用户名: 密码: 验证码:
太行山低山丘陵区不同植被恢复措施下植被与土壤协同演替机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被与环境之间的关系极为复杂,一直是生态学研究的重点之一。植物群落的演替不但体现在种类组成和结构上,也体现在土壤环境的改变上,植被群落演替的过程,是植物对土壤不断适应和改造的过程。在土壤-植被体系中,土壤和植被是相互依存的两个因子,两者总是协向发展。植苗造林和播种造林所形成的植被具有不同的演替进程,其植被-土壤协同机制应该存在一定差异性规律,探讨不同植被恢复措施下,植物演替与土壤发育的关系,揭示群落演替过程中土壤发育的演化机制,认识植被对土壤发育的作用,对探寻植被群落演替机理和林业生态建设具有重要意义。
     在太行山低山丘陵区,本研究以“时空替代法”选取代表不同植被恢复措施不同演替阶段的54块样地,通过野外调查和室内分析,以不同植被恢复措施下植被群落演替以及地下部根系、凋落物与土壤发育特征为出发点,以数量化分析和模型化方法为主要分析手段,阐明了植被群落演替特征、地表层凋落物和根系动态特征及其与土壤发育的耦合协同关系,并通过构建协同演替度评价模型对不同演替阶段的植被-土壤系统进行综合评价。
     本论文取得主要结果:
     (1)随着演替正向进行,侧柏优势种群重要值逐渐增大,栓皮栎和刺槐重要值呈下降趋势;荆条种群为灌丛演替中、后期的指示种,酸枣为灌丛演替初期的指示种。
     (2)随着演替正向进行,不同植被恢复措施的灌木重要值均呈先增大后减小趋势;同时处于演替初期、中期的植苗造林植被恢复措施下的乔木林灌木Shannon-Wiener指数显著低于播种造林植被恢复措施下的的乔木林灌木Shannon-Wiener指数,而草本Shannon-Wiener指数则相反。
     (3)随着演替正向进行,由植苗造林所形成的针叶林分更新过程更为激烈,侧柏幼苗重要值急剧下降,而栓皮栎、刺槐和构树等幼苗重要值逐渐增加;在各个演替阶段,植苗造林植被恢复措施下更新种Simpson优势度指数均低于播种造林植被恢复措施下更新种Simpson优势度指数,而更新种Shannon-Wiener多样性指数则相反。
     (4)播种造林植被恢复措施下各演替序列乔木生物量和单位面积营养元素储量均大于处于相同演替阶段的植苗造林植被恢复措施乔木生物量和单位面积元素储量。与播种造林植被恢复措施相比,植苗造林植被恢复措施下地下地下根系在乔木生物量中所占比例较高,但是从绝对值来看,远低于播种造林植被恢复措施。
     (5)同时考虑物种多样性、重要值和物种相对寿命,建立了表征植被群落演替特征的修正演替度指数(Dj)。在不同的植被恢复措施下,修正演替度指数随植被正向演替而增加。尤其是在从灌木演替阶段向向乔木演替阶段进行时,存在明显上升趋势。相同演替阶段的播种造林植被恢复措施下的演替度指数均显著高于植苗造林植被恢复措施下的演替度指数。
     (6)随着演替的正向进行,不同植被恢复措施下的土壤容重和土壤孔隙度均逐渐减少,最小值出现在演替后期,而土壤饱和持水量、非毛管持水量和毛管持水量均呈增加趋势;Kostiakov、Philip和Horton入渗模型均能很好描述土壤入渗速率与时间的关系;对土壤渗透能力反映较为敏感的土壤特性指标和根系结构指标分别为非毛管孔隙度和根表面积密度。
     (7)随着演替的进行,不同植被恢复措施下的土壤pH值均呈逐渐减小趋势;而有机质含量则呈增大趋势;在演替中后期,植苗造林植被恢复措施林下土壤有机质含量比播种造林植被恢复措施略大,演替初期则相反。随着植被正向演替,土壤表层土壤全N含量呈现逐渐上升的趋势。
     (8)在植苗造林恢复措施下,灌木Shannon-wiener指数与土壤有机质、全N、全P存在显著的相关关系;草本Pielou指数可与pH值、有机质、土壤容重、土壤毛管持水率、土壤田间持水率和非毛管孔隙度建立线性回归模型。在播种造林植被恢复恢复模式下,灌木Shannon-wiener指数与土壤全N、全K和土壤容重均存在显著的相关关系,可与有机质、全K和土壤田间持水率建立线性回归方程;草本植物Pielou指数与土壤全N、全P、全K均存在显著的相关关系。
     (9)基于相关分析、主成分分析和综合指数法,选取表征土壤发育特征的8个土壤物理化学特性指标作为土壤发育评价的指标体系,建立了表征土壤发育特征的土壤发育综合评价指数(SDI);不同的植被恢复措施下,土壤发育综合评价指数均随植被正向演替而增加。
     (10)相同演替阶段的播种造林植被恢复措施下的凋落物现存生物量显著高于植苗造林植被恢复措施;凋落物蓄积量组成的基本规律是分解层>半分解层>未分解层。
     (11)不同植被恢复措施下,植被地表植物地上生物量、地表根系生物量和凋落物生物量均可与土壤有机质含量、全氮含量呈二次曲线正相关;植物地上部分、地下部分和凋落物全氮与土壤有机质、全氮之间的回归关系也可以用二次曲线描述。
     (12)不同植被恢复措施下不同演替阶段,根长密度、根表面积密度和根体积密度等根系结构指标值最大值均出现在演替中期,其次为演替初期,最小的为演替后期;根系主要由D<2mm的细根组成,其根系长度占地表根系总长度的93.64%~97.52%。
     (13)在植苗造林植被恢复措施下,土壤有机质与根系生物量、根体积密度、根表面积密度、根平均直径间均呈显著的正相关关系;对根系结构参数值影响较大的土壤理化特性指标为有机质、全N、土壤容重等;对土壤理化特征反应最敏感的根系结构指标为根长密度,比根长和根平均直径等。在播种造林植被恢复措施下,土壤有机质与根系生物量、根系表面积密度、根体积密度和根平均直径间呈显著的正相关关系;对根系结构影响较大的土壤发育特性指标为土壤全N、土壤饱和持水率和土壤有机质等;对土壤发育特性反应敏感的根系结构特征指标分别为根体积密度、根平均直径和根长密度等。
     (14)在植苗造林植被恢复措施下,土壤有机质和土壤含水率对幼苗密度产生了较大的直接正效应,而土壤容重对幼苗产生了较大的负效应;凋落物生物量产生总的间接正效应最大,而土壤容重通过其他影响因子对幼树密度产生总的间接负效应最大。播种造林植被恢复措施所下,土壤有机质和土壤全N对幼苗密度产生了较大的直接正效应,而土壤pH值对幼苗密度产生了较大的负效应,土壤有机质对幼苗密度产生总的间接正效应最大。
     (15)定义了植被-土壤系统协同现时评价模型-协同度指数模型,在参数选取时,可以选择植被生物量、植物Shannon-wiener指数作为表征植被群落演替趋势的指标,选择土壤容重、土壤有机质、土壤含水量作为表征土壤发育的指标,可利用演替变量在指标体系中的负荷量占总负荷量百分比作为权重系数;在植苗造林植被恢复措施下,随着正向演替进行,植被群落演替距离指数呈稳定增长趋势,且植被群落演替距离指数与土壤发育距离指数的数值逐渐趋近相等。播种造林植被恢复措施下,随着演替进行,植被群落演替与土壤发育的协同规律呈渐进式的进程,协同度指数呈稳定增大趋势。
The relationship between vegetation and environment is extremelycomplex, which has been one of the focus of ecological research. The plantcommunity succession is not only reflected in the species composition and structure,is also reflected in the soil environmental change. The process of Vegetationsuccession process is the process of soil adaptation and transformation by plants. Soiland vegetation are two interdependent factors in soil-vegetation System. Thevegetation formed by tree planting and seeding afforestation has different successionprocess, and its collaborative mechanism of vegetation-soil system should has somedifferent rules. Exploring the relationship of plant succession and soil development,revealing the evolution mechanisms of soil development on community successionprocess, recognizing the role of vegetation on soil development in the differentvegetation restoration measures, are great significant to explore the vegetationsuccession mechanism and forestry ecological construction.
