渗流规律影响的数值模拟[J].煤田地质与勘探,2009,37(4):26-29.
    [17]赵群,王红岩,李景明,刘洪林.快速排采对低渗透煤层气井产能伤害的机理研究[J].山东科技大学学报(自然科学版),2008,27(3):27-31.
    [18] Clayton, J.L. Geochemistry of coalbed gas—A review [J]. International Journal of Coal Geology, 1998, 35:159-173.
    [19]陶明信.煤层气地球化学研究现状与发展趋[J].自然科学进展,2005,15(6):618-622.
    [20] Scott, A.R. Composition and origin of coalbed gases from selected basins in the United States. Proceeding of the 1993 International Coalbed Methane Symposium [C], Birmingham, Alabama, 1993.
    [21] Rice D D. Composition and origins of coalbed gas. In: Law B E. Rice D D. eds. Hydrocarbons from Coal, AAPG Studies in Geology Series 38, Tulsa, Oklahoma, USA [M]. AAPG, 1993: 159-183.
    [22]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007:14-16.
    [23]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002:6-8.
    [24]贺天才,秦勇.煤层气勘探与开发利用技术[M].徐州:中国矿业大学出版社,2007:1-2.
    [25]戴金星,宋岩.煤成气型生物成因气及其成因探讨-有机地球化学和陆相生油[M].北京:石油工业出版社,1986:297-303.
    [26]王涵云,杨天宇.在实验条件下石油烃的热演化.有机地球化学论文集[M].北京:科学出版社,1986:159-167.
    [27] Danels.L., Fulon, G., Spencer, R.W., William, H.O. Origin of hydrogen in methane produced by methanobacterium thermoautotrophicum [J]. Journal of Bacteriology, 1980, 141(2):694-698.
    [28] Waldron, S., Watson-Craik, I.A., Hall, A.J., Fallick, A.E. The carbon and hydrogen stable isotope composition of bacteriogenic methane:A laboratory study using a landfill inoculum [J]. Geomicrobiology Journal, 1998, 15(3):157-169.
    [29]戴金星.我国有机烷烃气的氢同位素的若干特征[J].石油勘探与开发,1990,5:28-32.
    [30]戴金星,戚厚发,宋岩,关德师.我国煤层气组分、碳同位素类型及其成因和意义[J].中国科学,B辑,1986,12:1317-1326.
    [31]陈润,秦勇,王爱宽,杨兆彪,王国玲.煤层气分馏效应研究进展及其应用[J].中国煤炭地质,2009,21(6):27-33.
    [32]聂百胜,段三明.煤吸附瓦斯的本质[J].太原理工大学学报,1998,20(4):417-421.
    [33]张力,何学秋,聂百胜.煤吸附瓦斯过程的研究[J].矿业安全与环保,2000,27(6):1-4.
    [34] Kross, B.M., Bergen, F. High-pressure methane and carbon dioxide adsorption on dry and moisturequilibrated Pennsylvanian coals [J]. International Journal of Coal Geology, 2002,51:69-91.
    [35]吴建光,叶建平,唐书恒.注入CO2提高煤层气产能的可行性研究[J].高校地质学报,2004,10(3): 463-467.
    [36] Busch, A., Kross, B.M. High-pressure adosorption of methane, carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behavior [J]. Journal of Geochemical exploration, 2003,78-79:671-674.
    [37]唐书恒,汤达祯,杨起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,2004,33(4):448-453.
    [38]张遂安.有关煤层气开采过程中煤层气解吸作用类型的探索[J].中国煤层气,2004,1(1):26-28.
    [39]张遂安,霍永忠,叶建平,唐书恒,马东民.煤层气的置换解吸实验及机理探索[J].科学通报,2005,50(S1):143-146.
    [40]刘丽民,苏现波.平顶山矿区首山一井田煤层气解吸过程中的组分分馏.2008年煤层气学术研讨会论文集[C],北京:地质出版社,2008:188-193.
