用户名: 密码: 验证码:
微纳米蛇纹石粉体的摩擦行为及其成膜机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛇纹石作为减摩抗磨材料是当前的研究热点,有关它在不同润滑介质中减摩抗磨性能的评价取得了不少实验数据,对其用作减摩抗磨添加剂的作用机理也提出了不同的见解,但目前的研究还很不深入,提出的见解与认识也缺乏足够的实验依据和证据。基于此,该论文系统开展了蛇纹石在不同润滑介质中的摩擦实验,并采用多种先进表征手段研究了摩擦副的表面成分、结构,进而分析了蛇纹石与摩擦副的作用过程及其成膜机理,试图为这类硅酸盐矿物作为减摩抗磨材料的工业应用提供实验依据与理论基础。
     本文结合前人的研究成果,针对其中存在的部分问题,展开一系列更深入的实验研究。首先,通过高频率销-盘摩擦试验机考察了微纳米蛇纹石粉体、表面改性蛇纹石粉体以及蛇纹石与稀土镧化合物的复合粉体在不同润滑介质和不同实验条件下的减摩抗磨性能,验证了其优良的摩擦学性能。在此基础上,本文通过不同的表面分析方法,着重研究和分析了摩擦副表面摩擦膜的形成过程及物理化学性质。
     通过扫描电子显微镜(SEM)表征了摩擦表面膜的微观形貌:蛇纹石的加入在摩擦副表面形成了一层非均匀覆盖的非晶态的摩擦表面膜,表面膜本身以及表面膜与表面膜之间的空隙填充着残留的颗粒状蛇纹石粉体。
     通过X射线能谱分析(EDX)呈现了摩擦表面膜中不同元素的存在及分布情况:在蛇纹石/ZDDP/基础油体系中,摩擦表面膜中主要元素为P、S、O、Zn、Mg和Si;在蛇纹石/合成润滑油体系中,摩擦表面膜的主要组成元素为P、S、O、Zn、Ca、Mg和Si。不同体系中不同的元素具有不同的分布区域,形成了不同成分的摩擦表面膜。
     利用原子力显微镜(AFM)测量了摩擦表面膜的粗糙度以及二维和三维的表面膜微观结构:总体来说蛇纹石的加入,填补了摩擦表面的凹坑,在摩擦副表面形成的摩擦表面膜降低了摩擦表面的粗糙度。使用聚焦离子束(FIB)获得了摩擦表面的横截面,测量和表征了摩擦膜的厚度:在不同摩擦体系中摩擦膜的厚度不同,但是通过整体对比发现,加入蛇纹石的摩擦副表面膜的厚度可以从几十纳米到400纳米左右。
     通过测试摩擦表面膜中各元素的X射线吸收近边结构谱(XANES),比较并分析了摩擦膜中化合物的可能存在形式。结果表明,在摩擦过程中,蛇纹石粉体作为润滑油添加剂,在摩擦副之间的相互作用以及摩擦副表面部分接触点的瞬间高温作用下发生了相变,在摩擦副表面经过沉积和烧结作用形成了由蛇纹石、镁橄榄石、顽辉石以及SiO2组成的多成分摩擦表面膜。
Serpentine itself used as anti-friction and anti-wear materials is a hot topic in current research.A number of experimental data about its tribological properties from different lubricatingmedium has been obtained. There are some hypotheses about the mechanism of serpentineused as anti-friction and anti-wear additive, but the current studies are still lack of adequateexperimental basis and evidence. So, in order to provide the experimental and theoreticalbasis for the industrial application of serpentine as anti-friction and anti-wear materials, thispaper systematically carried out the friction experiments of serpentine in different lubricatingmedium, studied the composition, structure of the friction pair surface by a variety ofadvanced characterization methods, analyzed the interaction process of serpentine withfriction pair and the mechanism of film formation.
     In this paper, based on the previous research results, we did more study. Firstly, thetribological performance of micro-nano serpentine, surface modified serpentine, serpentine/Lacompounds as additive for base oil was investigated by a Plint high frequency friction tester atdifferent conditions. It is proved that serpentine has good tribological properties. Secondly,through different surface analysis method, we study and analyze the film formation processand the chemical and physical properties of the friction pair surface.
