用户名: 密码: 验证码:
利用矿物改良土地整理新增耕地贫瘠土壤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地整理对土地资源的可持续利用乃至国民经济持续健康发展具有极为重要的现实意义。近年来,一方面我国通过大规模土地整理新增了相当数量的耕地,但这些新增耕地主要来源于未曾利用过的土地,其土壤结构较差,综合肥力水平较低,属贫瘠土壤。另一方面,因社会发展,不可避免地会产生固体废物,固体废物不但占用大量宝贵的土地资源,而且对自然环境造成严重污染,本文研究粉煤灰、磷石膏、污泥表明:这些固体废物不仅具有土壤所需养分,而且其特殊的理化性能,还具有改善土壤结构的显著作用。针对以上特点,本文采用多种现代分析测试技术,对研究区贫瘠土壤及富含矿物和矿物组合的粉煤灰、磷石膏、污泥的物质组分及微观结构特征进行了分析研究;从多学科的研究视角对土壤矿物改良剂的作用机理进行了有益的理论探索,并通过对土壤矿物改良剂优化配比方案选择及盆栽植物对比实验,为固体废物改良贫瘠土壤的运用提供了理论依据,从中获得新的认识。
     1)土地整理新增耕地土壤属贫瘠土壤:在综合分析成都地质构造、地层、第四系地质及农业地质特征的基础上,选择具有新增耕地来源、地质环境具有代表性的彭州、金堂、邛崃三地新增耕地土壤进行研究,并从土壤物性、化学成分、矿物组成及养分方面分析其物质组成特征。新增耕地土壤主要为砂土、壤质砂土及砂质壤土。化学成分SiO2含量较高,为64.18~76.42%,Al2O3含量次之,为10.31~14.73%,K2O含量相当较高,说明土壤中富K;硅铝风化系数最高达12.60,铝铁风化系数最高达7.11,氧化指数最高达0.92。矿物组成中原生矿物主要为石英、长石,次生矿物主要为粘土矿物,粘土矿物中以伊利石分布广,含量高,蒙脱石分布较广,含量较低,少数样品高岭石含量明显增加。土壤养分缺乏,基本为四级、五级土壤标准范围,属贫瘠土壤。
     2)富含矿物及矿物组合的粉煤灰、磷石膏、污泥具有改良土壤潜力:①微观结构方面,它们具有球粒结构、网状结构、针状结构,可以改善土壤结构,降低土壤容重,增加孔隙度。②化学成分方面,粉煤灰、污泥与土壤非常接近,但污泥中有机物含量高,烧失量近50%,磷石膏主要为CaO,烧失量较高,说明主要为SO2、H2O。③矿物组成方面,粉煤灰结晶质主要为石英和相变矿物莫来石,非晶质为玻璃质,其非晶质具有较高活性;磷石膏主要为石膏;污泥主要有石英、长石、伊利石、蒙脱石等,其矿物组成与土壤极为相似。④养分方面,粉煤灰有机质较高,达11.2%;磷石膏有效P很高,达1711mg/kg;污泥中各养分含量均较高,有效N、P、K及有机质分别为786 mg/kg、1200 mg/kg、685 mg/kg、39.7%。因此,由粉煤灰、磷石膏、污泥制备的土壤矿物改良剂能满足土壤所需的各养分要求。
     3)利用土壤矿物改良剂改良土壤,其比例控制在20%以内:依据pH值临界法,进行理论计算和实验对比,确定矿物土壤改良剂配比,粉煤灰:污泥:磷石膏=600:320:1;利用土壤矿物改良剂改良贫瘠土壤,其配比为,土壤矿物改良剂:土壤=2:8。对改良土壤检测结果显示,贫瘠土壤改良效果显著:所有改良土壤的养分全部超过二级土壤标准,部分达到一级土壤标准,其中有效N最高达629mg/kg,有效P最高达650 mg/kg,有效K最高达620 mg/kg,有机质最高达15.4%。对40K、238U、232Th比活度进行测试,虽比原土样高,但幅度较小,不影响作物生长。玉米盆栽对比实验显示,改良后土壤长势良好,出芽率高出14.87%,生长速度高出96.47%。对污染元素进行测定,Cd、Hg超过二级土壤标准,需通过降低土壤矿物改良剂比例(不超过20%)及适当提高pH值予以控制。
     4)土壤矿物改良剂能改善土壤结构,促进或参与有效N、P、K及有机质的增加转化,控制污染元素的生物活性:①土壤矿物改良剂具有容重轻、颗粒小、有网状、孔洞结构等有效物理特征,可以降低土壤容重,增加土壤孔隙度,提高土壤毛细管作用能力,提高土壤保水性能,使土壤团聚体增加,颗粒吸附能力增强;②土壤矿物改良剂中具有多种阴、阳离子,可以促进粘土矿物离子交换,维持土壤酸碱相对稳定;③土壤矿物改良剂具有较高的化学活性,2:1型粘土矿物含量高,有机物含量高,能提高土壤吸附能力,促进或参与土壤硝化反应、氨化作用、离子交换反应、有机物的腐殖化过程,促进氮、磷、钾向有效N、P、K转变,促进有机物向有机质转化;④土壤矿物改良剂具有大量阴离子及2:1型粘土矿物,能促进Cd、Hg、Pb等污染元素的固定,降低污染元素的生物活性。
Land consolidation has very important practical significance on the sustainable use of land resources as well as the sustained and healthy development of national economy. On the one hand, a considerable amount of arable lands which are mainly from unused land are available through large-scale land consolidation in China in recent years. The soil structure of the lands is bad, and the integrated soil fertility level of the lands is low. The land is a type of barren soil. On the other hand, a lot of valuable land sources are occupied by solid waste produced by industrialization, and the natural environment are contaminated by the solid waste. In this thesis, fly ash, phosphogypsum and sludge with special physical and chemical properties are studied for improving soil structure and nutrients of the lands. The composition and microstructure of the soil and the fly ash, the phosphogypsum and the sludge are analyzed using a variety of modern analytical techniques. The mechanism of the improving soil quality through the materials mentioned is theoretical discussed. The study of optimization of the ratio of soil mineral conditioner selection and potted plant comparative experiments provide a theoretical basis in order to improve barren soil using the solid waste. The study results are followed:
     1) The added cultiviated land soil is barren soil.By analyzing of Chengdu area geological structure, stratigraphy, Quaternary geology and agriculture geological features, the soils from Pengzhou, Jintang and Qionglai are selected for the studies. The characteristics including soil properties, chemical composition, mineral composition and nutrient composition are analyzed. The new farmland soil of Qionglai and Pengzhou is mainly sand and loamy sand, and the soil of Jintang is mainly sandy loam. The content of SiO2 of the soils ranges from 64.18% to 76.42%, the content of Al2O3 changes from 10.31% to 14.73%, the soils rich in K element; weathering factor of aluminosilicate is up to 12.60, ferric weathering coefficient is up to 7.11; maximum of oxidation index is 0.92. The main minerals are quartz, feldspar, secondary minerals are clay minerals which are illite, montmorillonite and kaolinite. Illite is widely distributed and higher content, montmorillonite is widely spread and lower content.In a few samples,the content of kaolinite increase significantly. Soil nutrient analysis results show that the soil is in four or five soil standard class, and it is a barren soil.
     2) fly ash, phosphogypsum and sludge,which contain mineral and mineral assemblages, have potential of soil improvement.①In the microstructure,they exist spherical structure,network structure,andneedle-like structure.These structural features can improve soil structure, reduce soil bulk density, increase porosity.②In the chemical components, fly ash, sludge and soil is very close, but the sludge content high organic matter,and the ignition loss is 50%.Phosphogypsum is mainly CaO, the ignition loss is higher, which shows mainly SO2, H2O.③In the mineral composition, ash is mainly quartz and crystalline mineral mullite phase transition, glassy amorphous as its amorphous high activity; phosphorus is mainly gypsum plaster; sludge is mainly quartz, a long stone, illite, montmorillonite and so on, its mineral composition is very similar as soil.④In nutrient, organic matter of fly ash is up to 11.2%; phosphogypsum effective P isup to 1171 mg / kg, various nutrients of sludge are high, the effective N is up to 786mg/kg, the effective P is up to1200 mg / kg, the effective K is up to 685 mg / kg, organic matter is up to 39.7%. Thus soil mineral conditioner prepared by the fly ash, phosphogypsum and sludge can meet the nutrient requirements which soil required.