    [41]聂百胜,王恩元,郭勇义,吴世跃,卫建锋.煤粒瓦斯扩散的数学物理模型[J].辽宁工程技术大学学报(自然科学版),1999,18(6):582-584.
    [42]聂百胜,张力,马文芳等.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质勘探,2000,28(6):20-22.
    [43]聂百胜,郭勇义,吴世跃,张力.煤粒瓦斯扩散的理论模型及其解析解[J].中国矿业大学学报,2001,30(1):19-23.
    [44]何学秋,聂百胜.孔隙气体在煤层中的扩散机理[J].中国矿业大学学报,2001,30(1): 1-4.
    [45]曹成润,牛伟,张遂安,霍永忠,陈秀艳,孙英男.煤层气在煤储层中的扩散及其影响因素[J].世界地质,2004,23(3):267-269.
    [46]闫宝珍.沁水盆地煤层气富集机理及主控特征[D].中国矿业大学博士论文,北京:中国矿业大学(北京), 2008.
    [47]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995:40-50.
    [48]陈昌国,巍锡文等.用从头计算研究煤表面与甲烷分子相互作用[J].重庆大学学报,2000,23(3):77-83.
    [49]查传钰.多孔介质中流体的扩散系数及其测量方法[J].地球物理学进展.1998,13(2):60-72.
    [50]李前贵,康毅力,罗平亚.煤层甲烷解吸-扩散-渗流过程的影响因素[J].煤田地质与勘探,2003,31(4):26-29.
    [51]李育辉,崔永君,钟玲文,降文萍.煤基质中甲烷扩散动力学特性研究[J].煤田地质与勘探,2005,33(6):31-34.
    [52]李剑,刘朝露,李志生,胡国艺,严启团,单秀琴,马成华,王春怡.天然气组分及其碳同位素扩散作用模拟实验研究[J].天然气地球化学,2003,14(6):463-468.
    [53]付晓泰,王振平.气体在水中的溶解机理及溶解度方程[J].中国科学(B)辑,1996,26(2):124-130.
    [54]付晓泰,王振平,卢双舫.天然气在盐溶液中的溶解机理及溶解度方程[J].石油学报,2000,21(3):89-94.
    [55] Su, X.B., Lin, X.Y., Liu, S.B., Zhao, M.J., Song, Y. Geology of coalbed methane reservoirs in the Southeast Qinshui Basin of China [J]. International Journal of Coal Geology, 2005,62(4):197-210.
    [56] Zhou, Z., Ballentine, C.J., Kipfer, R., Schoell, M., Thibodeaux, M. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA [J]. Geochimica Cosmochimica Acta,2005,69(23):5413-5428.
    [57] Smith, J.W, Pallasser, J.R. Microbial origin of Australian coalbed methane[J]. AAPG Bulletin, 1996, 80(6): 891-897.
    [58]秦勇,唐修义,叶建平.华北上古生界煤层甲烷稳定碳同位素组成与煤层气解吸-扩散效应[J].高校地质学报,1998,4(2):127-131.
    [59]秦勇,唐修义,叶建平,焦思红.中国煤层甲烷稳定碳同位素分布与成因探讨[J].中国矿业大学学报,2000,29(2):113-118.
    [60]赵孟军,宋岩,苏现波,柳少波,秦胜飞,洪峰.煤层气与常规天然气地球化学控制因素比较[J].石油勘探与开发,2005,6:21-24.
    [61] Stra?poc′, D., Mastalerz, M., Eble, C., Schimmelmann, S. Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope rations [J]. Organic Geochemistry, 2007,38:267-287.
    [62]陈振宏,宋岩,秦胜飞.沁水盆地南部煤层气藏的地球化学特征[J].天然气地球科学,2007,18(4):561-564.
    [63] Formolo, M., Martini, A., Petsch, S. Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basin, USA [J]. International Journal of Coal Geology,2008, 76:86-97.