     The micro-structure of tribofilm was characterized by scanning electron microscopy, andthe results showed that, the addition of serpentine results in the formation of a non-uniformtribofilms on the friction pair surface. The serpentine particles exist in and between thetribofilms.
     The element distribution of the tribofilms was detected by energy dispersive X-rayspectroscopy, and the results showed that, in the system of serpentine/ZDDP/base oil, theelements in the tribofilm are P, S, O, Zn, Mg and Si. In the system of serpentine/fullformulated lubricating oil, the tribofilm consists of P, S, O, Zn, Ca, Mg and Si. Differentsystems have different elements distribution in different area of the tribofilm.
     The micro morphology of tribofilm was characterized by atomic force microscopy, andthe results showed that, the addition of serpentine reduced the roughness of the tribofilm. The cross section of the wear surface was got by focus ion beam, and it indicated that thethickness of the tribofilms is from about several dozen nanometers to about400nm.
     The XANES results showed that, the tribofilm formed by oil containing serpentinecontains serpentine, forsterite, SiO2and enstatite.
引文
Aktary M., McDermott M.T., Torkelson J. Morphological evolution of films formed fromthermooxidative decomposition of ZDDP. Wear,2001,247(2):172-179
    Bai Z.M., Wang Z.Y., Zhang T.G. et al. Characterization and friction performances ofCo-Al-layered double-metal hydroxides synthesized in the presence of dodecylsulfate.Applied Clay Science,2013,75-76:22-27
    Bai Z.M., Wang Z.Y., Zhang T.G. et al. Synthesis and characterization of Co–Al–CO3layereddouble-metal hydroxides and assessment of their friction performances. Applied Clay Science,2012,59-60:36–41
    Bancroft G.M. The Canadian Light Source History and Scientific Prospects. Canadian Journal ofChemistry,2004,82(6):1028-1042
    Battez A.H., Gonzalez, R., Viesca J.L. et al. CuO, ZrO2and ZnO nanoparticles as antiwearadditive in oil lubricants. Wear,2008,265(3-4):422-428
    Battez A.H., Rico J.E.F., Arias A.N. et al. The tribological behaviour of ZnO nanoparticles as anadditive to PAO6. Wear,2006,261(3-4):256-263
    Battez A.H., Viesca J.L., Gonzalez R. et al. Friction reduction properties of a CuO nanolubricantused as lubricant for a NiCrBSi coating. Wear,2010,268(1-2):325-328
    Bianconi A. Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES.Applications of Surface Science,1980,6(3-4):392–418
    Bokarev D.A., Bakunin V.N., Kuz’mina G.N. et al. Highly effective friction modifiers fromnano-sized materials. Chemistry and Technology of Fuels and Oils,2007,43(4):305–310
    Bunker G., Introduction to XAFS. A practical guide to X-ray absorption fine structurespectroscopy. Cambridge University Press:2010
    Canning G.W. Soft X-ray Spectroscopic Studies of Surface Films from Oil Additives:[Master ofScience]. London: The University of Western Ontario,1998
    Chen C.S., Chen X.H., Xu L.S., et al. Modification of multi-walled carbon nanotubes with fattyacid and their tribological properties as lubricant additive. Carbon,2005,43:1660–1666
    Chen S., Liu W., Yu L. Study on the structure of PbS nanoparticles coated withdialkyldithiophosphate. Journal of Materials Research,1999,14:2147-2151