     3)The soil minerals conditioner must control in 20%,using them improve soil. According to the pH critical method, we repeated the experiment by changing soil mineral modifier ratio and computed by their theory value, the ratio of fly ash, sludge and phosphogypsum is 600:320:1. According to the ratio and the nutrient content, we calculate the theory value of the nutrient content of soil mineral modifier, and determine the ratio of soil minerals conditioner and soil is 2:8. The results of tests show that all improved soil nutrient is the more than two standard class soil to up to one standard class soil. In the soil effective N is up to 629mg/kg, the effective P is up to 650 mg / kg, the effective K is up to 620 mg / kg, organic matter is up to 15.4%. So the effect improving berren soil is remarkable. Although the specific activity of 40K, 238U, 232Th is higher than the original soil samples, it does not affect crop growth. Potted plants comparative experiments showed that improved soil is doing well,their budding percentage is higher than 14.78%, their growth speed is higher than 96.47%.. The pollution elements Cd and Hg is more than two standard soil, but we can control the conclusion by lowering the conditioner ratio (<20%)and appropriately increasing the pH.
     4) The minerals siol conditioner may improve soil structure, promote or participate the adding translation of the effective N, P, K and organic matter.①the soil mineral agents have effective physical characteristics such as a light bulk density, small particles, mesh pore structure and so on, which can reduce soil bulk density, increase soil porosity, soil capillary action to improve capacity, increase soil water retention properties and particle adsorption capacity.②Minerals soil conditioner has a variety of anions and cations which can promote the clay minerals ion exchange, maintain a relatively stable soil pH.③Soil mineral modifiers have high chemical activity. High content of 2:1 clay minerals and high organic matter content increase soil adsorption capacity, promote or participate in soil nitrification, ammonification, ion exchange reaction, organic matter humification process, promote nitrogen, phosphorus and potassium to turn to the effective N, P, K , promote organic to converse to organic matter.④Minerals soil conditioner which have a large number of anions, 2:1 clay minerals can promote the Cd , Hg, Pb and other pollution elements to fix, reduce their biological activity.
引文
[1]潘明才.实行严格耕地保护制度需要解决的问题[J].理论视野,2006(04):13-14.
    [2]寿嘉华.国土资源与经济社会可持续发展[M].北京:地质出版社,2001.
    [3]王思远,王光谦,陈志祥.黄河流域生态环境综合评价及其演变[J].山地学报,2006(3):133-139.
    [4]王战,陈传国.长江正步黄河后尘生态条件日益恶化[J].生态学杂志,1982,(2):30-32,39.
    [5]兰维娟,王俊,毛鹏军.西北地区生态环境问题与可持续发展探讨[J].农机化研究,2007,(10):5-8.
    [6]李晓林.西部大开发科技方略纵横[M].北京:中国农业出版社,2000.
    [7]石培基.甘肃省国土开发整理与可持续发展的战略思考[J].青海环境, 2001,11(2):48-50.
    [8]中华人民共和国国务院.全国土地利用总体规划纲要(2006~2020年)[Z].北京:新华社,2008
    [9]钱平,王志,邹存刚.20保护耕地资源与节约集约用地的对策研究[C]. 2007年中国土地学会学术年会论文集,2007.
    [10]吴家华,刘宝山,董云中,等.粉煤灰改土效应研究[J].土壤学报,1995,32(3):336-340.
    [11]杨剑虹,车福才,王定勇,等.粉煤灰的理化性质与农业化学行为的研究[J].植物营养与肥料学报,1997,3(4):341-348.
    [12]周学武,孙岱生,刘志钧,等.利用矿山固体废弃物(粉煤灰、淤泥及污泥)改良矿山退化土地及种植实验[J].资源·产业,2005,7(3):61-64.
    [13]杨尽,刘莉,孙传敏,等.新增耕地土壤物质组分特征及其培肥研究[J].农业工程学报,2008,24(7):102-105.
    [14]郑国璋.泾河流域农业土壤重金属污染调查与评价[J].干旱区研究,2008,25(5):626-630.
    [15]余涛,杨忠芳,钟坚,程新彬.土壤中重金属元素Pb、Cd地球化学行为影响因素研究[J].地学前锋,2008,15(05):67-73.
    [16]王建强.长期使用化肥对土壤的影响及防治[J].化学工程与装备,2008,(11):90-91.
    [17]郑苏云,陈通,郑林树.磷石膏综合利用现状和研究进展[J].化工生产与技术,2003,10(4):33-35.
