用户名: 密码: 验证码:
免烧成SiC-Si_3N_4复相耐火材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前Si3N4-SiC复相耐火材料高温烧成过程中存在的成本高、能耗高、质量不稳定等突出问题,本论文利用石英和金红石经碳热还原氮化工艺合成Si3N4、TiCN等非氧化物原料,并进行SiC-Si3N4耐火材料的免烧成制备技术与性能优化的研究,探讨了免烧成耐火材料强度获得的机制,取得了一些重要研究成果。
     分析了石英和金红石碳热还原氮化低成本合成TiCN和Si3N4耐火原料的物相行为,获得了优化的工艺参数。以石英为原料,焦炭添加量为理论量,Fe2O3添加量为5%,在1600℃保温3h碳热还原氮化,可合成晶粒尺寸2~4μm的β-Si3N4粉体。以金红石和石英为原料,金红石和石英比例为1∶9,焦炭添加量为理论量,在1600℃保温3h碳热还原氮化,可合成TiCN-Si3N4复相粉体。研究结果为矿物合成非氧化物在耐火材料中的应用奠定了基础。
     对SiC-Si3N4耐火材料的免烧成制备技术和性能优化工艺进行了研究。发现Si3N4加入50%的免烧成SiC-Si3N4耐火材料具有最佳的综合性能,其体积密度2.31g·cm-3,常温抗折强度7.41MPa,抗冰晶石侵蚀性能优良,常温和1100℃的体积冲蚀磨损率分别为24.17mm3·g-1和43.97mm3·g-1。随着TiCN-Si3N4添加量增加,免烧成SiC-TiCN-Si3N4耐火材料的侵蚀分形维数由1.0568减小到1.0105,抗高炉渣侵蚀性能提高。分析其作用机理是TiCN增大了高炉渣的粘度,降低了渣的渗透能力,可与渣反应生成高粘度相富集在熔渣与基质的反应层中,阻挡熔渣的侵入,提高了抗渣侵蚀性能。
     硅粉/酚醛树脂结合的免烧成SiC-Si3N4耐火材料150℃以下通过树脂的交联硬化获得强度。随着温度的升高,致密度降低,600~700℃,酚醛树脂的热解和氧化造成材料的强度下降,800℃的抗折强度最小。900~1400℃,材料内部的氧化烧结作用加强,高温抗折强度增大。1400℃时晶粒间相互交错、重叠,形成强度较高的结晶联生体,抗折强度达最大为15.64MPa。铝酸盐水泥/酚醛树脂结合的免烧成SiC-Si3N4耐火材料常温下通过水泥的水化以及酚醛树脂的交联固化使材料获得高的强度。升温过程中,低温水化矿物逐渐转化成高温水化矿物,强度下降,800℃时由于水化铝酸钙全部转变为二次CA和CA2,水泥失去胶结作用并形成内部气孔,材料的强度降至最低。1100℃以上,由于液相烧结和原位莫来石晶须增强,起到原位自修复/自强化的作用,材料强度显著增大,1400℃时高温抗折强度最大为48.83MPa。揭示了免烧成SiC-Si3N4耐火材料分别在150~800℃和800~1600℃下抗折强度与温度的关系。液相烧结和原位晶须增强机制为免烧成耐火材料在高温使用条件下的动态烧结和强度获得提供了理论依据。
     本论文研究成果能够为开发具有自主知识产权的高性能低成本免烧成SiC-Si3N4复相耐火材料提供相应理论基础和技术依据,对节能减排、矿物资源高效利用和推动新一代高性能耐火材料的研究和发展具有重要意义。
In this doctoral dissertation, we aimed at coping with the critical problems (e.g.,high cost, high energy consumption and unstable quality) which were raised during thepreparation process and the high temperature sintering process in the traditionalpreparation technique of the widely used Si3N4-SiC composite refractories. Quartz andrutile were used as the raw materials to synthesize the non-oxide composite powdersincluding Si3N4and TiCN. We advanced a novel unfired technology to prepare theSiC-Si3N4composite refractories using the synthesized TiCN, Si3N4and SiC as thestarting materials. The preparation parameters and the properties optimization of theunfired SiC-Si3N4composite refractories were investigated in detail.