    Dong J.X., Hu Z.S. A study of the anti-wear and friction-reducing properties of the lubricantadditive, nanometer zinc borate. Tribology International,1998,31(5):219-223
    Fuller M., Yin Z. F., Kasrai M. et al. Chemical characterization of tribochemical and thermalfilms generated from neutral and basic ZDDPs using X-ray absorption spectroscopy.Tribology International,1997,30(4):305-315
    Gao Y.J., Chen G.X., Oli Y. et al. Study on tribological properties of oleic acid-modified TiO2nanoparticle in water. Wear,2002,252(5-6):454-458
    Hu K.H., Hu X.G., Xu Y.F. et al. The Effect of Morphology on the Tribological Properties ofMoS2in Liquid Paraffin. Tribology Letters,2010,40(1):155-165
    Hu Y.F., Coulthard I., Chevrier D. et al. Preliminary Commissioning and Performance of the SoftX-ray Micro-characterization Beamline at the Canadian Light Source. Sri2009: The10thInternational Conference on Synchrotron Radiation Instrumentation,2009,1234:343-346
    Hu Y.F., Zuin L., Wright G. et al. Commissioning and performance of the variable line spacingplane grating monochromator beamline at the Canadian Light Source. Review of ScientificInstruments,2007,78(8):1-5
    Hu Z.S., Dong J. X. Study on antiwear and reducing friction additive of nanometer titanium oxide.Wear,1998,216(1):92-96
    Hu Z.S., Lai R., Lou F. et al. Preparation and tribological properties of nanometer magnesiumborate as lubricating oil additive. Wear,2002,252(5-6):370-374
    Huang H.D., Tu J.P., Gan L.P. et al. An investigation on tribological properties of graphitenanosheets as oil additive. Wear,2006,261:140–144
    Hutchings I.M. Tribology: Friction and Wear of Engineering Materials. Boca Raton, Florida:CRC Press,1992
    Ingole S., Charanpahari A., Kakade A. et al. Tribological behavior of nano TiO2as an additive inbase oil. Wear,2013,301:776-785
    Jin Y., Li S., Zhang Z. et al. In situ mechanochemical reconditioning of worn ferrous surfaces.Tribology International,2004,37(7):561–567
    Kalina M., Kogovˇseka J., Remˇskarb M. Mechanisms and improvements in the friction and wearbehavior using MoS2nanotubes as potential oil additives. Wear,2012,280-281:36–45
    Kasrai M., Lennard W., N.Brunner, R.W. et al. Sampling depth of total electron and fluorescencemeasurements in Si L-and K-edge absorption spectroscopy. Applied Surface Science,1996,99(4):303-312
    Kasrai M., Yin Z., Bancroft G.M. et al. X-Ray-Fluorescence Measurements of X-Ray Absorptionnear-Edge Structure at the Si, P, and S L-Edges. Journal of Vacuum Science&Technology a,1993,11(5):2694-2699
    Kogov ek J., Rem kar M., Mrzel A. et al. Influence of surface roughness and running-in on thelubrication of steel surfaces with oil containing MoS2nanotubes in all lubrication regimes.Tribology International,2013,61:40-47
    Kolodziejczyk L., Mart′nez D., Rojas T.C., et al. Surface-modified Pd nanoparticles as a superioradditive for lubrication. Journal of Nanoparticle Research,2007,9:639–645
    Kong L.T., Hu H., Wang T.Y. et al. Synthesis and surface modification of the nanoscale ceriumborate as lubricant additive. Journal of Rare Earths,2011,29(11):1095-1099
    Lee J., Cho S., Hwang Y. et al. Enhancement of Lubrication Properties of Nano-oil by Controllingthe Amount of Fullerene Nanoparticle Additives. Tribology Letters,2007,28:203–208