    [64] Li, D.M., Hendry, P., Faiz, M. A survey of the microbial populations in some Australian coalbed methnae reservoirs [J]. International Journal of Coal Geology, 2008,76:14-24.
    [65] Kotarba, M.J. Composition and origin of coalbed gases in the Upper Silestan and Lubhm basins, Poland [J]. Organic Geochemistry, 2001, 32:163-180.
    [66] Ho?g?rmez, H., Yal??n, M.N., Cramer, M., Gerling, P., Faber, E., Schaefer, R.G., Mann, U. Isotopic and molecular composition of coal-bed gas in the Amasra region (Zonguldak basin—western Black Sea) [J]. Organic Geochmeistry, 2002, 33(12):1429-1439.
    [67] Stahl, W.J. Compositional changes and 13C/12C fractionations during the degradation of hydrocarbons by bacteria[J]. Geochimica et Cosmochimica Acta, 1979, 44(11):1903-1907.
    [68]唐修义,杨宜春,刘冬梅,等.关于煤层气组分和甲烷碳同位素的几个问题.生物、气体地球化学开放研究实验室研究年报[M].兰州:甘肃科学技术出版社,1988:240-252.
    [69]段玉成.我国煤的稳定同位素组成特征[J].煤田地质与勘探,1995,23(1):29-36.
    [70]刘冬梅,张玉贵,唐修义.煤层气中甲烷值偏轻的机理探讨[J].焦作工学院学报,1997,16(2):89-95.
    [71]钱凯,赵庆波,汪泽成,等.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1997:112-118.
    [72]刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J].地球化学,1999,28(4):359-367.
    [73]张建博,陶明信.煤层甲烷碳同位素在煤层气勘探中的地质意义——以沁水盆地为例[J].沉积学报,2000,18(4):611-614.
    [74]高波,陶明信,张建博,张晓宝.煤层气甲烷碳同位素的分布特征与控制因素[J].煤田地质与勘探,2002,30(3):14-17.
    [75]刘文汇,宋岩,刘全有,秦胜飞,王晓锋.煤岩及其主显微组份热解气碳同位素组成的演化[J].沉积学报,2003,21(1):183-187.
    [76]高照清.我国煤层气源岩分布与碳同位素变化规律[J].煤炭技术,2005,24(8):76-77.
    [77]张殿伟,刘文汇,刘全有,高波.煤系源岩显微组分对天然气碳同位素组成影响的应用[J].天然气地球科学,2005,15(6):792-796.
    [78]段利江,唐书恒,朱宝存.关于煤层甲烷稳定碳同位素研究的回顾与展望[J].中国煤层气,2006,3(4):35-38.
    [79]冯乔,耿安松,廖泽文,张小莉.煤成天然气碳氢同位素组成及成藏意义:以鄂尔多斯盆地上古生界为例[J].地球化学,2007,36(3):261-266.
    [80]卫平生,王新民.民和盆地煤层气特征及形成地质条件[J].天然气工业,1997,17(4):19-22.
    [81]胡国艺,刘顺生,李景明,等.沁水盆地晋城地区煤层气成因[J].石油与天然气地质,2001,22(4):319-321
    [82]胡国艺,李谨,马成华,李志生,张敏,周强.沁水煤层气田高阶煤解吸碳同位素分馏特征及其意义[J].地学前缘,2007,14(6):267-272.
    [83]胡田艺,关辉,蒋登文,杜平,李志生.山西沁水煤层气田煤层气藏条件分析[J].中国地质,2004,31(2):213-217,267-272.
    [84]王彦龙,解光新,张培元,等.沁水盆地煤层气同位素特征成因类型初探[J].煤田地质与勘探,2005,33(1):32-34.
    [85]段利江,唐书恒,刘洪林,王勃.晋城地区煤层甲烷碳同位素特征及成因探讨[J].煤炭学报,2007,32(11):1142-1146.