    [18]张凤荣.生物能源热浪下的中国耕地保护[J].中国土地,2007,(4):33~36.
    [19]国土资源部土地整理中心.土地整理工程设计[M].北京:中国人事出版社,2005.
    [20]王万茂.土地整理的产生、内容和效益[J].中国土地,1997,(9):20~22.
    [21]廖蓉,杜官印.荷兰土地整理对我国土地整理发展的启示[J].中国国土资源经济,2004,17(9):25-27.
    [22]何如海,姜海,张效军.近年我国新增耕地资源结构变化:成因与启示[J].干旱区资源与环境,2005,19(6):129-132.
    [23]张正峰,陈百明.土地整理潜力分析[J ].自然资源学报,2002,17 (6) :664- 669.
    [24]蔡海生,赵小敏,朱得海.鄱阳湖区土地整理潜力分析[J].中国农业大学学报,2007,12(2):92-96.
    [25]马锐,韩武波,吕春娟,等.城乡交错带居民点整理潜力研究[J].农业工程学报,2005,21(增刊):192-194.
    [26]杨尽,孙传敏,刘莉,等.川西地区土地整理新增耕地潜力的分析[J].安徽农业科学,2008,36(7):2911-2912,2970.
    [27]胡渝清,罗卓.西南丘陵地区新增耕地质量评价方法研究[J].西南农业大学学报(社会科学版),2007,5(3):1-4.
    [28]许晓平,汪有科,冯浩,等.土壤改良剂改土培肥增产效应研究综述[J].中国农学通报, 2007,23(9):331-333.
    [29] R. D. Lentz,R. E. Sojka. Field results using polyacrylamide to manage furrow erosion and infil tration[J].Soil Science,1994,158(4):274.
    [30]员学峰,汪有科,吴普特,等.PAM对土壤物理性状影响的试验研究及机理分析[J].水土保持学报,2005,19(2):37-40.
    [31]滕玲玲,罗在波,江韬,等.聚丙烯酰胺对紫色土中磷素吸附特征的影响[J].生态环境,2008,17(1):388-392.
    [32]单德鑫,李淑芹,张丹,等.聚丙烯酰胺对土壤性质及玉米生育和产量影响[J].东北农业大学学报,2008,39(8):43-46.
    [33]张季平.内蒙古旱作农业中的应用初试[J].内蒙古农业科技,2008,(2):50-51,56.
    [34] Liu Ruifeng,Zhang Junping,Zheng Xin,et al.Effects of water-preserving compo-site Of Polyacylamide/Attapulgite on soil physical Proterties[J].Soils,2006,8(1):86-91.
    [35]陈义群,董元华.土壤改良剂的研究与应用进展[J].生态环境,2008,17(3):1282-1289.
    [36]周学武.粉煤灰与污泥配施改良山东郑路、华丰盐碱地的实验研究[D].北京:中国地质大学,2006.
    [37] Sudha J,Dinesh G.Fly ash as a soil ameliorant for improving crop production-a review[J].Bioresource Technology 2006,97:1136-1147.
    [38]高占国,华珞,郑海金,等.粉煤灰的理化性质及其资源化的现状与展望[J].首都师范大学学报,2003,24(1):70-77.
    [39]李贵宝,单保庆,孙克刚,等.粉煤灰农业利用研究进展[J].磷肥与复肥, 2000,15(16):59-60.
    [40] Joseph L. Fail Jr. and Zachary S. Wochok. Soybean growth on fly ashamended strip mine spoils[J]. Plant and Soil,1977,48(2):473-484.
    [41] MJ Hill and CA Lamp. Use of pulverised fuel ash from Victorian brown coal as a source of nutrients for a pasture species[J]. Animal Production Science,1980,20(104):377-384.
    [42] S. Cervelli, G. Petruzzelli and A. Perna. Fly ashes as an emendment in cultivated soils[J]. Water, Air, & Soil Pollution,1987,33(3-4):331-338.
    [43] Natusch DF,Wallace JR,Evans CA Jr. Toxic trace elements preferential concentration in respirable particles[J]. Science,1974,183(121):202-204.
    [44] Eisenbud M,Petrow HG.Radioactivity in the atmospheric effluents of power plants that use fossil fuels[J]. Science,1964,144:288-289.