    Li X.H., Cao Z., Zhang Z.J. et al. Surface-modification in situ of nano-SiO2and its structure andtribological properties. Applied Surface Science,2006,252(22):7856-7861
    Li Y.R., Pereira G., Kasrai M. et al. Studies on ZDDP anti-wear films formed under differentconditions by XANES spectroscopy, atomic force microscopy and31P NMR. TribologyLetters,2007,28(3):319–328
    Li Y.R., Pereira G., Kasrai M. et al. The effect of steel hardness on the performance of ZDDPantiwear films: a multi-technique approach. Tribology Letters,2008,29(3):201–211
    Li Y.R., Pereira G., Lachenwitzer A. et al. Studies on ZDDP thermal film formation by XANESspectroscopy, atomic force microscopy, FIB/SEM and31P NMR. Tribology Letters,2007,29(1):11–22
    Li Y.R., Pereira G., Lachenwitzer A. et al. X-ray absorption spectroscopy and morphology studyon antiwear films derived from ZDDP under different sliding frequencies. Tribology Letters,2007,27(3):245–253
    Liu G., Li X., Qin B. et al. Investigation of the mending effect and mechanism of coppernano-particles on a tribologically stressed surface. Tribology Letters,2004,17(4):961-966
    Liu L. X-ray absorption fine structure and X-ray excited optical luminescence studies ofone-dimensional nanomaterials.[Doctoral thesis], London, Ontario, Canada, The Universityof Western Ontario,2012
    Liu Q., Xu Y., Shi P. J. et al.Analysis of self-repair films on friction surface lubricated withnano-Cu additive.Journal of Central South University of Technology,2005(10):186-189
    Liu W., Chen S. An investigation of the tribological behaviour of surface-modified ZnSnanoparticles in liquid paraffin. Wear,2000,238:120-124
    Ma J., Mo Y., Bai M., et al. Effect of Ag nanoparticles additive on the tribological behavior ofmultialkylated cyclopentanes (MACs). Wear,2009,266:627–631
    Ma S.Y., Zheng S.H., Cao, D.X. et al. Anti-wear and friction performance of ZrO2nanoparticlesas lubricant additive. Particuology,2010,8(5):468-472
    Mang T., Dresel W. Lubricants and lubrication. Mannheim, Germany: Wiley-VCH,2001
    Margaritondo G., Introduction to Synchrotron Radiation. Oxford University Press Inc., New York,1988
    Martin J.M. Antiwear mechanisms of zinc dithiophosphate: a chemical hardness approach.Tribology Letters,1999,6(1):1-8
    Martin J.M., Onodera T.B., Bouchet M.I. et al. Anti-wear Chemistry of ZDDP and CalciumBorate Nano-additive. Coupling Experiments, Chemical Hardness Predictions, and MDCalculations. Tribology Letters,2013,50(1):95-104
    Mourhatch R., Aswath P.B. Tribological behavior and nature of tribofilms generated fromfluorinated ZDDP in comparison to ZDDP under extreme pressure conditions—Part II:morphology and nanoscale properties of tribofilms. Tribology International,2011,44(3):201–210
    Nicholls M.A., Do T., Norton P.R. et al. Chemical and mechanical properties of ZDDP antiwearfilms on steel and thermal spray coatings studied by XANES spectroscopy and nanoindentation techniques. Tribology Letters,2003,15(3):241–248
    Nicholls M.A., Do T., Norton P.R. et al. Review of the lubrication of metallic surfaces by zincdialkyl-dithiophosphates. Tribology International,2005,38(1):15–39
    Nicholls M.A., Norton P.R., Bancroft G.M. et al. Nanometer scale chemomechanicalcharacterization of antiwear films. Tribology Letters,2004,17(2):205–216