    [86]段利江.晋城地区郑庄区块煤层气解吸分馏特征研究.中国矿业大学硕士学位论文[D].北京:中国矿业大学(北京),2007.
    [87]段利江,唐书恒,刘洪林,朱宝存.煤储层物性对甲烷碳同位素分馏的影响[J].地质学报,2008,82(10):1330-1334.
    [88]张无侪,李明潮,李静,等.中国主要煤田浅层煤成气资源远景[J].天然气工业,1988,8(2):12-18.
    [89] Sackett, W.M., Nakaparksin, S., Dalrymple, D. Carbon isotope effects in methane production by thermal cracking. Advances in organic geochemistry [M]. Oxford:Perganon press, 1968:37-53.
    [90] Sackett, W.M. Carbon and hydrogen isotope effects during the thermoe atalytic production of hydrocarbons in laboratory simulation experiments [J]. Geochim Cosmochim Acta,1978,42(6B):571-580.
    [91] Berner, U., Faber, E., Seheeder, G., Panten, D. Primary cracking of algal and land plant kerogens:kinetic models of isotope variations in methane, ethane and propane [J]. Chemical Geology,1995,126(3-4):233-245.
    [92] Cramer, B., Poelchau, H.S., Gerling, P., Lopatin, N.V., Littke, R. Methane released from groundwater:the source of natural gas accumulations in northern West Siberia [J].Marine and Petroleum Geology,1999,16(3):225-244.
    [93] Andresen, B., Throndsen, T., R?heim, A., Bolstad, J. A comparison of pyrolysis products with models for natural gas generation [J]. Chemical Geology,1995,126(3-4):261-280.
    [94] Atlas, R.M.黄第藩译.石油微生物学[M].北京:石油工业出版社,1991:501-506.
    [95]陈践发,陈振岩,季东民,于深,赵长虹,王先彬.辽河盆地天然气中重烃异常富集重碳同位素的成因探讨[J].沉积学报,1998,16(2):5-8.
    [96]苏现波,陈江峰,孙俊民.煤层气地质学与勘探开发[M].北京:科学出版社,2001:11-14.
    [97] Pine, M.J., Barker, H.A. Studies on methane fermentation XII: the pathway of hydrogen in the acetate fermentation [J]. Journal of Bacteriology,1956,71(6):644-648.
    [98] Fuchs, G., Thauer, R., Ziegler, H., Stichler, W. Carbon isotope fractionation by methanbacterium thermoautotrophicum [J]. Archives of Microbiology, 1979,120:135-139.
    [99] Whiticar, M.J., Faber, E., Schoell, M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence [J]. Geochemistry and Cosmochimistry Acta,1986,50:693-709.
    [100] Whiticar, M.J. Carbon and hydrogen isotope systematic of bacterial formation and oxidationof methane [J]. Chemical Geology,1999,161:291-314.
    [101] De Graaf, W., Wellsbury, P., Parkes, R.J.,Cappenberg, T.E. Comparison of acetate turnover in methanogenic and sulfate-reducing sediments by radiolabeling and stable isotope labeling and by use of specific inhibitors:evidence for isotopic exchange [J]. Applied and Environmental Microbiology,1996,62(3):772-777.
    [102] Aravena, R., Harrison, S.M., Barker, J.F., Abercrombie, H., Rudolph, D. Origin of methane in the Elk Valley coalfield, southeastern British Columbia, Canada [J]. Chemical Geology, 2003,195(1-4):219-227.
    [103] Hornibrook, E.R.C., Longstaffe, F.J., Fyee, W.S. Spatial distribution of microbial methane production pathways in temperate zone wetland soils:stable carbon and hydrogen isotope evidence [J]. Geochimica et Cosmochimica Acta, 1997,61(4):745-753.