     The paper made the vegetation succession and roots and litter and soildevelopment of different vegetation recovery as a starting point, quantitative analysisand modeling methods as the main analytical tools to clarify vegetation successionfeature, litters and roots dynamic characteristics of ground surface and the couplingrelations with soil development synergies, and carry out a comprehensive evaluationof different successional stages of vegetation-soil system by building collaborativesuccession degree evaluation model.
     Through research, the paper has made the main results:
     (1) With vegetation positive succession, important value of Platycladus orienalisdominant plantation gradually increases, important value of Quercus variabilis andlocust decline; vitex negundo var. is the indicator species in shrub mid-stage and latesuccession, Ziziphus jujuba var. is indicator species of the shrub early succession,which has large niche breadth; in tree successional stages, with the positive succession,the number that had niche overlap gradually increased.
     (2) With vegetation positive succession, the important values of shrubs species of different vegetation restoration measures first increased and then decreased, theShannon-Wiener index of shrubs in tree layer of tree planting vegetation restorationmeasures were significantly lower than the Shannon-Wiener index of seedingafforestation measure in the same successional stage of mid-stage and late succession,herbaceous Shannon-Wiener index was the opposite.
     (3) With vegetation positive succession, the seedlings regeneration of coniferousstands formed by tree planting succession was more intense than that of seedingafforestation, the important values of Platycladus orienalis fall sharply, but theimportant values of seedlings of Quercus variabilis, locust and broussonetiapapyrifera gradually increased; the Simpson index of seedlings regeneration of treeplanting measures in various successional stages was lower than that of the seedingafforestation vegetation restoration measures, the Shannon-Wiener index was theopposite.
     (4) The biomass and nutrient elements per unit area of tree of the vegetationformed by tree planting are siginificant greater than that of the vegetation formed byseeding afforestation at the same successional stage. Compared with the vegetationrecovery measures of seeding afforestation, the root biomass of the tree in treeplanting vegetation recovery measures had a high proportion in total biomass, but farbelow in absolute terms than that of seeding afforestation vegetation restorationmeasures.
     (5)Taking into account the species diversity, important value and species life, theamendment succession index (Dj) has been built which can describe thecharacterization of vegetation succession. Different vegetation restoration measures,amendments to the succession index with positive vegetation succession. Successionalstages from the bush to tree successional stages, there is a clear upward trend.Afforestation of the same successional stages of vegetation succession index recoverymeasures were significantly succession index than tree planting vegetation restorationmeasures
     (6) The soil bulk density and soil porosity were gradually reduced of differentvegetation restoration measures with positive succession, the minimum of thatappeared in the late successional stage, and the soil saturated water capacity,non-capillary water holding capacity and capillary water holding capacityincreased;the Kostiakov, Philip and Horton infiltration model can well describe thesoil infiltrationprocess; the soil characteristics and root structure indicators closely related to the soil infiltration capacity were respectively non-capillary porosity androot surface area density.
     (7) With vegetation positive succession, soil pH value showed a graduallydecreasing trend and soil organic matter content tended to increase in differentvegetation restoration; soil organic matter content of tree planting vegetationrestoration measures was slightly higher than that of seeding reforestation vegetationrecovery measures in the mid-stage and late succession, but in the early stage was theopposite. Soil total N content showed a gradual upward trend with the positivevegetation succession.
     (8) In tree planting recovery measures, the shrub Shannon-Wiener index had asignificant relation with soil organic matter, total N and total P; the herbal Pielouindex can create a linear regression model with the pH, organic matter, soil bulkdensity, soil wool pipe holding water rates, soil field hold water rates andnon-capillary porosity. In seeding afforestation vegetation recovery mode, the shrubsShannon-Wiener index had a significant correlation with soil total N, total K, and soilbulk density, and can creat linear regression equation with organic matter, total K andsoil field water holding rate; herbal Pielou index had a significant relationship withsoil total N, total P and total K.
     (9) Based on correlation analysis, PCA and a comprehensive index method, thepaper selected eight indicators of soil physical and chemical properties as theevaluation index system of soil development as evaluation index system, andestablished the comprehensive evaluation index (SDI) that described soil developmentcharacteristics; SDI values increased with positive vegetation succession in differentvegetation restoration measures.
     (10) Litter biomass of vegetation in seeding afforestation restoration measureswas significantly higher than that of vegetation of tree planting restoration measuresin the same successional stage; the size relation of litter biomass of decompositionlayer was decomposed layer> half-decomposed layer> undecomposed layer.
     (11) Aboveground biomass of vegetation surface, surface root biomass and litterbiomass had positively conic relattion with soil organic matter content and total Ncontent; total nitrogen of aboveground plant part, underground plant part and litterbiomass had quadratic regression relationship with soil organic matter and soil totalnitrogen respectively.
     (12) The maximum index values of root length density, root surface area density and root volume density appeared in the mid-stage succession in differentsuccessional stages of different vegetation recovery measures, followed by earlysuccession and late succession; the root system is mainly composed by fine roots(D<2mm), root length of that had a proportion of93.64%to97.52%of total length.
     (13) In planting vegetation restoration measures, soil organic matter showedsignificant positive correlation with root biomass, root volume density, root surfacearea density and root average diameter; the soil physical and chemical characteristicsthat greater affected root structure parameter values indicators were organic matter,total N and soil bulk density; the root structure of indicators that most sensitive to theresponse of soil physical and chemical characteristics were root length density,specific root length and root average diameter. In seeding afforestation vegetationrestoration measures, soil organic matter was a significant positive correlation withroot biomass, root surface area density, root volume density and root average diameter;the soil development features that greater affected root structure were soil total N, soilsaturated water rates and soil organic matter; root structural characteristics indicatorsthat sensitive to soil development characteristics were root bulk density, average rootdiameter and root length density.
     (14) In tree planting vegetation restoration measures, soil organic matter and soilmoisture had greater direct positive effect on seedling density, but soil bulk densityhad a greater negative effect on seedlings; litter biomass had total indirect positiveeffect on seedings, and soil bulk density had biggest indirect negative effect impactfactors on seeding density. In the seeding afforestation vegetation restorationmeasures, soil organic matter and soil total N has a larger direct positive effect onseedling density, soil PH value had a greater negative effect on seedings, but soilorganic matter produce the total indirect positive effect on seedings.
     (15) The collaborative degree model was defined,whic described vegetation-soilsystem co-existing evaluation model, on parameter determine, the specific object ofthe vegetation biomass, Shannon-Wiener index can be selected as indicators of thecharacterization of vegetation succession, soil bulk density, soil organic matter andsoil moisture can be selected as indicators to characterize soil development,succession variables in the index system load percentage of the total load can be usedas a weighting coefficient; in the tree planting vegetation restoration measures, withthe positive succession, vegetation succession distance index showed the trend ofsteady growth, vegetation succession distance index and soil development distance index values gradually approaches are equal. In the seeding afforestation vegetationrestoration measures, with the positive succession, collaborative process of vegetationsuccession and soil development were a gradual process, the collaborative degreeindex steadily increased.
引文
[1] Allison S D, Gartner T B, Mack M C, et al. Nitrogen alters carbon dynamics during early succession inboreal forest[J]. Soil Biology and Biochemistry.2010,42(7):1157-1164.
    [2] Banning N C, Grant C D, Jones D L, et al. Recovery of soil organic matter, organic matter turnover andnitrogen cycling in a post-mining forest rehabilitation chronosequence[J]. Soil Biology and Biochemistry.2008,40(8):2021-2031.
    [3] Berg B,Berg M1,Botner P.Litter mass loss rates in pine forests of Europe and Eastern United States:some relationships with climate and litter quality[J].Biogeochemistry,1993,20:127-153.
    [4] Browning B J, Jordan G J, Dalton P J, et al. Succession of mosses, liverworts and ferns on coarse woodydebris, in relation to forest age and log decay in Tasmanian wet eucalypt forest[J]. Forest Ecology andManagement.2010,260(10):1896-1905.
    [5] Burga C A, Krüsi B, Egli M, et al. Plant succession and soil development on the foreland of the Morteratschglacier (Pontresina, Switzerland): Straight forward or chaotic?[J]. Flora-Morphology, Distribution, FunctionalEcology of Plants.2010,205(9):561-576.