    [45]申俊峰,李胜荣,孙岱生,等.用若干固体废弃物改良土壤的可行性研究[J].地质地球化学, 2001,29(2):86-89.
    [46]申俊峰,李胜荣,李海明,等.粉煤灰和污水沉淀物复合土壤添加剂中磷的有效化实验研究[J].地球与环境,2004,32(1):86-89.
    [47]秦梅枝,曹江营.粉煤灰作为土壤改良剂的应用研究[J].内蒙古环境保护,1995,7(3):14-17.
    [48]焉越学,聂鑫.利用粉煤灰生产复合磁化肥[J].吉林电力技术,2000,148(3):14-15.
    [49]刘莉.邛崃桑园土地整理中新增耕地土壤矿物培肥研究[D].成都:成都理工大学,2006.
    [50]顾夏生等.水处理工程[M].北京:清华大学出版社,1985.
    [51]牛樱,陈季华.剩余污泥处理技术进展[J].工业用水与废水,2000,31(5):4-6.
    [52]陈荣柱,任琳.日本污泥处理技术现状与动态[J].给水排水,1999,25 (10):20-21.
    [53]赵来乾,R.D.Davis.英国污水处置现状及其发展概述[J].给水排水,1998,24(9):28-29.
    [54]马娜,陈玲,熊飞.我国城市污泥的处置与利用[J].生态环境,2003,12(1):92-95.
    [55]周立祥,胡蔼堂,戈乃玢.苏州市生活污泥成分性质及其对蔬菜和菜地土壤的影响[J].南京农业大学学报,1994,17(2):5459.
    [56]薛澄泽,杜新科,张增强,等.复合污泥堆肥施用于高速公路绿化带效果的研究Ⅰ.中央分隔带、护坡及转盘不同植物的生长响应[J].农业环境保护,2000,19(4):204-208.
    [57]张天红,薛澄泽.西安市污水污泥林地施用效果的研究[J].西北农业大学学报,1994,22(1):67-71.
    [58] ANJOS, Ana Rosa Martins dos and MATTIAZZO, Maria Emilia. Heavy metals in corn grown on oxisols continuously amended with biosolid[J]. Scientia Agricola,2000,57(4):769-776.
    [59] E. I. Bertoncini;M. E. Mattiazzo;R. Rossetto. Sugarcane Yield and Heavy Metal Availability in Two Biosolid-Amended Oxisols[J]. Journal of Plant Nutrition,2005,27(7):1243-1260.
    [60] Tyagi R.D.;Blais J.F.;Meunier N.;Benmoussa H. Simultaneous sewage sludge digestion and metal leaching--effect of sludge solids concentration[J]. Water Research,1997,31(1):105-118.
    [61] Contreras-Ramos, Silvia M.;álvarez-Bernal, Dioselina;Dendooven, Luc. Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida)[J]. Soil Biology & Biochemistry,2008,40(7):1954-1959.
    [62] Wong JWC;Jiang RF;Su DC.Boron availability in ash sludge mixture and its uptake by corn seedlings (zea maysl)[J]. Soil Science,1996,161(3):182-187.
    [63]唐英年,杨玉凤,李殿琴.国内外磷石膏的开发与利用[J].辽宁建材,1995,(4):28-31,47.
    [64]郭翠香,石磊,牛冬杰,等.浅谈磷石膏的综合利用[J].中国资源综合利用,2006, 24(2):29-32.
    [65]苏素芹.工业副产石膏的开发与利用[J].山东建材,2008,(2):43-45.
    [66] C. L. Lindeken, W. J. Silver, A. J. Toy, J. H. White. Correlation between predicted and observed levels of tritium at the LLL site boundary[J]. The International Journal of Applied Radiation and Isotopes,1980,31(8):476
    [67] A.K.Alva,M.E.Sumner.Amelioration of acid soil infertility by phosphogypsum[J].Plant and Soil,1990,128(1):127-134.
    [68]陈闽子,佟琦,韩树民.磷石膏、粉煤灰在硅钙硫肥料生产中的应用[J].中国资源综合利用,2003,(9):9-11.
    [69]徐翠云.磷石膏的开发利用现状[J].矿产保护与利用,2000,(2):52-53.
    [70] Chang Hoon Lee,Yong Bok Lee Hyup Lee et al.Reducing phosphorus release from Paddy soils by a fly ash–gypsum mixture[J].Bioresource Tecnology,2007,98:1980-1984.