     The phase transformation of quartz and rutile during the carbothermal reductionnitridation (CRN) process were studied. The optimal experimental parameters forsynthesizing high purity β-Si3N4powder were carbon content of stoichiometric content,temperature of1600°C for3h and Fe2O3content of5%. The optimum parameters forsynthesizing TiCN-Si3N4by CRN process were the mass ratio between rutile and quartzof1∶9, carbon addition of stoichiometric content and temperature of1600°C for3h.
     The preparation parameters and the properties optimization of the unfiredSiC-Si3N4composite refractories were studied. The unfired SiC-Si3N4refractories with50wt%Si3N4had best comprehensive properties, with density of2.31g·cm-3, roomtemperature flexural strength of7.41MPa, good cryolite erosion resistance and gooderosion wear resistance. The erosion fractal dimensions of the unfired refractoriesdecreased from1.0568to1.0105with the increase of the TiCN-Si3N4content, so theslag erosion resistance of the unfired SiC-TiCN-Si3N4refractories was improvedobviously. On the one hand, TiCN increased the viscosity of slag and reduced thepenetration of slag. On the other hand, the oxidation products of TiCN and Si3N4wereTiO2and SiO2, which could react with slag to generate a high viscosity phase. The highviscosity phase concentrated in the reaction layer between the slag and the refractory,could block the invasion of the slag effectively.
     The mechanism for acquiring high strength of the unfired SiC-Si3N4composite refractories was also investigated. Below150°C, the strength of the unfired refractoriescombined with silicon powder-phenolic resin was obtained through the cross-linkinghardening of phenolic resin. With the increase of temperature, the density of the unfiredrefractories decreased.600~700°C, the high temperature pyrolysis and oxidation of thephenolic resin caused the loss of the strength of the unfired refractories. At800°C, aminimum flexural strength was obtained.900~1400°C, the internal oxidation sinteringrole of the unfired refractories was strengthened, so the flexural strength increased. At1400°C, the grains in the unfired refractories interlocked and overlapped each other toform the crystallization body with high strength, so flexural strength increased.
     At room temperature, the high strength of the unfired refractories combined withaluminate cement-phenolic resin was obtained through the hydration of cement and thecross-linking hardening of phenolic resin. With the increase of temperature, the lowtemperature hydration mineral gradually transformed into high temperature hydrationmineral, so the strength decreased. At800°C, the hydration calcium aluminatetransformed into secondary CA and CA2completely, the cementation of cement got lostand caused the formation of the pore, so a minimum flexural strength was obtained.Above1100°C, the flexural strength of the unfired refractories increased remarkablydue to the liquid phase sintering and in-situ formation of mullite whisker, which hadeffect of in situ self-healing/self strengthening and toughening. At1400°C, hightemperature flexural strength of the unfired refractories was up to48.83MPa. We foundthe relationship between flexural strength and temperature at150~800°C and800~1600°C.