    [6] Campetella G, Botta-Dukát Z, Wellstein C, et al. Patterns of plant trait–environment relationships along aforest succession chronosequence[J]. Agriculture, Ecosystems& Environment.2011,145(1):38-48.
    [7] Castillo-Nú ez M, Sánchez-Azofeifa G A, Croitoru A, et al. Delineation of secondary successionmechanisms for tropical dry forests using LiDAR[J]. Remote Sensing of Environment.2011,115(9):2217-2231.
    [8] Chrimes D, Nilson K. Overstorey density influence on the height of regeneration in northernSweden[J].Forestry,2005(78):433-442.
    [9] Clark A L, St. Clair S B. Mycorrhizas and secondary succession in aspen–conifer forests: Light limitationdifferentially affects a dominant early and late successional species[J]. Forest Ecology and Management.2011,262(2):203-207.
    [10] Dietrich Hertel, Marieke A. Harteveld, Christoph Leuschner.Conversion of a tropical forest into agroforestalters the fine root-related carbon flux to the soil[J]. Soil Biology&Biochemistry,2009(41):481-490.
    [11] Diochon A, Kellman L, Beltrami H. Looking deeper: An investigation of soil carbon losses followingharvesting from a managed northeastern red spruce (Picea rubens Sarg.) forest chronosequence[J]. Forest Ecologyand Management.2009,257(2):413-420.
    [12] Dirk Gaul, Dietrich Hertel, Werner Borken,et al. Effects of experimental drought on the fine root system ofmature Norway spruce[J].Forest Ecology and Management,2008(256):1151-1159.
    [13] Ebermayer E. Die qesamte Lehre der woldstreu mitRucksieht auf die ehemisehe statikwoldbaues[M].Berlin:Julius Springer.1876
    [14] Edmonds R L,Th omas T B.Decomposition and nutrient release from green needles ofwestern hemlock antiPacific silverfirin an old-growth temperate rainforests[J].Olympic National Park Washington Canadian Journal ofBotany,1995,25:104-105
    [15] Etterson M A, Etterson J R, Cuthbert F J. A robust new method for analyzing community change and anexample sing83years of avian response to forest succession[J]. Biological Conservation.2007,138(3-4):381-389.
    [16] Fabienne V R. Succession stage variation in population size in an early-successional herb in a peri-urbanforest[J]. Acta Oecologica.2009,35(2):261-268.
    [17] Faleelli M,Pickett STA.Plant litter:its dynamics and efects On plant community stnlcture[J].The BotanicalReview,1991,57(1):1-32
    [18] Falkowski M J, Evans J S, Martinuzzi S, et al. Characterizing forest succession with lidar data: An evaluationfor the Inland Northwest, USA[J]. Remote Sensing of Environment.2009,113(5):946-956.
    [19] Fonseca W, Rey Benayas J M, Alice F E. Carbon accumulation in the biomass and soil of different agedsecondary forests in the humid tropics of Costa Rica[J]. Forest Ecology and Management.2011,262(8):1400-1408.
    [20] forests on former pastures—A case study from Panama[J]. Forest Ecology and Management.2011,261(10):1625-1633.
    [21] Fransen B, Kroon H D, Berendse F. Root morphological plasticity and nutrient acquisition of perennial grassspecies from habitats of different nutrient availability. Oecologia,1998,115(3):351-358
    [22] Frouz J, Prach K, Pi l V, et al. Interactions between soil development, vegetation and soil fauna duringspontaneous succession in post mining sites[J]. European Journal of Soil Biology.2008,44(1):109-121.
    [23] Fujimaki R, Tateno R, Hirobe M, et al. Fine root mass in relation to soil N supply in a cool temperateforest[J]. Ecological Research,2004(19):559-562.
    [24] Fukushima M, Kanzaki M, Hara M, et al. Secondary forest succession after the cessation of swiddencultivation in the montane forest area in Northern Thailand[J]. Forest Ecology and Management.2008,255(5–6):1994-2006.
    [25] Gassibe P V, Fabero R F, Hernández-Rodríguez M, et al. Fungal community succession following wildfire ina editerranean vegetation type dominated by Pinus pinaster in Northwest Spain[J]. Forest Ecology and anagement.2011,262(4):655-662.
    [26] Gaudinski J B, T rumbo re S E, Dav idso n E A, et al.T he ag e o f fine roo t car bo n in thr ee for est s of theeastern United States measured by r adio car bo n[J].Ecologia,2001(129):420-429.
    [27] Gordon W, Jackson RB. Nutrient concentrations in Wne roots[J]. Ecology,2000(81):275-280.
    [28] Gough C M, Vogel C S, Hardiman B, et al. Wood net primary production resilience in an unmanaged foresttransitioning from early to middle succession[J]. Forest Ecology and Management.2010,260(1):36-41.
    [29] Groeneveld J, Alves L F, Bernacci L C, et al. The impact of fragmentation and density regulation on forestsuccession in the Atlantic rain forest[J]. Ecological Modelling.2009,220(19):2450-2459.
    [30] Hartter J, Lucas C, Gaughan A E, et al. Detecting tropical dry forest succession in a shifting cultivationmosaic of the Yucatán Peninsula, Mexico[J]. Applied Geography.2008,28(2):134-149.
    [31] Hassler S K, Zimmermann B, van Breugel M, et al. Recovery of saturated hydraulic conductivity undersecondary succession on former pasture in the humid tropics[J]. Forest Ecology and Management.2011,261(10):1634-1642.
    [32] Hingston A B, Grove S. From clearfell coupe to old-growth forest: Succession of bird assemblages inTasmanian lowland wet eucalypt forests[J]. Forest Ecology and Management.2010,259(3):459-468.
    [33] J.M. Gray, G.S. Humphreys, J.A. Deckers. Relationships in soil distribution as revealed by a global soildatabase[J]. Geoderma,2009(150):309-323.
    [34] Johnannes M.M. Dynamics of soil nitrogen and carbon accumulation for61years after agriculturalabandonment[J]. Ecology,2000,81(1):88-99.
    [35] Jon Paul Davisa, Bruce Hainesa, David Colemanb,et al. Fine root dynamics along an elevational gradient inthe southern Appalachian Mountains, USA[J]. Forest Ecology and Management,2004(187):19-34.
    [36] Kalacska M, Sanchez-Azofeifa G A, Rivard B, et al. Ecological fingerprinting of ecosystem succession:Estimating secondary tropical dry forest structure and diversity using imaging spectroscopy[J]. Remote Sensing ofEnvironment.2007,108(1):82-96.
    [37] Karev G P, Korotkov V N. Ergodicity and successions in Prioksko-Terrasnyi Biosphere Reserve[J].Ecological Modelling.2008,212(12):116-121.
    [38] Ladislav H. An outline of soil nematode succession on abandoned fields in South Bohemia[J]. Applied SoilEcology.2010,46(3):355-371.
    [39] Ladislav H. Nematode assemblages indicate soil restoration on colliery spoils afforested by planting differenttree species and by natural succession [J]. Applied Soil Ecology.2008,40(1):86-99.
    [40] Lebrija-Trejos E, Meave J A, Poorter L, et al. Pathways, mechanisms and predictability of vegetation changeduring tropical dry forest succession[J]. Perspectives in Plant Ecology, Evolution and Systematics.2010,12(4):267-275.
    [41] Leprun J, Grouzis M, Randriambanona H. Post-cropping change and dynamics in soil and vegetationproperties after forest clearing: Example of the semi-arid Mikea Region (southwestern Madagascar)[J]. ComptesRendus Geoscience.2009,341(7):526-537.
    [42] Letcher S G, Chazdon R L. Lianas and self-supporting plants during tropical forest succession[J]. ForestEcology and Management.2009,257(10):2150-2156.
    [43] Li H, Mausel P, Brondizio E, et al. A framework for creating and validating a non-linear spectrum-biomassmodel to estimate the secondary succession biomass in moist tropical forests[J]. ISPRS Journal of Photogrammetryand Remote Sensing.2010,65(2):241-254.