    [71] C.Papastefanou,S.Stoulos,A.Ioannidou,M.Manolopoulou.The application of phosPhogypsum in agriculture and the radiological impact[J].Environ.Radioactivity,2006,89:188-198.
    [72]李永昭,郭兵.成都平原的晚新生代构造[J].成都理工大学学报,2008,35(4):371-376.
    [73]四川省地质局水文工程地质大队.四川省成都平原区域水文地质普查总结报告[R].1979.
    [74]王凤林,李勇,李永昭,等.成都盆地新生代大邑砾岩的沉积特征[J].成都理工大学学报,2003,30(2):139-146.
    [75]刘兴诗.四川盆地的第四系[M].成都:四川科技出版社,1983.
    [76]徐水森,邓天岗,杜平山,等.汶川8级地震成都市境内震害调查[J].四川地震,2008,129(4):12-24.
    [77]四川省地质局第二区域地质测量队.中华人民共和国区域地质调查报告, 1:200000(邛崃幅)[R].1976.
    [78]马玉孝.成都平原第四系基础地质研究报告[R].2006.
    [79]四川省地质局第二区域地质测量队.中华人民共和国区域地质调查报告, 1:200000(茂汶幅、灌县幅)[R].1975.
    [80]四川省地质局航空区域地质调查队.中华人民共和国区域地质调查报告, 1:200000(阆中幅、德阳幅、三台幅、简阳幅)[R].1980.
    [81]陆景冈.土壤地质学[M].北京:地质出版社,2006.
    [82]王军,吴传智,印仁高,等.成都市土地利用现状遥感调查研究[J].四川地质学报, 2002 ,22(3):184-187.
    [83]朱鹤健,郑建闽.母质和微地形条件对变性土形成的影响[J].土壤学报,1992,29(2):226-231.
    [84]朱礼学.成都平原西部元素的分布特征及其与农业、环境的关系[J].物探化探计算技术, 1999,21(4):295-300.
    [85]刘红樱,谢志仁,陈德友,等.成都地区土壤环境质量初步评价[J].环境科学学报,2004,24(2):297-303.
    [86]李庆逵.中国水稻土[M].北京:科学出版社,1992.
    [87]王振健,刘孝宝,唐永顺,等.水耕人为土土系的划分指标选取研究——以成都平原主要水耕人为土为例[J].西南农业大学学报,2004,26(3):307-311.
    [88]何玉生,任利民,唐文春,等.成都经济区浅层土壤地球化学特征的土壤分类学意义[J].地球化学,2006,35(3):311-318.
    [89]国土资源部土地整理中心.土地开发整理项目可行性研究与评估[M].北京:中国人事出版社,2005.
    [90]许林书.土壤地理学原理[M].长春:东北师范大学出版社,2006.
    [91]华孟,王坚.土壤物理学(附实验指导)[M].北京:北京农业出版社,1993.
    [92]李志洪,赵兰坡,窦森.土壤学[M].北京:化学工业出版社,2005.
    [93]黄镇国,张伟强,陈俊鸿,等.中国南方红色风化壳[M].北京:海洋出版社,1996.
    [94]任利民,陈代庚,陈德友,等.成都盆地浅层土壤中Cd来源初探[J].地质通报,2005,24(8):744-749.
    [95]杨忠芳.现代环境地球化学[M].北京:地质出版社,1999.
    [96]汤奇峰,杨忠芳,张本仁,等.成都经济区农业生态系统土壤隔通量研究[J].地质通报,2007,26(7):869-877.
    [97]曹淑萍.重金属污染元素在天津土壤剖面中的纵向分布特征[J].地质找矿论丛,2004,19(4):270-274.
    [98]谭衢霖,瞿建平,周维科,等.粉煤灰土壤及所产蔬菜的有害元素含量变化和环境意义[J].高校地质学报,1999,5(3):298-305.
    [99]韩寿岭.施用磷肥对农田放射性污染的探讨[J].磷肥与复肥,1998,(4):66-67.
    [100]吴宇,谭涪江,何达波.四川省土壤中天然放射性核素含量调查研究[J].辐射防护,1993,13(5):376-379.
    [101]全国环境天然放射性水平调查总结报告编写组.全国土壤中天然放射性核素含量调查研究(1983-1990)[J].辐射防护,1992,12(2):122-141.