    [104] Sugimato, A., Wada, E. Hydrogen isotopic composition of bacterial methane:CO2/H2 reduction and acetate fermentation [J]. Geochimica et Cosmoehimica Acta, 1995, 59(7):1329-1337.
    [105] Teichmuller, M., Teichmuller, R., Colombo, U., Cazzarini, F., Gonfiantini, R., Kneuper, G., Das K. Isotopen-Verhaltnis im Methan von Grubengas und Flozgasund seine Abhangigkeit von den geologischen Verhaltnissen [J]. eologische Mitteilungen, 1968, 9: 181-206.
    [106] Gould, K.W, Hargrares, A.J, Smith, W.J. Variation in the composition of seam gases issuing from the coal [J]. Australiasian Institute Mining and Metallurgy Bulletin, 1987, 292(5):69-73.
    [107] Cunningham, R.E. Diffuse in gas and porous media [M]. New York: Plenum Press,1980,153-154.
    [108] Parkash, S., Chakrabarrtly, S.K. Porosity of coal from Alberta Planes [J]. International Journal of Coal Geology,1986,6:55-70.
    [109]杨宜春.关于煤成气组分和甲烷碳同位素的几个问题[J].贵州地质,1992,(9):99-108.
    [110] Fazi M M, Barclay S, Saghafi A, et al. Coalbed methane reservoir characterization—KP-1 and WG-2, PEL-2, Southern Sydney Basin. Report Prepared for Sydney Gas Company, CSIRO Petroleum Confidential Report [R], 2002(7):220.
    [111]苏现波,陈润,林晓英,秦胜飞.煤层气运移分馏机理初探[J].河南理工大学学报,2006,25(4):295-300.
    [112]降文萍,崔永君,张群,李育辉.煤表面与CH4,CO2相互作用的量子化学研究[J].煤炭学报,2006,31(2):237-240.
    [113]陈润,苏现波,林晓英.亨利定律在煤层气组分溶解分馏中的应用[J].煤田地质与勘探,2007,35(2):31-33.
    [114]秦胜飞,赵靖舟,李梅,刘银河.水溶天然气运移地球化学示踪—以塔里木盆地和田河气田为例[J].地学前缘,2006,13(5):524-532.
    [115] Decker, A.D., Klusman, R., Horner, D.M. Geochmeical techniques applied to the identification and disposal of connate coal water. in: Proceedings of the 1987 Coalbed Methane Symposium [C], Tuscaloosa, Alabama, 229-242.
    [116] Kaiser, W.R., Swartz, T.E., Hawkins, G.J. Hydrology of the Fruitland Formation, San Juan basin, in Geologic and hydroglogic controls on the occurrence and productivity of coalbed methane, Fruitland Formation, San Juan basin [R]. Gas Research Institute Topical Report GRI-91/0072,195-241,1986.
    [117] Mclaughlin, T.G. Ground water in Huerfano County, Colorado:U.S [R]. Geological survey Water-Supply paper 1805, 91,1995.
    [118] Hemborg, H.T. Spanish peak field, Las Animas County, Colorado:geologic setting and early development of a coalbed methane reservoir in the central Raton basin[R]. Coloado geological survey resource series 33-34, 1998.
    [119] Daddow, P.B. Potentiometric-surface map of the Wyodak-Anderson coal bed, Power River structural basin, Wyoming, 1973-84:U.S. Geological survey water-resources investigations report 85-4305 [R].
    [120] Stefan, B., Karsten, M. Possible controls of hydrogeological and stress regimes on the producibility of coalbed methane in Upper Cretaceous-Tertiary strata of the Alberta basin, Canada [J].AAPG Bulletin, 2003,87(11):1729-1754.
    [121] Wayne, A.V. Geochemical signature of formation waters associated with coalbed methane [J]. AAPG Bulletin, 2003, 87(4):667-676.
    [122] Pashin, J.C. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues [J]. Applied Geochemistry, 2007,22:2257-2272.