    [44] Liebsch D, Marques M C M, Goldenberg R. How long does the Atlantic Rain Forest take to recover after adisturbance? Changes in species composition and ecological features during secondary succession[J]. BiologicalConservation.2008,141(6):1717-1725.
    [45] Liu K, Fang Y, Yu F, et al. Soil Acidification in Response to Acid Deposition in Three Subtropical Forests ofSubtropical China[J]. Pedosphere.2010,20(3):399-408.
    [46] Maguire DA. Branch mortality and potential litter fall from Douglas-fir trees in stands of varyingdensity[J].Forest Ecology and Management,1994(70),41-53.
    [47] Matuszewski S, Bajerlein D, Konwerski S, et al. Insect succession and carrion decomposition in selectedforests of Central Europe. Part1: Pattern and rate of decomposition[J]. Forensic Science International.2010,194(1–3):85-93.
    [48] Matuszewski S, Bajerlein D, Konwerski S, et al. Insect succession and carrion decomposition in selectedforests of Central Europe. Part2: Composition and residency patterns of carrion fauna[J]. Forensic ScienceInternational.2010,195(1–3):42-51.
    [49] Mcnamara N P, Griffiths R I, Tabouret A, et al. The sensitivity of a forest soil microbial community to acutegamma-irradiation[J]. Applied Soil Ecology.2007,37(1–2):1-9.
    [50] Meril P, Malmivaara-L ms M, Spetz P, et al. Soil organic matter quality as a link between microbialcommunity structure and vegetation composition along a successional gradient in a boreal forest[J]. Applied SoilEcology.2010,46(2):259-267.
    [51] Negrete-Yankelevich S, Fragoso C, Newton A C, et al. Successional changes in soil, litter andmacroinvertebrate parameters following selective logging in a Mexican Cloud Forest[J]. Applied Soil Ecology.2007,35(2):340-355.
    [52] Ostonen I, Lohmus K, Pajuste K. Fine r oo t biomass,pro ductio n and its pr opor tion of NPP in a fertilemiddleaged Norway spr uce fo rest: Compariso n of soil cor e and in g rowth cor e met ho ds [J]. Forest Ecolog yand Management,2005(212):264-277.
    [53] population status: A comparative study of two terrestrial salamanders in the US Pacific Northwest[J].Biological Conservation.2008,141(4):1149-1160.
    [54] Rammig A, Fahse L, Bebi P, et al. Wind disturbance in mountain forests: Simulating the impact ofmanagement strategies, seed supply, and ungulate browsing on forest succession[J]. Forest Ecology andManagement.2007,242(2–3):142-154.
    [55] Rammig A, Fahse L. Simulating forest succession after blowdown events: The crucial role of space for arealistic management[J]. Ecological Modelling.2009,220(24):3555-3564.
    [56] Ranatunga K, Keenan R J, Wullschleger S D, et al. Effects of harvest management practices on forestbiomass and soil carbon in eucalypt forests in New South Wales, Australia: Simulations with the forest successionmodel LINKAGES[J]. Forest Ecology and Management.2008,255(7):2407-2415.
    [57] Rogers P C, Ryel R J. Lichen community change in response to succession in aspen forests of the southernRocky Mountains[J]. Forest Ecology and Management.2008,256(10):1760-1770.
    [58] Sánchez-Azofeifa G A, Kalácska M, Espírito-Santo M M D, et al. Tropical dry forest succession and thecontribution of lianas to wood area index (WAI)[J]. Forest Ecology and Management.2009,258(6):941-948.
    [59] Styger E, Rakotondramasy H M, Pfeffer M J, et al. Influence of slash-and-burn farming practices on fallowsuccession and land degradation in the rainforest region of Madagascar[J]. Agriculture, Ecosystems&Environment.2007,119(3–4):257-269.
    [60] vander Kamp J, Yassir I, Buurman P. Soil carbon changes upon secondary succession in Imperata grasslands(East Kalimantan, Indonesia)[J]. Geoderma.2009,149(1–2):76-83.
    [61] Villarin L A, Chapin D M, Jones Iii J E. Riparian forest structure and succession in second-growth stands ofthe central Cascade Mountains, Washington, USA[J]. Forest Ecology and Management.2009,257(5):1375-1385.
    [62] Visscher D R, Merrill E H. Temporal dynamics of forage succession for elk at two scales: Implications offorest management[J]. Forest Ecology and Management.2009,257(1):96-106.
    [63] Vogt KA, Vogt D J, Palm iotto P A, et al. Review of root dynamics in forest ecosystems ground by climate,climatic forest type and species[J]. Plant and Soil,1996(187):159-219.
    [64] Wamelink G W W, van Dobben H F, Berendse F. Vegetation succession as affected by decreasing nitrogendeposition, soil characteristics and site management: A modelling approach[J]. Forest Ecology and Management.2009,258(8):1762-1773.
    [65] Wang F, Wang Z, Lee J H W. Acceleration of vegetation succession on eroded land by reforestation in asubtropical zone[J]. Ecological Engineering.2007,31(4):232-241.
    [66] Wang J, Ren H, Yang L, et al. Soil seed banks in four22-year-old plantations in South China: Implicationsfor restoration[J]. Forest Ecology and Management.2009,258(9):2000-2006.
    [67] Weber P, Bugmann H, Fonti P, et al. Using a retrospective dynamic competition index to reconstruct forestsuccession[J]. Forest Ecology and Management.2008,254(1):96-106.
    [68] Wells C E, Eissenstat D M. Ma rked differ ences in survivor ship amo ng apple roo ts of different diameters[J].Ecolog y,2001,82:882-892.
    [69] Yan E, Wang X, Huang J, et al. Long-lasting legacy of forest succession and forest management:Characteristics of coarse woody debris in an evergreen broad-leaved forest of Eastern China[J]. Forest Ecologyand Management.2007,252(1–3):98-107.
    [70] Yan J, Zhang D, Zhou G, et al. Soil respiration associated with forest succession in subtropical forests inDinghushan Biosphere Reserve[J]. Soil Biology and Biochemistry.2009,41(5):991-999.
    [71] Yassir I, van der Kamp J, Buurman P. Secondary succession after fire in Imperata grasslands of EastKalimantan, Indonesia[J]. Agriculture, Ecosystems& Environment.2010,137(1–2):172-182.
    [72] Yin Y, Wu Y, Bartell S M, et al. Patterns of forest succession and impacts of flood in the Upper MississippiRiver floodplain ecosystem[J]. Ecological Complexity.2009,6(4):463-472.
    [73] Yin Y, Wu Y, Bartell S M. A spatial simulation model for forest succession in the Upper Mississippi Riverfloodplain[J]. Ecological Complexity.2009,6(4):494-502.
    [74] Zheng J Q, Han S J, Ren F R, et al. Effects of long-term CO2fumigation on fungal communities in atemperate forest soil[J]. Soil Biology and Biochemistry.2009,41(10):2244-2247.
    [75] Zhengchao Zhou,Zhouping Shangguan. Vertical distribution of Wne roots in relation to soil factors.in Pinustabulaeformis Carr. forest of the Loess Plateau of China[J].Plant Soil2007(291):119-129.
    [76]安慧,杨新国,刘秉儒,等.荒漠草原区弃耕地植被群落演替过程中植物群落生物量及土壤养分变化[J].应用生态学报.2011(12):3145-3149.
    [77]曹靖,陈琦,常雅军,等.甘肃兴隆山自然保护区森林演替对土壤肥力影响的评价[J].水土保持研究.2009(4):89-93.
    [78]曾锋,邱治军,许秀玉.森林凋落物分解研究进展[J].生态环境学报.2010(1):239-243.
    [79]常超,谢宗强,熊高明,等.三峡库区不同植被类型土壤养分特征[J].生态学报.2009(11):5978-5985.
    [80]陈光升.华西雨屏区几种植被恢复模式凋落物的生态功能研究[D].四川农业大学,2008.
    [81]陈金林,吴春林,姜志林.栎林生态系统凋落物分解及磷素释放规律[J].浙江林学院学报,2002,19(4):36-37.
    [82]陈金玲,金光泽,赵凤霞.小兴安岭典型阔叶红松林不同演替阶段凋落物分解及养分变化[J].应用生态学报.2010(9):2209-2216.