    Padgurskas J., Rukuiza R., Prosycˇevas I. et al. Tribological properties of lubricant additives ofFe, Cu and Co nanoparticles. Tribology International,2013,60:224–232
    Pauli M.D., Rufael T.S., Mowlem J.K. et al. X-ray absorption near-edge structure analysis of thechemical environment of zinc in the tribological film formed by zinc dialkyl dithiophosphatedecomposition on steel. Tribology International,2005,38(2):195–204
    Peng D.X., Kang Y.H., Wang R.M. et al. Tribological properties of diamond and SiO2nanoparticles added in paraffin. Tribology International,2009,42(6):911-917
    Pereira G. Nanoscale Characterization of Antiwear Films Relevant to Automobile Lubrication:[Doctoral Thesis]. London: The university of Western Ontario,2006
    Pereira G., Lachenwitzer A., Munoz-Paniagua D. et al. The role of the cation in antiwear filmsformed from ZDDP on52100steel. Tribology Letters,2006,23(2):109-119
    Pereira G., Lachenwitzer A., Kasrai, M. et al. Chemical and mechanical analysis of tribofilmsfrom fully formulated oils part1, films on52100steel. Tribology Materials SurfaceInterfaces,2007,1(1):48–61
    Qi X., Jia Z., Yang Y. et al. Characterization and auto-restoration mechanism of nanoscaleserpentine powder as lubricating oil additive under high temperature. Tribology International,2011,44(7–8):805–810
    Qi X., Lu L., Jia Z., et al. Comparative tribological properties of magnesium hexasilicate andserpentine powder as lubricating oil additives under High temperature. TribologyInternational,2012,49:53-57
    Qiu S.Q., Zhou Z.R., Dong J.X. et al. Preparation of Ni Nanoparticles and Evaluation of TheirTribological Performance as Potential Additives in Oils. Journal of Tribology,2001,123:441-443
    Rapoport L., Leshchinsky V., Lapsker I. et al. Tribological properties of WS2nanoparticles undermixed lubrication. Wear,2003,255:785-793
    Regier, T. Krochak, J. Sham, T. K. et al. Performance and capabilities of the Canadian Dragon:The SGM beamline at the Canadian Light Source. Nuclear Instruments&Methods in PhysicsResearch Section a.,2007,582(1):93-95
    Rosentsveig R., Gorodnev A., Feuerstein N., et al. Fullerene-like MoS2nanoparticles and theirtribological behavior. Tribology Letters,2009,36:175–82
    Rudenko P., Bandyopadhyay A. et al. Talc as friction reducing additive to lubricating oil. AppliedSurface Science,2013,276:383-389
    Spikes H. The history and mechanisms of ZDDP. Tribology Letters,2004,17(3):469–489
    St hr J. NEXAFS Spectroscopy, Vol.25in Springer Series in Surface Science. Springer, Berlin,Heidelberg,1992
    Sun L., Zhang Z.J., Wu Z.S., et al. Synthesis and characterization of DDP coated Ag nanoparticles.Materials Science and Engineering A,2004,379:378–383
    Tarasov S., Kolubaev A., Belyaev S. et al. Study of friction reduction by nanocopper additives tomotor oil. Wear,2002,252:63–69
    Tung S.C., McMillan M.L., Becker E.P. et al. Automotive Engine Oil. in: Totten G.E. eds.Handbook of Lubrication and Tribology, Boca Raton: CRC Press,2006
    Walker T. Introduction to synchrotron radiation; Canadian Light Source.
    Wan Y., Kasrai M., Bancroft G.M. et al. Characterization of tribofilms derived from zinc dialkyldithiophosphate and salicylate detergents by X-ray absorbance near edge structurespectroscopy. Tribology International,2010,43(1–2):283–288