     The above research results can provide theoretical basis and technical support todevelop high performance unfired SiC-Si3N4refractories with low cost and independentintellectual property rights. They also have important significance for promoting theresearch and development of a new generation of high performance refractory materials.
引文
Abdalla M O, Ludwick A, Mitchell T. Boron-modified phenolic resins for high performanceapplications. Polymer,2003,44(24):7353~7359
    Ahlen N, Johnsson M, Nygre M. Synthesis of TiNxC1-xwhiskers. Jounal of Materials Science,1999,18(13):1071~1074
    Alcala M D, Criado J M, Real C. Influence of the experimental conditions and the grinding of thestarting materials on the structure of silicon nitride synthesised by carbothermal reduction.Solid State Ionics,2001,141-142:657~661
    Allaire C. Electrolysis bath testing of refractories at Alcan. Journal of the Canadian Ceramic Society,1991,60(2):47~52
    Allaire C. Refractory lining for alumina electrolytic cells. Journal of the American Ceramic Society,1992,75(8):2308~2311
    Amadeh A, Heshmati-Manesh S, Labbe J C, et al. Wettability and corrosion of TiN, TiN-BN andTiN-AlN by liquid steel. Journal of the European Ceramic Society,2001,21:277~282
    Andersen F B, Stam M, Dorsam G, et al. Wear of silicon nitride bonded SiC bricks in aluminiumelectrolysis cell. Light Metals,2004:413~418
    Aneziris C G. Microstructure evaluation of MgO-C refractories with TiO2and Al additions. Journalof the European Ceramic Society,2007,27(1):73~78
    Aneziris C G. Microstructure evaluation of MgO-C refractories with TiO2and Al additions. Journalof the European Ceramic Society,2007,27:73~78
    Arik H, Saritas S, Gunduz M. Production of Si3N4by carbothermal reduction and nitridation ofsepiolite. Journal of Materials Science,1999,34:835~842
    Arik H. Synthesis of Si3N4by the carbo-thermal reduction and nitridation of diatomite. Journal ofthe European Ceramic Society,2003,23:2005~2014
    Berger L M, Gruner W, Langholf E, et al. On the mechanism of carbothermal reduction processes ofTiO2and ZrO2. International Journal of Refractory Metals&Hard Materials,1999,17:235~243
    Berger L M, Gruner W. Investigation of the effect a nitrogen-containing atmosphere on thecarbothermal reduction of titanium dioxide. International Journal of Refractory Metals andHard Materials,2002,20(3):235~251
    Cao X Z, Gao B L, Wang Z W. A new test method for evaluating Si3N4-SiC brick’s corrosionresistance to aluminum electrolyte and oxygen. Light Metals,2006:659~661
    Chase M W, Davies C A, Downey J R, et al. JANAF Thermochemical Tables Third Edition.Washington, D.C.: American Chemical Society and American Institute of Physics,1986
    Chen C Y, Lan G S, Tuan W H. Preparation of Mullite by the Reaction Sintering of Kaolinite andAlumina. Journal of the European Ceramic Society,2000,(20):2519~2525
    Cho Y W, Charles J A. Synthesis of nitrogen ceramic powders by carbothermal reduction andnitridation: Silicon Nitride. Materials Science&Technology,1991,7:289~298
    Demir A, Tatli Z, Caliskan F, et al. Carbothermal reduction and nitridation of quartz mineral for theproduction of alpha silicon nitride powders. Materials Science Forum,2007,554:163~168