    [83]陈俊华,刘兴良,何飞,等.卧龙巴朗山川滇高山栎灌丛主要木本植物种群生态位特征[J].林业科学.2010(3):23-28.
    [84]陈亮中,谢宝元,肖文发,等.三峡库区主要森林植被类型土壤有机碳贮量研究[J].长江流域资源与环境.2007(5):640-643.
    [85]陈平,谷建才,曹立颜,等.小五台山森林群落物种多样性与土壤养分的典型相关[J].东北林业大学学报.2010(8):34-35.
    [86]陈英义,李道亮.北方农牧交错带沙尘源植被恢复潜力评价模型研究[J].农业工程学报.2008(3):130-134.
    [87]陈永亮,李淑兰.胡桃楸、落叶松纯林及其混交林下叶凋落物分解与养分归还的比较研究[J].林业科技,2004,29(5):9-l3.
    [88]程冬兵,蔡崇法,孙艳艳.植被恢复研究综述[J].亚热带水土保持.2006(2):24-26.
    [89]程瑞梅,肖文发,王晓荣,等.三峡库区植被不同演替阶段的土壤养分特征[J].林业科学.2010(9):1-6.
    [90]程小琴,赵方莹.门头沟区煤矿废弃地自然恢复植被数量分类与排序[J].东北林业大学学报.2010(11):75-79.
    [91]春敏莉,谢宗强,赵常明,等.神农架巴山冷杉天然林凋落量及养分特征[J].植物生态学报.2009(3):492-498.
    [92]戴全厚,薛萐,刘国彬,等.侵蚀环境撂荒地植被恢复与土壤质量的协同效应[J].中国农业科学.2008(5):1390-1399.
    [93]邓小文,张岩,韩士杰,等.外源氮输入对长白山红松凋落物早期分解的影响[J].北京林业大学学报,2007,29(6):16-22.
    [94]丁绍兰,杨乔媚,赵串串,等.黄土丘陵区不同林分类型枯落物层及其林下土壤持水能力研究[J].水土保持学报.2009(5):104-108.
    [95]董林水.晋西基岩山地与黄土丘陵区生态过渡带植被特征及生态恢复机理研究[D].中国林业科学研究院,2005.
    [96]杜峰,梁宗锁,徐学选,等.陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应[J].生态学报.2007(5):1673-1683.
    [97]杜丽,戈峰.生物多样性与生态系统功能的关系研究进展[J].中国生态农业学报.2004(2):24-27.
    [98]杜晓军,姜凤岐,焦志华.辽宁西部低山丘陵区植被恢复研究:基于演替理论和生态系统退化程度[J].应用生态学报,2004,15(9):15071511
    [99]杜晓军,姜凤岐,沈慧,等.辽西低山丘陵区生态系统退化程度的定量确定[J].应用生态学报.2001(1):156-158.
    [100]范玮熠,王孝安,郭华.黄土高原子午岭植物群落演替系列分析[J].生态学报.2006(3):706-714.
    [101]高国刚,胡玉昆,李凯辉,等.高寒草地群落物种多样性与土壤环境因子的关系[J].水土保持通报.2009(3):118-122.
    [102]高俊香,鲁小珍,马力,等.凤阳山常绿阔叶林乔木层优势种群生态位分析[J].南京林业大学学报(自然科学版).2010(4):157-160.
    [103]葛东媛,张洪江,王伟,等.重庆四面山林地土壤水分特性[J].北京林业大学学报.2010(4):155-160.
    [104]龚直文,亢新刚,顾丽.森林植被恢复阶段群落研究动态综述[J].江西农业大学学报.2009(2):283-291.
    [105]龚直文.长白山退化云冷杉林演替动态及恢复研究[D].北京林业大学,2009.
    [106]勾昕.高寒草甸植物群落演替过程物种多样性和化学计量学动态分析[D].兰州大学,2009.
    [107]谷会岩,金靖博,陈祥伟,等.采伐干扰对大兴安岭北坡兴安落叶松林土壤化学性质的影响[J].土壤通报.2009(2):272-275.
    [108]郭利平,姬兰柱,王珍,等.长白山红松阔叶林不同演替阶段优势种的变化[J].应用生态学报.2011(4):866-872.
    [109]郭宁,邢韶华,姬文元,等.森林资源质量状况评价方法及其在川西米亚罗林区的应用[J].生态学报.2010(14):3784-3791.
    [110]郭帅,赵宏霞.恢复生态学领域的植被群落演替研究综述[J].聊城大学学报(自然科学版).2011(3):59-63.
    [111]郭涛.海南岛尾矿区恢复植被与土壤特性的相关性研究[D].海南大学,2008.
    [112]郭伟,张健,黄玉梅,等.森林凋落物生态功能研究进展[J].安徽农业科学.2009(5):1984-1985.
    [113]郭跃东,郭晋平,张芸香,等.文峪河上游河岸林群落环境梯度格局和演替过程[J].生态学报.2010(15):4046-4055.
    [114]郭志彬.半干旱黄土高原地区不同干预方式下撂荒地演替植被生物量与土壤物化性质变化[D].兰州大学,2010.
    [115]郭忠玲,郑金萍,马元丹,等.韩士杰长白山几种主要森林群落木本植物细根生物量及其动态,生态学报,2006,26(9):2855-2861.
    [116]韩路,王海珍,彭杰,等.塔里木荒漠河岸林植物群落演替下的土壤理化性质研究[J].生态环境学报.2010(12):2808-2814.
    [117]韩学勇,赵凤霞,李文友.森林凋落物研究综述[J].林业科技情报.2007(3):12-13.
    [118]郝艳茹,彭少麟.根系及其主要影响因子在森林演替过程中的变化[J].生态环境.2005(5):762-767.
    [119]何东进,洪伟,崔春英,等.通径分析在毛竹枯梢病研究中的应用[J].福建林学院学报.2000(3):203-206.
    [120]何永涛,石培礼,徐玲玲.拉萨一林芝植被样带不同群落类型的细根生物量[J].林业科学,2009,45(10):148-151.
    [121]何志华,柏明娥,高立旦,等.浙江海宁鼠尾山露采废弃矿山植被修复的群落结构和持水效应研究[J].林业科学研究.2008(4):576-581.
    [122]胡建忠,郑佳丽,沈晶玉.退耕地人工植物群落根系生态位及其分布特征[J].生态学报.2005,25(3):481-490.
    [123]胡小宁,赵忠,袁志发,等.黄土高原刺槐细根生长模型的建立[J].林业科学.2010(4):126-132.
    [124]华娟,赵世伟,张扬,等.云雾山草原区不同植被恢复阶段土壤团聚体活性有机碳分布特征[J].生态学报.2009(9):4613-4619.
    [125]蒋金平.黄土高原半干旱丘陵区生态恢复中植被与土壤质量演变关系[D].兰州大学,2007.
    [126]金启宏,潘代远孔令韶.新疆呼图壁盐化草甸群落的DCA,CCA及DCCA分析[J].植物生态学报.1995(2):115-127.
    [127]康冰,刘世荣,王得祥,等.秦岭山地典型次生林木本植物幼苗更新特征[J].应用生态学报.2011(12):3123-3130.
    [128]寇思勇,赵成义,李君,等.塔里木河干流荒漠河岸林植物群落多元分析及其土壤环境解释[J].干旱区资源与环境.2009(3):156-161.
    [129]蓝良就,黄炎和,李德成,等.花岗岩侵蚀区不同恢复阶段的植物群落特征[J].福建农林大学学报(自然科学版).2011(6):642-647.
    [130]雷云飞,张卓文,苏开君,等.流溪河森林各演替阶段凋落物层的水文特性[J].中南林业科技大学学报.2007(6):38-43.
    [131]李朝,周伟,关庆伟,等.徐州石灰岩山地侧柏人工林生物量及其影响因子分析[J].安徽农业大学学报.2010(4):669-674.
    [132]李翠环,余树全,周国模.亚热带常绿阔叶林植被恢复研究进展[J].浙江林学院学报.2002(3):101-105.
    [133]李飞,赵军,赵传燕,等.中国干旱半干旱区潜在植被群落演替[J].生态学报.2011(3):689-697.
    [134]李灵,张玉,孔丽娜,等.武夷山风景区不同林地类型土壤水分物理性质及土壤水库特性[J].水土保持通报.2011(3):60-65.