    Wang F. Research on microstructure of the auto-restoration layer of worn surface of metals.Materials Science and Engineering: A,2005,399(1-2):271-275
    Wang X.B., Bai Z.M., Zhao D. et al. Friction behavior of Mg–Al–CO3layered double hydroxideprepared by magnesite. Applied Surface Science,2013,277:134-138
    Wang X., Wang M., Song H., et al. A simple sol-gel technique for preparing lanthanum oxidenanopowders. Materials Letters,2006,60(17-18):2261-2265
    Yamaguchi E.S., Zhang Z., Kasrai M. et al. Study of the interaction of ZDDP and dispersantsusing X-ray absorption near edge structure spectroscopy-Part2: Tribochemical reactions.Tribology Letters,2003,15(4):385-394
    Yin Z.F., Kasrai M., Bancroft G.M. et al. Chemical characterization of antiwear films generatedon steel by zinc dialkyl dithiophosphate using X-ray absorption spectroscopy. TribologyInternational,199326(6):383–388
    Yin Z.F., Kasrai M., Bancroft G.M. et al. X-ray absorption spectroscopic studies of sodiumpolyphosphate glasses. Physical Review B.1995,51(2):742–50
    Yu H.L., Xu Y., Shi P.J. et al. Microstructure, mechanical properties and tribological behavior oftribofilm generated from natural serpentine mineral powders as lubricant additive. Wear,2013,297(1-2):802-810
    Yu H.L., Xu Y., Shi P.J. et al. Tribological behaviors of surface-coated serpentine ultrafinepowders as lubricant additive. Tribology International,2010,43(3):667-675
    Zhang B., Xu Y., Gao F. et al. Sliding friction and wear behaviors of surface-coated naturalserpentine mineral powders as lubricant additive. Applied Surface Science.2011,257(7):2540-2549
    Zhang Z.F., Liu W.M., Xue Q.J. Study on lubricating mechanisms of La(OH)3nanoclustermodified by compound containing nitrogen in liquid paraffin. Wear,1998,218(2):139-144
    Zhang Z.F., Liu, W.M., Xue Q.J. Tribological properties and lubricating mechanisms of the rareearth complex as a grease additive. Wear,1996,194(1-2):80-85
    Zhang Z.F., Su C.Y., Liu W.M. et al. Study on tribological properties of the complex of rare earthdialkyldithiocarbamate and phenanthroline in lubricating grease. Wear,1996,192(1-2):6-10
    Zhang Z.F., Yu L.G., Liu W.M. et al. The effect of LaF3nanocluster modified with succinimide onthe lubricating performance of liquid paraffin for steel-on-steel system. TribologyInternational,2001,34(2):83-88
    Zhang, L.L., Tu, J.P., Wu, H.M. et al. WS2nanorods prepared by self-transformation process andtheir tribological properties as additive in base oil. Materials Science and Engineering A,2007,454:487-491
    Zhao D., Bai Z.M., Zhao F.Y. Preparation of Mg/Al-LDHs intercalated with dodecanoic acid andinvestigation of its antiwear ability. Materials Research Bulletin,2012,47(11):3670-3675
    Zhao F.Y., Kasrai M., Sham T.K. et al. Characterization of tribofilms derived from zinc dialkyldithiophosphate and serpentine by X-ray absorption spectroscopy. Tribology International,2014,73:167-176
    Zhao F.Y., Kasrai M., Sham T.K. et al. Characterization of Tribofilms Generated from Serpentineand Commercial Oil Using X-ray Absorption Spectroscopy. Tribology Letters,2013,50:287-297
    Zhao Y., Zhang Z., Dang H., Fabrication and tribological properties of Pb nanoparticles. Journalof Nanoparticle Research,2004,6:47–51.