    Duan R, Roebben G, Vleugels J, et al. Thermal stability of in situ formed Si3N4-Si2N2O-TiNcomposites. Journal of the European Ceramic Society,2002,22:2527~2535
    Ebadzadeh T, Marzban-Rad E. Microwave hybrid synthesis of silicon carbide nanopowders.Materials Characterization,2009,60(1):69~72
    Ekelund M, Forslund B, Zheng J. Control of particle size in Si3N4powders prepared byhigh-pressure carbothermal nitridation. Journal of Materials Science,1996,31:5749~5757
    Ekelund M, Forslund B. Carbothermal preparation of silicon nitride-influence of starting materialand synthesis parameters. Journal of the American Ceramic Society,1992a,75:532~539
    Ekelund M, Forslund B. Reactions within quartz-carbon mixtures in a nitrogen atmosphere. Journalof the European Ceramic Society,1992b,9:107~119
    Etzion R, Metson J B, Depree N. Wear mechanism study of silicon nitride bonded silicon carbiderefractory materials. Light Metals,2008:955~959
    Fayed M E, Otten L. Handbook of Powder Science and Technology. New York: Van NostrandReinhold Company,1984
    Gao B L, Wang Z W, Qiu Z X. Corrosion tests and electrical resistivity measurement of SiC-Si3N4refractory materials. Light Metals,2004:419~424
    Gao L, Li J G, Kusunose T, et al. Preparation and properties of TiN-Si3N4composites. Journal of theEuropean Ceramic Society,2004,24:381~386
    Gokce A S,Gurcan C. The effect of antioxidants on the oxidation behaviour of magnesia-carbonrefractory bricks. Ceramics International,2008,34:323~330
    Hendry A. Thermodynamics of silicon nitride and oxynitride. In: Riley F L, ed. Progress in NitrogenCeramics. Leyden, Netherlands: Noordhoff International Publishing,1977.183~185
    Hlrao K, Miyamoto Y, Koizumi M. Synthesis of silicon nitride by a combustion reaction under highnitrogen pressure. Journal of the American Ceramic Society,1986,69(4): C60~C61
    Huang J L, Lee M T, Lu H H, et al. Microstructure, fracture behavior and mechanical properties ofTiN/Si3N4composites. Mater Chem Phys,1996,45:203~210
    Janiga J, Sin K P, Figusch V. Synthesis reaction of silicon nitride powder by gas-phase. Journal ofthe European Ceramic Society,1991,8(3):153~160
    Johansson T. Process for the Production of Silicon Nitride. U.S. Patent, No.4530825, July23,1985
    Kaiser A, VaBen R, Stover D. Thermal shock behavior of Si3N4/SiC composites. Journal of theAmerican Ceramic Society,1996,16:715~719
    Kaynak C, Tasan C C. Effects of production parameters on the structure of resol type phenolicresin/layered silicate nanocomposites. European Polymer Journal,2006,(42):1908~1921
    Klemm H. Silicon nitride for high-temperature applications. Journal of the American CeramicSociety,2010,93(6):1501~1522
    Koc R, Kaza S. Synthesis of α-Si3N4from carbon coated silica by carbothermal reduction andnitridation. J. Eur. Ceram. Soc.,1998,18(10):1471~1476
    Kurt A O, Davies T J. Synthesis of Si3N4using sepiolite and various sources of carbon. Journal ofMaterials Science,2001,36:5895~5901
    Lange H, W tting G, Winter G. Silicon nitride-From powder synthesis to ceramic materials.Angewandte Chemie International Edition in English,1991,30(12):1579~1597
    Lichtenberger O. Formation of nanocrystalline titanium carbonitride by pyrolysis of poly(titanylcarbodiimide). Materials Chemistry and Physics,2003,81(1):195~201