    [123] Rice, C.A., Flores, R.M., Stricker, G.D., Ellis, M.S. Chemical and stable isotopic evidence for water/rock interaction and biogentic origin of coalbed methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A. [J]. International Journal of Coal Geology,2008,76:76-85.
    [124]黄福堂.松辽盆地北部地层水的分类、化学组成与特征研究[J].大庆高等专科学校学报,1994,14(4):84-100.
    [125]黄福堂,谭伟,冯子辉.松辽盆地北部地层水的物理化学性质和特征[J].大庆石油地质与开发,1997,16(3):22-27.
    [126]黄福堂.油田地层水中微量金属元素的组成与分布特征研究[J].国外油田工程,1998,6:19-21.
    [127]王兰生,陈盛吉,杨家静,李子荣,谢邦华,张鉴.川东石炭系储层及流体的地球化学特征[J].天然气勘探与开发,2001,24(3):28-38.
    [128]李贤庆,侯读杰,柳常青,张爱云.鄂尔多斯盆地中部气田奥陶系地层水与水溶气的地球化学特征[J].断块油气田,2001,8(3):1-6.
    [129]李贤庆.鄂尔多斯中部气田下古生界水化学特征及天然气藏富集区判识[J].断块油气田,2002,22(4):10-16.
    [130]霍秋立,申家年,付丽,汪振英,刘剑营.海拉尔盆地地层水特征及成因分析[J].世界地质,2006,25(2):172-176.
    [131]雍自权,李俊良,周仲礼,翟中华,龚昌明,赵异华,宋焕荣,王威.川中地区上三叠统香溪群四段地层水化学特征[J].物探化探计算技术,2006,28(1):41-45.
    [132]刘桂凤,王莉,李春涛,谢姝,贾国澜,张丽.准噶尔盆地腹地地层水化学特征与油气成藏关系[J].新疆石油地质,2007,28(1):54-56.
    [133]李伟,杨金利,姜均伟,刘济民,刘宗诚.四川盆地中部上三叠统地层水成因与天然气地质意义[J].石油勘探与开发,2009,36(4):428-436.
    [134]杨晓辉.徐家围子断陷地层水地化特征与油气藏的关系[D].大庆:大庆石油学院硕士学位论文,2009.
    [135]王运所,许化政,王传刚,贾斌峰.鄂尔多斯盆地上古生界地层水分布与矿化度特征[J].石油学报,2010,31(5):748-754.
    [136]池卫国.沁水盆地煤层气的水文地质控制作用[J].石油勘探与开发,1998,25(3):15-18.
    [137]王明明,卢晓霞,金惠,蔺洁.华北地区石岩炭-二叠系煤层富集区水文地质特征[J].石油实验地质,1998,20(4):385-393.
    [138]傅雪海,秦勇,杨永国,彭金宁,韩训晓.甲烷在煤层水中溶解度的实验研究[J].天然气地球科学,2004,15(4):345-348.
    [139]王红岩,张建博,刘洪林,秦勇.沁水盆地南部煤层气藏水文地质特征[J].煤田地质与勘探,2001,29(5):33-37.
    [140]梁新阳.山西煤矿矿坑水水质特征及其对水环境质量影响分析[J].水系污染与保护,2004,31:33-35.
    [141]王勃,李谨,张敏.煤层气成藏地层水化学特征研究[J].石油天然气学报,2007,29(5):66-69.
    [142]王勃,巢海燕,郑贵强,李景明,郭志斌,王红岩,刘洪林,李贵中.高、低煤阶煤层气成藏地质特征及控气作用差异性研究[J].地质学报,2008,82(10):1396-1401.
    [143]单耀,秦勇,王文峰.徐州-大屯矿区矿井水类型与水质分析[J].能源技术与管理,2007,4:41-43.
    [144]单耀.含煤地层水岩作用与矿井水环境效应[D].徐州:中国矿业大学博士学位论文,2009.