    [102]谷懿,葛良全,张庆贤,等.成都经济区放射性环境评价分析研究[J].水土保持研究,2009,16(3):241-244.
    [103]张辉.土壤环境学[M].北京:化学工业出版社,2005.
    [104]南京大学地质学系岩矿教研室,结晶学与矿物学[M].北京:地质出版社,1978.
    [105]熊顺贵.基础土壤学[M].北京:中国农业大学出版社,2001.
    [106]陈恩凤.土壤肥力物质基础及其调控[M].北京:科学出版社,1990.
    [107]靳朋勃,吴春笃.粉煤灰农业利用现状[J].安徽农业科学,2007,35(18):5544-5545.
    [108]徐夷,袁端峰,董文武.粉煤灰综合利用浅谈[J].中国井矿盐,2010,(1):29-32.
    [109]周健儿,张小珍,胡学兵,等.莫来石陶瓷超滤膜的制备与表征[J].人工晶体学报,2009,38(5):1179-1183.
    [110]史建君,陈晖.农田使用粉煤灰的放射性安全性评价[J].上海农学院学报,2000,18(2):95-100.
    [111]徐雪源.磷石膏及其混合料的工程特性研究[D].南京:河海大学,2005.
    [112]王素hong..四川金河磷矿写槽滩矿区磷酸盐矿物研究[J].化工地质,1989,(2):69-90.
    [113]李圭白,张杰主编.水质工程学[M].北京:中国建筑工业出版社,2005.
    [114]张辰,张善发,王国华.污泥处理处置研究进展[M] .北京:化学工业出版社,2005.
    [115]刘红,汪立今.重视非金属矿物在土壤环境保护中的应用[J].中国矿业,2007,16(8):71-73,79.
    [116]于阳辉,李永霞,张俊红,等.非金属矿物在突然改良中的应用现状与发展前景[J].中国非金属矿工业导刊,2005,(1):37-39.
    [117]李吉进,徐秋明,张宜霞,等.膨润土对土壤水分和玉米植株生育性状的影响[J].北京农业科学, 2001, 17(6): 18-20.
    [118]关连珠,张继宏,严丽,等.天然沸石增产效果及对氮磷养分和某些肥力性质调控机制的研究[J].土壤通报, 1992, 23(5): 205-208.
    [119]李长洪,李华兴,张新明.天然沸石对土壤及养分有效性的影响[J].土壤与环境, 2000, 9(2): 163-165.
    [120]易杰祥,刘国道.膨润土的土壤改良效果及其对作物生长的影响[J].安徽农业科学, 2006, 34(10): 2209-2212.
    [121]王凯雄,胡勤海.环境化学[M].北京:化工工业出版社,2006.
    [122]秦耀东.土壤物理学[M].北京:高等教育出版社, 2003.
    [123]韩怀强,蒋挺大.粉煤灰利用技术[M].北京:化工工业出版社,2001.
    [124]毛建华,陆文龙,潘洁,等.改良剂(磷石膏)对碱化土壤的防治研究[J].农业环境保护,1996,15(5):209-212.
    [125]杨海儒.大庆地区重度盐渍化土壤改良的研究[D].哈尔滨:东北林业大学,2008.
    [126]何品晶,顾国维,李笃中.城市污泥处理与利用[M].北京:科学出版社,2003.
    [127]李祯,李胜荣,申俊峰等.粉煤灰和城市污泥配施对荒漠土壤持水性能影响的实验研究[J].地球与环境, 2005,33(2):74-78.
    [128]申俊峰.粉煤灰、水库淤积物和污水沉淀物改良砂质贫瘠土壤植树种草的研究——以内蒙古包头试验区为例[D].北京:中国地质大学,2003.
    [129]李海英,孙锦程.污泥复混肥对冬小麦增产效果及土壤肥力的影响[J].安徽农业科学, 2009,37(3):1182-1184.
    [130] Chang Hoon Lee,Yong Bok Lee,Hyup Lee,etal. Reducing phosphorus release from paddy soils by a fly ash-gypsum mixture[J]. Bioresource Technology,2007,98:1980-1984.
    [131] M.B.Kirkhm. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumu- lation, and amendments[J]. Geoderma,2006,(137):19-32.
    [132]史建君,陈晖,徐寅良.农田使用粉煤灰的放射性安全性评价[J].上海农学院学报,2000,18(2):95-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700