    Licko T, Figusch V, Puchyova J. Carbothermal reduction and nitriding of TiO2. Journal of theEuropean Ceramic Society,1989,5:257~265
    Nishimura T, Xu X, Kimoto K, et al. Fabrication of silicon nitride nanoceramics-Powderpreparation and sintering: A review. Science and Technology of Advanced Materials,2007,8(7-8):635~643
    Okada K, Otuska N. Synthesis of Mullite Whisker and Their Appication in Composities. J AmCeram Soc,1991,74(10):2414~2418
    Ortega A, Alcala M D, Real C. Carbothermal synthesis of silicon nitride (Si3N4): kinetics anddiffusion mechanism. Journal of Materials Processing Technology,2008,195:224~231
    Pastor H. Titanium-carbonitride-based hard alloys for cutting tools. Materials Science andEngineering: A,1988,105–106:401~409
    Pawelec A, Strojek B, Weisbrod G, et al. Preparation of silicon nitride powder from silica andammonia. Ceramics International,2002,28:495~501
    Pawlek R P. SiC in electrolysis pots: An update. Light Metals,2006:655~658
    Pettersson P, Shen Z, Johnsson M, et al. Thermal shock properties of β-sialon ceramies. Journal ofthe European Ceramic Society,2002,22:1357~1365
    Rahman I A, Riley F L. The control of morphology in silicon nitride powder from rice husk. Journalof the European Ceramic Society,1989,5:11~22
    Reddy N K. Reaction-bonded silicon carbide refractories. Materials Chemistry and Physics,2002,76(1):78~81
    Reddy N K. Silicon nitride-silicon carbide refractories produced by reaction bonding. Journal of theAmerican Ceramic Society,1991,74(5):1139~1141
    Riley F L. Silicon nitride and related materials. Journal of the American Ceramic Society,2000,83(2):245~265
    Sakano Y, Takahashi H. Outlook for the refractories industry in Japan. American Ceramic SocietyBulletin,1988,67(7):1164~1168
    Sasan O, Mohammad A B, Fatollah M. The effect of deflocculants on the self-flow of ultralow-cement castable characteristic in Al2O3-SiC-C systems. Ceramics International,2005,31(5):647~653
    Schoennahl J, Jorge E, Temme P. Optimization of Si3N4bonded SiC refractories for aluminiumreductioncells. Light Metals,2001:251~256
    Sedat K, Emre Y, Sedat A. Effects of boron addition and intensive grinding on synthesis of anorthiteceramics. Ceramics International,2008,34:1629~1631
    Seifert H J. Thermodynamik und Phasengleichgewichte im System Ti-Si-C-N. Stuttgart, Germany:Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft,1993,238~239
    Skybakrmen E. Evaluation of chemical resistsnce/oxidation of Si3N4-SiC sidelining materials used inAl electrolysis cells. Proceedings of Unified International Technical Conference on Refractories.American Ceramic Society,2001
    Swift G A, Koc R. Formation studies of TiC from carbon coated TiO2. Journal of Materials Science,1999,34:3083~3093
    Taskiran M U, Demirkol N, Capoglu A. A new porcelainised stoneware material based on anorthite.Journal of the European Ceramic Society,2005,25:293~300
    Tian C Y, Jiang H, Liu N. Thermal shock behavior of Si3N4-TiN nano-composites. InternationalJournal of Refractory Metals and Hard Materials,2011,29:14~20
    Wang C M, Pan X Q, Rühle M. Silicon nitride crystal structure and observations of lattice defects.Journal of Materials Science,1996,31(20):5281~5298