    [135]李庆康,马克平.植物群落演替过程中植物生理生态学特性及其主要环境因子的变化[J].植物生态学报.2002(S1):9-19.
    [136]李帅锋,刘万德,苏建荣,等.季风常绿阔叶林不同恢复阶段乔木优势种群生态位和种间联结[J].生态学杂志.2011(3):508-515.
    [137]李兴东,宋永昌.浙江东部常绿阔叶林次生演替的随机过程模型[J].植物生态学与地植物学学报.1993(4):345-351.
    [138]李志勇,王彦辉,于澎涛,等.重庆酸雨区马尾松香樟混交林的土壤化学性质和林木生长特征[J].植物生态学报.2010(4):387-395.
    [139]梁一民,张光辉.植被盖度对水土保持功效影响的研究综述[J].水土保持研究.1996(2):104-110.
    [140]刘海岗,刘一,黄忠良.森林凋落物研究进展[J].安徽农业科学.2008(3):1018-1020.
    [141]刘鸿雁,黄建国.缙云山森林群落次生演替中土壤理化性质的动态变化[J].应用生态学报,2005,16(11):2041-2046.
    [142]刘鸿雁,邢丹,肖玖军,等.铅锌矿渣场植被自然演替与基质的交互效应[J].应用生态学报.2010(12):3217-3224.
    [143]刘鸿雁.缙云山森林群落次生演替中土壤特性动态变化及其影响因素研究[D].西南农业大学,2005.
    [144]刘建军.林木根系生态研究综述[J].西北林学院学报.1998(3):76-80.
    [145]刘珏宏,高慧,张丽红,等.内蒙古锡林郭勒草原大针茅-克氏针茅群落的种间关联特征分析[J].植物生态学报.2010(9):1016-1024.
    [146]刘丽丽,金则新,李建辉.浙江大雷山夏蜡梅群落植物物种多样性及其与土壤因子相关性[J].植物研究.2010(1):57-64.
    [147]刘少冲,段文标,冯静,等.林隙对小兴安岭阔叶红松林树种更新及物种多样性的影响[J].应用生态学报.2011(6):1381-1388.
    [148]刘世梁,傅伯杰,陈利顶,等.两种土壤质量变化的定量评价方法比较[J].长江流域资源与环境.2003(5):422-426.
    [149]刘宪钊,陆元昌,周燕华.退化次生林恢复过程中群落结构和生态位动态[J].生态学杂志.2010(1):22-28.
    [150]刘晓东,张彦雷.东折棱河森林经营所红松混交林的天然更新[J].东北林业大学学报.2009(9):8-11.
    [151]刘兴诏,周国逸,张德强,等.南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J].植物生态学报.2010(1):64-71.
    [152]刘旭,程瑞梅,肖文发.土壤种子库研究进展[J].世界林业研究.2008(1):27-33.
    [153]刘永恩.流沙河流域植被与土壤对生态恢复的响应研究[D].四川农业大学,2008.
    [154]刘勇,王瑾瑜.黄土高原植被群落演替过程中植被与土壤养分、水分关系研究进展[J].吉林农业科学.2010(5):25-27.
    [155]刘勇.黄土高原植被群落演替规律和演替中土壤理化特性变化研究进展[J].山东农业科学.2010(6):74-77.
    [156]刘玉国,刘长成,魏雅芬,等.贵州省普定县不同植被群落演替阶段的物种组成与群落结构特征[J].植物生态学报.2011(10):1009-1018.
    [157]刘苑秋,王芳,柯国庆,等.江西瑞昌石灰岩山区退耕还林对土壤有机碳的影响[J].应用生态学报.2011(4):885-890.
    [158]刘长成,魏雅芬,刘玉国,等.贵州普定喀斯特次生林乔灌层地上生物量[J].植物生态学报.2009(4):698-705.
    [159]刘中奇,朱清科,秦伟,等.半干旱黄土区自然恢复与人工造林恢复植被群落对比研究[J].生态环境学报.2010(4):857-863.
    [160]罗东辉,夏婧,袁婧薇,等.我国西南山地喀斯特植被的根系生物量初探[J].植物生态学报.2010(5):611-618.
    [161]罗东辉,夏婧,袁婧薇,等.我国西南山地喀斯特植被的根系生物量初探[J].植物生态学报,2010,34(5):611-618.
    [162]吕刚,曹小平,卢慧,等.辽西海棠山森林枯落物持水与土壤贮水能力研究[J].水土保持学报.2010(3):203-208.
    [163]吕刚,吴祥云,雷泽勇,等.辽西半干旱低山丘陵区人工林地表层土壤水文效应[J].水土保持学报.2008(5):204-208.
    [164]马风云,刘艳,侯龙鱼,等.石质山地直播造林对植被和土壤的影响[J].中国水土保持科学.2010(1):87-92.
    [165]马姜明,刘世荣,史作民,等.川西亚高山暗针叶林恢复过程中岷江冷杉天然更新状况及其影响因子[J].植物生态学报.2009(4):646-656.
    [166]马姜明,刘世荣,史作民,等.退化森林生态系统恢复评价研究综述[J].生态学报.2010(12):3297-3303.
    [167]马姜明.川西亚高山退化暗针叶林恢复评价的生态学基础及其对策[D].中国林业科学研究院,2007.
    [168]马强,宇万太,赵少华,等.黑土农田土壤肥力质量综合评价[J].应用生态学报.2004(10):1916-1920.
    [169]毛齐正,杨喜田,苗蕾.植物根系构型的生态功能及其影响因素[J].河南科学.2008(2):172-176.
    [170]梅莉,王政权,韩有志,等.水曲柳根系生物量、比根长和根长密度的分布格局[J].应用生态学报,2006,17(1):1-4.
    [171]梅雪英,张修峰.崇明东滩湿地自然植被群落演替过程中储碳及固碳功能变化[J].应用生态学报.2007(4):933-936.
    [172]孟京辉,陆元昌,刘刚,等.不同演替阶段的热带天然林土壤化学性质对比[J].林业科学研究.2010(5):791-795.
    [173]莫江明,薛碌花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J].生态学报,2004,24(7):1413-1421
    [174]欧芷阳,苏志尧,叶永昌,等.东莞地表植被对表层土壤化学特性的指示作用[J].生态学报.2009(2):984-992.
    [175]彭少麟,郝艳茹.森林演替过程中根系分布的动态变化[J].中山大学学报:自然科学版,2005,44(5):65-69
    [176]彭少麟,侯玉平.东亚生态恢复——2006年东亚国际恢复生态学大会综述[J].生态学报.2006(7):2416.
    [177]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1535-1546.
    [178]彭少麟.恢复生态学研究进展与我国发展战略[J].2002,(2):90-97.
    [179]彭舜磊,王得祥.秦岭火地塘林区华山松人工林与天然次生林群落特征比较[J].西北植物学报.2009(11):2301-2311.
    [180]彭晚霞,宋同清,曾馥平,等.喀斯特常绿落叶阔叶混交林植物与土壤地形因子的耦合关系[J].生态学报.2010(13):3472-3481.
    [181]彭镇华,董林水,张旭东,等.黄土高原水土流失严重地区植被恢复策略分析[J].林业科学研究.2005(4):471-478.
    [182]漆良华.武陵山区小流域退化土地植被恢复生态学特性研究[D].中国林业科学研究院,2007.
    [183]齐泽民,王开运,张远彬,等.川西亚高山林线过渡带及邻近植被土壤性质[J].生态学报.2009(12):6325-6332.
    [184]璩芳,张万军,刘秀萍.太行山低山丘陵区植被及土壤养分变化规律研究[J].水土保持通报.2010(1):39-42.
    [185]权伟,连洪燕,徐侠,等.武夷山不同海拔植被土壤细根生物量季节变化[J].南京林业大学学报(自然科学版).2010(3):1095-1103.
    [186]任建宏,燕辉,朱铭强,等.秦岭北坡4种植被类型的土壤养分状况和微生物特征比较研究[J].水土保持研究.2010(4):228-232.
    [187]任丽娜,王海燕,丁国栋,等.华北土石山区人工林土壤健康评价研究[J].水土保持学报.2010(6):46-52.