    [145]王文峰,秦勇,宋党育,傅雪海.晋北中高硫煤中稀土元素的地球化学特征[J].地球化学,2002,31(6):564-570.
    [146]代世峰,任德贻,刘建荣,李生盛.河北峰峰矿区煤中微量有害元素的赋存与分布[J].中国矿业大学学报,2003,32(4):358-360.
    [147]唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆,2004:30-40.
    [148]王文峰,秦勇,姜波,傅雪海.鄂尔多斯盆地北缘—晋北区煤中微量元素赋存特征及其洁净潜势[J].地质学报,2004,4:499.
    [149]唐跃刚,殷作如,常春祥,张义忠,宋慧波,王绍清,郝亮.开滦矿区煤中微量元素的分布特征[J].煤炭学报,2005,30(1):80-84.
    [150]任德贻,赵峰华,代世峰,张军营.煤的微量元素地球化学[M].北京:科学出版社,2006:367-375.
    [151]白向飞,李文华,陈亚飞,姜英.中国煤中微量元素分布基本特征[J].煤质技术,2007,1:1-4.
    [152]宋党育,张军营,郑楚光.贵州省煤中有害微量元素的地球化学特性[J].煤炭转化,2007,30(4):13-17.
    [153]代世峰,任德贻,周义平,Chen-Lin Chou,王西勃,赵蕾,朱兴伟.煤中微量元素和矿物富集的同沉积火山灰与海底喷流复合成因[J].科学通报,2008,53(24):3120-3126.
    [154]胡允栋.四川气田水微量元素的分布规律[J].天然气工业,1995,15(6):70-74.
    [155]张敏,张俊.塔里木盆地轮台断隆油田水组成特征及其意义[J].新疆石油地质,1998,19(3):210-213.
    [156]潘文蕾,刘光祥,吕俊祥.鄂西渝东区建南气田地层水水化学特征及其意义[J].石油实验地质,2003,25(3):295-299.
    [157]程晓东,肖中海,王彬,李凤琴.地层水鉴别标准及其在二连油田的应用[J].内蒙古石油化工,2007,11:106-108.
    [158]李之广,胡斌,邓天龙,袁子艳.微量元素V和Ni的油气地质意义[J].天然气地球科学,2008,19(1):13-17.
    [159]华北石油地质局.煤层气译文集[M].郑州:河南科学技术出版社,1990:302-308.
    [160]廖永胜.氢同位素分析方法[J].陆相石油地质,1990,3:80-81.
    [161]饶孟余,江舒华.煤层气井排采技术分析[J].中国煤层气,2010,7(1):22-25.
    [162]陈振宏,王一乒,杨焦生,王宪花,陈艳鹏,赵庆波.影响煤层气井产量的关键因素分析—以沁水盆地南部樊庄区块为例[J].石油学报,2009,30(3):419-424.
    [163]倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2010:131-144.
    [164]刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社,1998,19-37.
    [165]杨起,韩德馨,等.中国煤田地质学(上册)[M].北京:煤炭工业出版社,1979,209-234.
    [166]韩德馨,杨起,等.中国煤田地质学(下册)[M].北京:煤炭工业出版社,1980,387-407.
    [167]张建博,王红岩.山西沁水盆地煤层气有利区预测[M].徐州:中国矿业大学,1999:5-8
    [168]秦勇,宋党育.山西南部煤化作用及其古地热系统一兼论煤化作用控气地质机理[J].北京:地质出版社,1998,62-74.
    [169]王红岩,张建博,刘洪林.沁水盆地南部煤层气藏水文地质特征[J].煤田地质与勘探,2001,29(3):33-36.
    [170]宫亚军.川西坳陷中段须家河组地层水成因及水岩相互作用研究[D].成都:成都理工大学,2010.
    [171] Birkle, P. Rosillo Aragon, J. J. Evolution and orgin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico [J], AAPG Bulletin, 2002, 86(3):457-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700