    Wang J, Ishida R, Takarada T. Carbothermal reactions of quartz and kaolinite with coal char. Energy&Fuels,2000,14:1108~1114
    Wang Z H, Skybakmoen E, Gramde T. Chemical degradation of Si3N4-bonded SiC sideliningmaterials in aluminium electrolysis cell. Journal of the American Ceramic Society,2009,92(6):1296~1302
    Wang Z W, Hu X W, Luo X D. Anti-corrosion mechanism of SiC-Si3N4sidelining materials inaluminum electrolyte. Light Metals,2007:839~841
    Wei J, Li K Z, Li H J, et al. Growth and morphology of one-dimensional SiC nanostructures withoutcatalyst assistant. Materials Chemistry and Physics,2006,95:140~144
    Weimer A W, Eisman G A, Susnitzky D W, et al. Mechanism and kinetics of the carbothermalnitridation synthesis of α-silicon nitride, Journal of the American Ceramic Society,1997,80:2853~2863
    White G V, MacKenzie K J D, Brown I W M, et al. Carbothermal synthesis of titanium nitride-PartII: The reaction sequence. Journal of Materials Science,1992,27(16):4294~4299
    Wilhelm M, Komfeld M, Wruss W. Develpoment of SiC-Si composites with fine-grained SiCmicrostructures. Journal of the European Ceramic Society,1999,19:2155~2156
    Woo Y C, Kang H J, Kim D J. Formation of TiC particle during carbothermal reduction of TiO2.Journal of the European Ceramic Society,2007,27:719~722.
    Xiang D P, Liu Y, Gao S J, et al. Evolution of phase and microstructure during carbothermalreduction-nitridation synthesis of Ti(C,N). Materials Characterization,2008,59:241~244
    Xiang J H, Xie Z P, Huang Y, et al. Synthesis of Ti(C,N) ultrafine powders by carbothermalreduction of TiO2derived from sol-gel process. Journal of the European Ceramic Society,2000,20(7):933~938
    Yang Y, Lin Z M, Li J T. Synthesis of SiC by silicon and carbon combustion in air. Journal of theEuropean Ceramic Society,2009,29(1):175~180
    Yeh C L, Chen Y D. Direct formation of titanium carbonitrides by SHS in nitrogen. CeramicsInternational,2005,3(5):719~729
    Zhao J G, Zhang Z P, Wang W W, et al. The properties of Si3N4boned SiC materials for aluminiumelectrolysis cell. Light Metals,2000:443~447
    Zhong X C, Ye F B. Some aspects in the development of high performance refractories for iron andsteel making in China. Shinagawa Technical Report,2005,(48):1~10
    Zhong X C. Looking ahead–A new generation of high performance refractory ceramics. China’srefractories,2002,11(3):3~13
    陈朝华.钛白粉生产及应用技术.北京:化学工艺出版社,2006
    陈俊红.氮化硅铁组成、结构及其对Al2O3-SiC-C系材料高温性能的影响:[博士学位论文].北京:北京科技大学,2006
    陈林.有机蒙脱土改性酚醛树脂应用于含碳耐火材料的研究:[硕士学位论文].武汉:武汉科技大学,2005
    陈肇友.化学热力学与耐火材料.北京:冶金工业出版社,2005
    陈肇友.有色金属火法冶炼用耐火材料及其发展动向.耐火材料,2008,42(2):81~91
    董伟霞,包启富,顾幸勇,等.原位生长钙长石/莫来石复合材料的制备.电子元件与材料,2011,30(5):12~14
    董艳玲,王为民.陶瓷材料抗热震性的研究进展.现代技术陶瓷,2004,(1):37~41
    方民宪,陈厚生.碳热还原法制取Ti(C,N)的热力学原理.粉末冶金材料科学与工程,2006,11(6):329~336
    冯青平,谢续明.多壁碳纳米管改性热固性酚醛树脂的研究.玻璃钢/复合材料,2007,(3):25~27
    盖国胜.粉体工程.北京:清华大学出版社,2009
    高炳亮,王启权,邱竹贤,等.碳化硅耐火材料在铝电解槽中应用的可行性.轻金属,2001,(4):40~43
    高瑛,蒋明学,权艳. Sialon/SiC和Si3N4/SiC材料的性能及氧化研究.工业炉,2007,29(3):37~41
    高运明,李慈颖,李亚伟,等. TiO2碳热还原与高炉钛渣提取碳氮化钛分析.武汉科技大学学报(自然科学版),2007,30(1):5~9
    葛山,尹玉成. Si3N4结合SiC材料在铝电解槽中的损毁机理研究.轻金属,2008,(5):58~61
    郭有夫,涂军波,王志发,等. FeSi对Si3N4结合SiC材料烧结性能的影响.陶瓷,2008,(3):34~36
    郝小勇.氮化硅结合碳化硅材料反应烧结时杂相行为分析.陶瓷工程,1998,32(3):24~26
    洪彦若,孙加林,王玺堂,等.非氧化物复合耐火材料(第二版).北京:冶金工业出版社,2004