    [188]任晓旭,蔡体久,王笑峰.不同植被恢复模式对矿区废弃地土壤养分的影响[J].北京林业大学学报.2010(4):151-154.
    [189]沈会涛,由文辉,蒋跃.天童常绿阔叶林不同演替阶段枯落物和土壤水文特征[J].华东师范大学学报(自然科学版).2010(6):35-44.
    [190]司彬,姚小华,任华东,等.黔中喀斯特植被自然演替过程中物种组成及多样性研究-以贵州省普定县为例[J].林业科学研究.2008(5):669-674.
    [191]宋洪涛,张劲峰,田昆,等.滇西北亚高山地区黄背栎林植被群落演替过程中的林地土壤化学响应[J].西部林业科学.2007(2):65-70.
    [192]苏东凯,谢小魁,刘正纲,等.长白山次生白桦林数量特征[J].东北林业大学学报.2009(10):1-4.
    [193]孙昌平,刘贤德,雷蕾,等.祁连山不同林地类型土壤特性及其水源涵养功能[J].水土保持通报.2010(4):68-72.
    [194]孙艳艳.页岩侵蚀退化区不同生态恢复阶段植被与土壤特征研究[D].华中农业大学,2007.
    [195]孙长安,王炜炜,董磊,等.我国植被恢复对土壤性状影响研究综述[J].长江科学院院报.2008(3):6-8.
    [196]索安宁,巨天珍,张俊华,等.甘肃小陇山锐齿栎群落生物多样性特征分析[J].西北植物学报.2004(10):1877-1881.
    [197]唐龙,梁宗锁,杜峰,等.陕北黄土高原丘陵区撂荒演替及其过程中主要乡土牧草的确定与评价[J].生态学报.2006(4):1165-1175.
    [198]陶宝先,张金池,林杰,等.苏南丘陵不同林分类型土壤质量评价[J].南京林业大学学报(自然科学版).2009(6):74-78.
    [199]田大伦,朱小年,蔡宝玉,等.杉木人工林生态系统凋落物的研究Ⅱ:凋落物的养分含量及分解速率[J].中南林学院学报,1989,9(增):45-55.
    [200]佟静秋,牟长城,赖富丽.哈尔滨城市人工林自然演替趋势[J].东北林业大学学报.2009(3):24-25.
    [201]万猛,樊巍,田大伦.太行山南麓栓皮栎林生物量和材积关系的探讨[J].安徽农业科学.2008(4):1437-1438.
    [202]王迪海,赵忠,李剑.土壤水分对黄土高原主要造林树种细根表面积季节动态的影响[J].植物生态学报.2010(7):819-826.
    [203]王海燕,雷相东,陆元昌,等.海南4种典型林分土壤化学性质比较研究[J].林业科学研究.2009(1):129-133.
    [204]王俊明,张兴昌.退耕草地演替过程中植被根系的动态变化及其垂直分布[J].中国水土保持科学.2010(4):67-72.
    [205]王琳琳,陈云明,张飞,等.黄土丘陵半干旱区人工林细根分布特征及土壤特性[J].水土保持通报.2010(4):27-31.
    [206]王乃江,张文辉,陆元昌,等.陕西子午岭森林植物群落种间联结性[J].生态学报.2010(1):67-78.
    [207]王鹏飞.太行山低山丘陵区典型植物群落养分循环研究[D].河南农业大学,2008.
    [208]王树堂,韩士杰,张军辉,等.长白山阔叶红松林表层土壤木本植物细根生物量及其空间分布[J].应用生态学报,2010,21(3):583-589.
    [209]王小庆,刘方炎,李昆,等.元谋干热河谷滇榄仁群落林下物种多样性与幼苗更新特征[J].浙江农林大学学报.2011(2):241-247.
    [210]王鑫,胡玉昆,阿迪拉热合木都拉.,等.高寒草地主要类型土壤因子特征及对地上生物量的影响[J].干旱区资源与环境.2008(3):196-200.
    [211]王莹,李道亮.煤矿废弃地植被恢复潜力评价模型[J].中国农业大学学报.2005(2):88-92.
    [212]王云琦,王玉杰,张洪江,等.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报,2004,18(3):41-44.
    [213]王韵.喀斯特地区土壤质量对植被群落演替的响应特征研究[D].湖南农业大学,2007.
    [214]王占孟,赵金荣.陇东黄土高原沟壑区各立地类型水保适生树种的确认[J].中国水土保持.1993(2):39-43.
    [215]王志强,刘宝元,王旭艳,等.黄土丘陵半干旱区人工林迹地土壤水分恢复研究[J].农业工程学报,2007,23(11):77-83.
    [216]魏振荣,肖云丽,李锐.巴山山地退耕地植被自然恢复过程及物种多样性变化[J].中国水土保持科学.2010(2):99-104.
    [217]温仲明,焦峰,李静.黄土丘陵区纸坊沟流域植被自然演替阶段的识别与量化分析[J].水土保持研究.2009(5):40-44.
    [218]温仲明,焦峰.自然植被分布预测研究进展[J].中国水土保持科学.2009(5):117-124.
    [219]乌仁其其格.草甸草原不同退化程度下植被与土壤特征与指示度研究[D].内蒙古农业大学,2009.
    [220]吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展[J].江西农业大学学报.2000(3):405-410.
    [221]武春华,陈云明,王国梁.黄土丘陵区典型群落特征及其与环境因子的关系[J].水土保持学报.2008(3):64-69.
    [222]席琳.伏牛山东麓不同演替阶段植被群落特征与水土保持特性[D].河南农业大学,2009.
    [223]席青虎,铁牛,淑梅,等.寒温带兴安落叶松林天然更新研究[J].林业资源管理.2009(1):44-48.
    [224]肖洋,陈丽华,余新晓.北京密云麻栎人工混交林凋落物养分归还特征[J].东北林业大学学报.2010(7):13-15.
    [225]谢瑾,李朝丽,李永梅,等.纳板河流域不同土地利用类型土壤质量评价[J].应用生态学报.2011(12):3169-3176.
    [226]熊利民,汪莉.亚热带党绿阔叶林不同演替阶段土壤种子库的初步研究[J].植物生态学与地植物学学报.1992,16(3):249-257.
    [227]熊能,金则新,顾婧婧,等.千岛湖次生林优势种种群结构与分布格局[J].生态学杂志.2010(5):847-854.
    [228]胥晓刚,杨冬生,胡庭兴,等.建立坡面植被恢复群落质量评价体系的探讨[J].水土保持学报.2004(2):189-191.
    [229]许建伟,沈海龙,张秀亮,等.我国东北东部林区花楸树的天然更新特征[J].应用生态学报.2010(1):9-15.
    [230]许松葵,薛立.韶关地区6种阔叶树种幼林的凋落物持水特性研究[J].水土保持通报.2010(1):59-62.
    [231]许中旗,李文华,鲍维楷,等.植被原生演替研究进展[J].生态学报.2005(12):3383-3389.
    [232]薛立,何跃君,屈明,等.华南典型人工林凋落物的持水特性[J].植物生态学报,2005,29(3)415-421.
    [233]薛萐,李占斌,戴全厚,等.侵蚀环境撂荒地植物群落恢复动态研究[J].中国水土保持科学.2009(6):14-19.
    [234]闫东锋,侯金芳,张忠义,等.宝天曼自然保护区天然次生林林分直径分布规律研究[J].河南科学.2006(3):364-367.
    [235]闫东锋,杨喜田.豫南山区典型林地土壤入渗特征及影响因素分析[J].中国水土保持科学,2011(6):43-50.
    [236]阎恩荣,王希华,周武.天童常绿阔叶林演替系列植物群落的N:P化学计量特征[J].植物生态学报.2008(1):13-22.
    [237]阎恩荣,王希华,周武.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系[J].植物生态学报2008,32(1):1-12.
    [238]燕辉,苏印泉,朱昱燕,等.秦岭北坡杨树人工林细根分布与土壤特性的关系.南京林业大学学报(自然科学版)[J].2009,33(2):85-89.
    [239]杨刚,谢永宏,陈心胜,等.退田还湖后洞庭湖区土壤颗粒组成和化学特性的变化[J].生态学报.2009(12):6392-6400.