    Zhao Y.B., Zhang Z.J., Dang H.X. et al. A simple way to prepare bismuth nanoparticles. MaterialsLetters,2004,58:790-793
    Zhou J., Wu Z., Zhang Z. et al. Study on an antiwear and extreme pressure additive of surfacecoated LaF3nanoparticles in liquid Paraffin. Wear,2001,249(5-6):333-337
    Zhou J.F., Wu Z.S., Zhang Z.J. et al. Tribological behavior and lubricating mechanism of Cunanoparticles in oil. Tribology Letters,2000,8:213–218
    Zhou J.F., Yang J.J., Zhang Z.J. et al. Study on the structure and tribological properties ofsurface-modified Cu nanoparticles. Materials Research Bulletin,1999,34(9):1361-1367
    陈文刚,高玉周,张会臣.蛇纹石粉体作为自修复添加剂的抗磨损机理.摩擦学学报.2008,28(5):63-68
    陈文刚.矿石粉体作为自修复添加剂的摩擦学作用机理研究:[博士论文].大连:大连海事大学,2008
    党鸿辛,赵彦保,张治军.铋纳米微粒添加剂的摩擦学性能研究.摩擦学学报,2004,24(2):185-187
    付帆,白志民,杨娜,等.Cu-Mg-Al类水滑石的插层改性及摩擦性能.硅酸盐学报.2012,40(1):165-169
    傅瀛.蛇纹石-镧/硼复合粉体制备工艺及摩擦性能评价:[硕士论文].北京:中国地质大学(北京),2010
    高玉周,张会臣,王亮.自修复材料在钢球磨损表面成膜的机理分析.大连海事大学学报,2005,31(3):62-65
    葛世荣译.摩擦学导论.北京:机械工业出版社,2006. Bhushan B. Introduction to Tribology.New York: John Wiley&Sons,2002
    何强,刘宏昭,叶军.纳米铜作为N32润滑油添加剂的摩擦学性能研究.摩擦学学报,2010,30(2):145-149
    黄海栋,涂江平,干路平,等.片状纳米石墨的制备及其作为润滑油添加剂的摩擦磨损性能.摩擦学学报,2005,25(4):312-316
    李春风,罗新民,候滨.膨胀石墨的表面改性及作为润滑油添加剂的摩擦学性能.润滑与密封,2007,32(07):111-113
    李桂金,白志民,傅瀛,等.柠檬酸溶胶-凝胶法合成NiFe2O4纳米粉体及其电磁性能表征.功能材料,2010,41(8):1313-1316
    李桂金,白志民,黄卫俊,等.蛇纹石粉体表面改性研究.硅酸盐通报,2008,27(6):1091-1095
    李桂金,白志民,金玥,等.自蔓延燃烧法合成NiFe2O4纳米粉体的机理研究.无机材料学报,2010,25(4):396-400
    李品.蛇纹石微粉的水热合成及摩擦性能研究:[硕士论文].北京:中国地质大学(北京),2007
    梁先庆.碳纳米材料的X射线吸收:[博士论文],2010,中国科学技术大学
    林锦山.石墨作为润滑油添加剂研究进展.化学工程与装备,2010,6:139-141
    刘光华.稀土材料与应用技术.化学工业出版社,2005
    刘晴,常秋英,杜永平,等.羟基硅酸盐作为自修复润滑添加剂的研究进展.硅酸盐通报,2011,30(4):840-844
    马鸿文.工业矿物与岩石.北京:地质出版社,2005
    马礼敦,杨福家.同步辐射应用概论.上海:复旦大学出版社,2001
    蒙留记,卢小虎,贾中刚.润滑油温度对发动机的影响.润滑与密封,2003,(1):84-85
    莫易敏,邹岚,马先贵,等.磨损自补偿理论设想.中国机械工程,1998(2):12-14
    沈宗泽.含蛇纹石自修复剂的减摩抗磨性能研究:[硕士论文].北京:北京交通大学,2012
    孙昂,严立,朱新河,等.纳米级金属粉改善润滑油摩擦学性能.大连海事大学学报,2003,29(1):99-101
    王九,陈波水,侯滨,等.润滑油中CuS纳米粒子的摩擦学性能研究.润滑与密封,2001,2:42-43
    王利民,许一,高飞,等.凹凸棒石纳米纤维用作润滑油添加剂的摩擦学性能.粉末冶金材料科学与工程,2012,15(5):657-663
    王利民,许一,高飞,等.凹凸棒石黏土作为润滑油添加剂的摩擦学性能.中国表面工程.2012,25(3):92-97
    王其武,刘文汉.X射线吸收精细结构及其应用.北京:学出版社,1994
    王晓丽,徐滨士,许一,等.纳米铜润滑油添加剂的摩擦磨损特性及其机理研究.摩擦学学报,2007,27(3):235-240
    夏延秋,丁津源,马先贵,等.纳米级金属粉改善润滑油的摩擦磨损性能试验研究.润滑油,1998,13(6):37-40
    徐滨士.纳米表面工程.北京:化学工业出版社,2004
    徐建生,钟康年,常跃,等.纳米润滑剂的制备及特性研究.润滑与密封,2002,4:14-16.
    许一,徐滨士,史佩京,等.微纳米减摩自修复技术的研究进展及关键问题.中国表面工程,2009,22(2):7-14
    于鹤龙,许一,史佩京.蛇纹石热处理产物作为润滑油添加剂的摩擦学性能.摩擦学学报,2011,31(5):504-509
    于伟,傅洵.含纳米银有机流体的制备及其摩擦学性能研究.摩擦学学报,2004,24(5):425-428
    张博,许一,李晓英,等.纳米凹凸棒石对磨损表面的摩擦改性.粉末冶金材料科学与工程.2012,17(4):514-521
    张保森,徐滨士,许一,等.蛇纹石微粉对球墨铸铁摩擦副的减摩抗磨作用机理.硅酸盐学报,2009,37(12):2037-2042
    张保森,徐滨士,许一.蛇纹石微粉对类轴–轴瓦摩擦副的自修复效应及作用机理.粉末冶金材料科学与工程,2013,18(3):346-352
    张博,徐滨士,许一,等.润滑剂中微纳米润滑材料的研究现状.摩擦学学报,2011,31(2):194-204
    张博,徐滨士,许一,等.微纳米层状硅酸盐矿物润滑材料的摩擦学性能研究.中国表面工程,2009,22(1):29-36
    张雷.纳米稀土镧化合物的制备及其摩擦学性能的研究.广东工业大学工学:[硕士学位].广州:2008
    张瑞军,李生华,金元生.润滑油摩擦碳化产物的FT-IR及Raman评价.清华大学学报(自然科学版),2003,43(5):648-650
    赵福燕,白志民,赵栋,等.蛇纹石/La复合粉体的制备及其摩擦性能.硅酸盐学报,2012,40(1):126-130
    郑旭升.新型功能纳米材料制备及X射线吸收谱学研究:[博士论文].合肥:中国科学技术大学,2013
    钟华仁.钢的稀土化学热处理.国防工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700