    华旭军,朱伯铨,李雪冬,等. TiC-C复合粉体的制备及其对低碳镁碳砖抗氧化性能的影响.武汉科技大学学报(自然科学版),2007,30(2):145~148
    黄朝晖. β-Sialon-Al2O3-SiC系复相材料的工业化制备、性能及显微结构的研究:[博士学位论文].北京:北京科技大学,2002
    黄发荣.酚醛树脂及其应用.北京:化学工业出版社,2004
    蒋阳,陶珍东.粉体工程.武汉:武汉理工大学出版社,2008
    乐红志,彭达岩,文洪杰.氮化物结合碳化硅耐火材料的研究现状.耐火材料,2004,38(6):435~438
    李慈颖,李亚伟,高运明,等.高钛渣提取碳氮化钛的研究.钢铁钒钛,2006,27(3):5~9
    李柳生,陈冬梅,邱杰.氧氮化硅结合窑具材料研究.耐火材料,1999,33(3):123~126
    李世斌,吕振林,高积强,等.碳化硅材料在电解质熔液中的侵蚀行为.中国有色金属学报,2003,12-13(6):1447~1450
    李喜坤,修稚萌,孙旭东,等.淀粉还原氢化钛制备Ti(C,N)纳米粉.东北大学学报(自然科学版),2003,24(3):272~275
    李晓明.特种不定形耐火材料及不烧耐火砖.北京:冶金工业出版社,1992
    李勇,薄钧,张建芳.反应烧结温度对Si3N4-SiC材料性能的影响.耐火材料,2009,43(3):175~178
    李友胜,童维军,李楠. Ti(C,N)对刚玉质浇注料性能的影响.耐火材料,2006,40(5):339~341
    李远兵,陈希来,金广湘,等.碳热还原氮化制备Ti(C,N)技术的现状与发展.耐火材料,2007,41(1):68~73
    李志坚,吴锋.防氧化剂TiN和Al对MgO-C材料性能的影响.耐火材料,2006,40(5):329~331
    梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993
    刘德启.利用木质素-二氧化硅溶胶凝胶合成纳来Si3N4的研究.材料导报,2000,14(11):57~58
    刘铭,肖俊明,林锋.提高Si3N4结合SiC制品抗热震性的研究.耐火材料,1996,30(2):74~76
    马鸿文.工业矿物与岩石(第二版).北京:化学工业出版社,2005
    邱竹贤.铝电解.北京:冶金工业出版社,1995
    任耘.窑具材料显微结构与热震稳定性相关性研究.中国陶瓷,2001,37:20~22
    司全京,张效峰.莫来石结合碳化硅制品的研制.耐火材料,1999,33(2):90~92
    宋春军,徐光亮.碳化硅纳米粉体的合成、分散与烧结工艺技术研究进展.材料科学与工艺,2009,17(2):168~173
    宋希文,安胜利.耐火材料概论.北京:化学工业出版社,2009.188~189
    孙淑平,王学琳. WS-F酚醛树脂胶粘剂的合成.化学与粘合,1996,20(3):141~145
    覃显鹏,李远兵,李亚伟,等.碳氮化钛对低碳镁碳砖性能的影响.耐火材料,2007,41(3):208~212
    覃显鹏,李远兵.碳氮化钛的加入量对低碳镁碳材料性能的影响.武汉科技大学学报:自然科学版,2008,31(2):189~191
    王诚训. MgO-C质耐火材料.北京:冶金工业出版社,1995
    王继刚,郭全贵,刘朗,等.陶瓷改性酚醛树脂粘结剂的耐高温性能.机械工程材料,2005,29(2):24~26
    王捷.电解铝生产工艺与设备.北京:冶金工业出版社,2006
    王铁铮,辛明,傅莉莉,等.中国耐火材料生产与进出口六十年情况简要回顾.耐火材料,2009,43(3):161~163
    王文平.改善耐火材料热震稳定性的方法.耐火材料,1998,32(2):103~104
    王振峰,马智明,杨天均.含TiO2高炉渣对Sialon结合SiC材料的侵蚀行为.耐火材料,2000,34(5):262~264
    吴宏鹏,王林俊,孙加林,等.逆反应烧结制备铝电解槽用氮化硅-碳化硅复合材料.硅酸盐学报,2004,32(12):1524~1529
    吴淑琴.碳化硅窑具的生产与使用.耐火材料,1997,31(3):173~176
    肖亚庆.中国铝工业技术发展.北京:冶金工业出版社,2007
    徐娜,李志坚,吴锋,等. TiN提高镁碳砖抗渣侵蚀机理的研究.硅酸盐通报,2008,27(5):1044~1047
    许晓梅,冯改山,编著.耐火材料技术手册.北京:冶金工业出版社,2000
    杨学军,丘哲明,胡良全.纳米炭黑对酚醛树脂力学性能的影响.宇航材料工艺,2003,33(4):34~38
    杨中正.无机胶凝材料.郑州:郑州大学出版社,2008
    叶大伦.实用无机物热力学数据手册第二版.北京:冶金工业出版社,2001
    于仁红. TiO2碳热还原氮化法制备TiN粉末及TiN-A12O3复合材料研究:[博士学位论文].西安:西安建筑科技大学,2005
    余先纯,孙德林.胶粘剂基础.北京:化学工业出版社,2010
    袁润章.胶凝材料学(第二版).武汉:武汉理工大学出版社,1996
    曾令可,任云谭,贺海洋.影响窑具使用寿命的因素及提高窑具抗热震性途径.陶瓷,2001,149(1):26~30
    张碧芳,王光华.碳质耐火材料粘结剂的研究.粘接,1988,(4):8~12
    张德,阮丽梅.用天然石英合成氮化硅的研究.非金属矿,2001,24(S1):35~36
    张丽鹏,于先进,李玉怀,等.氮化硅结合碳化硅材料的制备及在冰晶石融盐中的腐蚀行为研究.硅酸盐通报,2006,25(5):176~179
    张双庆.耐火材料用酚醛树脂结合剂的改性研究:[硕士学位论文].武汉:武汉科技大学,2004
    张思青,张长瑞,王圣威,等. Si3N4基复合相陶瓷材料的制备及力学性能.材料导报,2006,20:459-462.
    张巍.不定形耐火材料之可塑料的研究进展.硅酸盐通报,2012,31(2):316~320
    张雪松,程瑛,水恒福.镁碳材料用中间相沥青-酚醛树脂结合剂的研制.耐火材料,2007,41(4):271~273
    张勇,彭达岩,文洪杰.氮化硅铁结合SiC复合材料的氧化行为.耐火材料,2005,39(2):94~97
    张治平,黄辉煌,黄朝晖,等.特种窑具材料的研究.中国陶瓷工业,1996,(2):12~17
    张治平,黄辉煌,黄朝晖. Si3N4/SiAlON结合碳化硅窑具材料的研究.中国第二届国际耐火材料学术会议论文集,1992:297~299
    钟香崇,钟焰,叶方保.新型高效耐火材料研究.郑州:河南科学技术出版社,2007
    钟香崇.氧化物-非氧化物复合材料研究开发进展.耐火材料,2008,42(1):1~4
    周丽红,王战民.碳化硅质窑具材料的结合方式及发展.耐火材料,1999,33(4):234~236
    周乃君,姜昌伟,梅炽.导流型铝电解槽技术进展与应用基础研究.轻金属,2000,9:29~31
    周英华. MgO-C砖中金属添加剂的研究.本钢技术,2005,4:26~27
    周元康,王满力,王兆滨,等.纳米SiO2/桐油/硼酚醛树脂杂化材料研究.非金属矿,2005,28(5):56~57
    周重光,李桂芝,巩爱军.有机硅改性酚醛树脂热稳定性的研究.高分子材料科学与工程,2000,16(1):164~166
    朱华,姬翠翠.分形理论及其应用.北京:科学出版社,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700