    [240]杨海龙,王芳,包昱峰,等.晋西黄土区蔡家川封禁流域植被群落演替规律[J].水土保持研究.2008(5):129-131.
    [241]杨娟,李静,宋永昌,等.受损常绿阔叶林生态系统退化评价指标体系和模型[J].生态学报.2006(11).
    [242]杨丽韫,代力民,张扬建.长白山北坡暗针叶林倒木贮量和分解的研究[J].应用生态学报,2002,13(9):1069-1071.
    [243]杨宁,邹冬生,李建国,等.衡阳盆地紫色土丘陵坡地主要植物群落自然恢复演替进程中种群生态位动态[J].水土保持通报.2010(4):87-93.
    [244]杨万勤,邓仁菊,张健.森林凋落物分解及其对全球气候变化的响应[J].应用生态学报,2007,18(22):2889-2895.
    [245]杨喜田,霍利娜,赵宁,等.种基盘苗与营养钵苗根系生长和形态的差异[J].中国水土保持科学,2009,7(5):48-51.
    [246]杨小林,赵垦田,马和平,等.拉萨半干旱河谷地带的植被数量生态研究[J].林业科学.2010(10):15-22.
    [247]杨新兵,张伟,张建华,等.生态抚育对华北落叶松幼龄林枯落物和土壤水文效应的影响[J].水土保持学报.2010(1):119-122.
    [248]姚强,赵成章,郝青,等.旱泉沟流域次生植被不同恢复阶段的多样性特征[J].生态环境学报.2010(4):849-852.
    [249]殷秀琴,宋博,邱丽丽.红松阔叶混交林凋落物-土壤动物-土壤系统中N、P、K的动态特征[J].生态学报,2007,27(1):128-135.
    [250]银晓瑞,梁存柱,王立新,等.内蒙古典型草原不同恢复演替阶段植物养分化学计量学[J].植物生态学报.2010(1):39-47.
    [251]尹锴,崔胜辉,赵千钧,等.基于冗余分析的城市森林林下层植物多样性预测[J].生态学报.2009(11):6085-6094.
    [252]俞筱押,李玉辉.滇石林喀斯特植物群落不同演替阶段的溶痕生境中木本植物的更新特征[J].植物生态学报.2010(8):889-897.
    [253]袁金凤,胡仁勇,慎佳泓,等.4种不同演替阶段森林群落物种组成和多样性的比较研究[J].植物研究.2011(1):61-66.
    [254]张斌,张金屯,苏日古嘎,等.协惯量分析与典范对应分析在植物群落排序中的应用比较[J].植物生态学报.2009(5):842-851.
    [255]张传余,喻理飞,姬广梅.喀斯特地区不同演替阶段植物群落天然更新能力研究[J].贵州农业科学.2011(6):155-158.
    [256]张春梅,焦峰,温仲明,等.延河流域自然与人工植被地上生物量差异及其土壤水分效应的比较[J].西北农林科技大学学报(自然科学版).2011(4):132-138.
    [257]张春雨,赵秀海,赵亚洲.长白山温带森林不同演替阶段群落结构特征[J].植物生态学报.2009(6):1090-1100.
    [258]张东来,毛子军,张玲,等.森林凋落物分解过程中酶活性研究进展[J].林业科学,2006,42(1):105-108.
    [259]张红,吕家珑,赵世伟.子午岭林区植被群落演替下的土壤微生物响应[J].西北林学院学报.2010(2):104-107.
    [260]张会儒,汤孟平.金沟岭林场混交林TWINSPAN分类及演替序列分析[J].南京林业大学学报(自然科学版).2009(1):37-42.
    [261]张江英,周华荣,高梅.艾里克湖湿地植物群落特征指数与土壤因子的关系[J].生态学杂志.2007(7):983-988.
    [262]张金屯.数量生态学(第二版)[M].科学出版社,2010.
    [263]张黎,于贵瑞,何洪林,等.基于模型数据融合的长白山阔叶红松林碳循环模拟[J].植物生态学报.2009(6):1044-1055.
    [264]张林海,曾从盛,仝川.闽江河口湿地优势植物生物量与土壤因子灰色关联分析[J].首都师范大学学报(自然科学版).2010(4):88-93.
    [265]张婷,陈云明,武春华.黄土丘陵区铁杆蒿群落和长芒草群落地上生物量及土壤养分效应[J].中国水土保持科学.2011(5):91-97.
    [266]张伟,陆宗芳,孙学刚,等.林型尺度森林植被恢复评价指标体系的构建[J].甘肃农业大学学报.2007(5):114-118.
    [267]张象君,王庆成,郝龙飞,等.长白落叶松人工林林隙间伐对林下更新及植物多样性的影响[J].林业科学.2011(8):7-13.
    [268]张小朋,殷有,于立忠,等.土壤水分与养分对树木细根生物量及生产力的影响[J].浙江林学院学报.2010(4):606-613.
    [269]张秀娟,吴楚,梅莉,等.水曲柳和落叶松人工林根系分解与养分释放[J].应用生态学报,2006,17(8):1370-137.
    [270]张野.不同植被恢复措施对退化红壤物理性状的影响[D].福建农林大学,2010.
    [271]张治伟,朱章雄,王燕,等.岩溶坡地不同利用类型土壤入渗性能及其影响因素[J].农业工程学报.2010(6):71-76.
    [272]赵成章,姚强,郝青,等.东祁连山地次生林演替过程中种群格局动态[J].山地学报.2010(2):234-239.
    [273]赵德怀,李素清.晋西北丘陵风沙区人工植被数量分类与排序研究[J].山西师范大学学报(自然科学版).2011(1):103-109.
    [274]赵景学,曲广鹏,多吉顿珠,等.藏北高寒植被群落物种多样性与土壤环境因子的关系[J].干旱区资源与环境.2011(6).
    [275]赵鹏武,宋彩玲,苏日娜,等.森林生态系统凋落物研究综述[J].内蒙古农业大学学报(自然科学版).2009(2):292-299.
    [276]赵其国,孙波.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展.1999(2):24-34.
    [277]赵伟,金慧,李江楠,等.长白山北坡天然次生杨桦林群落演替状态[J].东北林业大学学报.2010(12):1-3.
    [278]赵艳云,程积民,万惠娥,等.六盘山不同森林群落地被物的持水特性[J].林业科学.2009(4):145-150.
    [279]赵洋毅,王玉杰,王云琦,等.渝北水源区水源涵养林构建模式对土壤渗透性的影响[J].生态学报.2010(15):4162-4172.
    [280]赵勇,樊巍,范国强.黄河小浪底库区山地植物群落恢复进程研究[J].北京林业大学学报.2008(2):33-38.
    [281]赵勇,樊巍,吴明作,等.太行山丘陵区刺槐人工林主要养分元素分配及循环特征[J].中国水土保持科学.2009(5):111-116.
    [282]赵勇,王鹏飞,樊巍,等.太行山丘陵区不同龄级栓皮栎人工林养分循环特征[J].中国水土保持科学.2009(4):66-71.
    [283]赵勇,吴明作,樊巍,等.太行山针、阔叶森林凋落物分解及养分归还比较[J].自然资源学报.2009,24(9):1616-1624.
    [284]赵勇.太行山低山丘陵区退化生态系统植被恢复过程生态特征分析与评价[D].河南农业大学,2007.
    [285]郑粉莉,张锋,王彬.近100年植被破坏侵蚀环境下土壤质量退化过程的定量评价[J].生态学报.2010(22):6044-6051.
    [286]郑江坤,魏天兴,陈致富,等.陕北生态退耕区植被群落土壤贮水量与入渗特性[J].水土保持研究.2010(4):162-165.
    [287]周存宇.凋落物在森林生态系统中的作用及其研究进展[J].湖北农学院学报,2003,23(2):140-145.
    [288]周会萍,蔡祖国,牛德奎.江西吉安退化湿地松群落土壤物理性质及养分状况研究[J].西北林学院学报.2010(4):7-10.
    [289]周璟,张旭东,周金星,等.我国植被恢复对土壤质量的影响研究综述[J].世界林业研究.2009(2):56-61.
    [290]庄家尧,张金池,林杰,等.安徽省大别山区上舍小流域植被根系与土壤抗冲性研究[J].中国水土保持科学.2007(6):45-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700