用户名: 密码: 验证码:
东太平洋海隆13°N附近热液硫化物形成过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东太平洋海隆13°N附近热液区构造环境上属于快速扩张中心,该区段洋中脊拉张速率达到了12cm/yr,轴部基底平均水深2630m。本文即是对该研究区(103°54.41'W, 12°42.68'N)获得的热液烟囱体硫化物样品展开了研究。借助偏光显微镜观察了硫化物显微结构特征,并分析了硫化物中的矿物组合。东太平洋海隆13°N附近热液硫化物中常见矿物为Fe硫化物和Zn硫化物,并经历了由早期Fe硫化物为主转变为晚期成熟化以Zn硫化物为主的过程;根据观察到的显微结构,东太平洋海隆13oN附近热液硫化物的形成至少可划分出四个阶段即黄铁矿阶段、黄铜矿阶段、黄铁矿-闪锌矿和闪锌矿阶段。
     建立了热液硫化物样品中常、微量元素的测试方法,测定了东太平洋海隆13°N附近常、微量元素组成,并与有沉积物覆盖的北胡安德富卡脊Middle Valley烟囱体硫化物和弧后环境的北斐济盆地富Zn型烟囱体硫化物进行了对比。以Cu、Pb、Zn相对含量百分比划分,东太平洋海隆13oN附近热液硫化物属富Zn型。
     阐述了东太平洋海隆13oN附近热液硫化物微量元素组成空间变化特征及元素比值在样品中的演化,并分析了常微量元素之间及元素/Cu值与1/Cu之间的相关性。Cd、Ga、In主要以类质同像的形式存在于Zn硫化物中,Co的主要寄主矿物是Zn硫化物。在东太平洋海隆13°N附近热液硫化物的形成过程中,常量元素Cu、微量元素Mo趋向于在高温(T>300℃)条件下自流体相沉淀。对东太平洋海隆13°N附近热液硫化物而言,硫化物样品中Cu含量、Cu/Pb及Mo/Pb值可以为形成硫化物的流体的温度变化提供指示性佐证;对应于形成硫化物的流体温度由高温至低温的演化,流体化学组成也相应地发生了演化,其中Sr、Ba、Au等微量元素按指数函数规律富集。对获取的硫化物样品进行了R型因子分析,旋转后获得的因子可以区分出形成硫化物的流体的温度和化学组成这两个因素的影响。
     在热力学计算的基础上绘制了东太平洋海隆13°N附近热液Fe-S-H2O系统布拜图,据此阐明了实际情况下东太平洋海隆13°N附近热液流体由高温至低温的过程中,硫化物中优势矿物黄铁矿的稳定场的演化。在此基础上结合已有的动力学实验和硫同位素分馏的研究成果,揭示了沉淀硫化物的热液活动过程中形成优势矿物黄铁矿的可能的主要化学反应历程和形成硫化物的流体的温度变化对黄铁矿形成的热力学机制的影响。
The hydrothermal field near 13oN on the East Pacific Rise is located at a segment where the opening rate at this is 12cm/yr, i.e., a tectonic environment of fast-spreading center. The average water depth of the axial graben floor is 2630m. Detailed studies were conducted on the hydrothermal sulfide sampled from this area (103°54.41′W, 12°42.68′N). Microstructure features of the hydrothermal sulfide were observed in the polarizing microscope and mineral assemblages were also exhibited. The hydrothermal sulfide near 13oN on the East Pacific Rise is mainly composed of Fe-sulfide and Zn-sulfide minerals, and has experienced the transformation from Fe-sulfides predominance at an early stage to Zn-sulfides predominance at a late stage. According to observed microstructures, the formation of the hydrothermal sulfide near 13oN on the East Pacific Rise can be divided into four stages, namely, pyrite stage, chalcopyrite stage, pyrite-sphalerite stage and sphalerite stage.
     Test procedures of major and trace elements in hydrothermal sulfide samples were established, and major and trace element compositions of the hydrothermal sulfide near 13oN on the East Pacific Rise were determined on this basis. Characteristics of compositions of the hydrothermal sulfide near 13oN on the East Pacific Rise were contrasted with contrasted with chimney sulfides from Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge and North Fiji back-arc basin. According to relative percentages of Cu, Pb, Zn (sum of Cu, Pb, Zn contents is assumed as 100%), the hydrothermal sulfide near 13oN on the East Pacific Rise can be classified as Zn-rich type.
     Space variations of trace element compositions and evolution of elemental ratios in samples were illustrated. Correlations between major elements and trace elements, and between element ratios (the denominator is Cu) and 1/Cu ratios of the hydrothermal sulfide near 13oN on the East Pacific Rise were both discussed. Trace elements such as Cd, Ga and In mainly exist in Zn-sulfides in the form of isomorphis m. Moreover, Zn-sulfides are the main host minerals of Co. During the formation of the hydrothermal sulfide near 13oN on the East Pacific Rise, Cu and Mo both tended to precipitated from fluid phases at high temperatures(>300℃). Cu contents, ratios of Cu/Pb and Mo/Pb of sulfide samples can play a significant role as diagnostic indicator of the temperature variations of hydrothermal fluids which formed the sulfide. During the evolution (from high temperatures to low temperatures) of hydrothermal fluids which formed the sulfide, compositions of the hydrothermal fluids evolved at the same time, especially trace metals such as Sr, Ba and Au were enriched exponentially. Factor analyses were also performed on obtained samples, and obtained factors through rotation may distinguish the influences of temperatures and geochemical composition of hydrothermal fluids which formed the sulfide.
     Pourbaix diagrams of Fe-S-H2O hydrothermal system near 13oN on the East Pacific Rise were drawn by use of thermodynamic calculations, which illustrated the changes of predominance field of precipitation of the pyrite from hydrothermal systems in practical situations during the evolution (from high temperatures to low temperatures) of hydrothermal fluids which formed the sulfide. On the basis of combination with existing research on dynamic experiments and sulfur isotope fractionation, potential chemical reaction pathways which formed the predominant mineral (i.e., pyrite) during marine hydrothermal activities which precipitated sulfides were brought out, and the influences of temperatures of hydrothermal fluids which formed the sulfide on thermodynamic mechanism of the formation of pyrite were probed into.
引文
[1] Scott R B, Rona P A, Mcgregor & Scott M R. The TAG Hydrothermal Field. Nature, 1974, 251:301-302.
    [2] Corliss J B, Dymond J, Gordon L I et al. Submarine Thermal Sprirngs on the Galápagos Rift. Science, 1979, 203: 1073–1083.
    [3] Hékinian R, Fevrier M, Bischoff T Y et al. Sulfide deposits from the East Pacific Rise 21°N. Science, 1980, 207: 1433-1444.
    [4] CYAMX Scientific Team, Massive deep-sea sulfide ore deposits discovered on the East Pacific Rise. Nature, 1979, 277: 523-528.
    [5] CYAMEX Scientific Team: First Manned Submersible Dives on the East Pacific Rise at 21°N (project RITA): General Results. Marine Geophys Res, 1981, 4, 345–379.
    [6] RISE Project Group. East Pacific Rise: hot spring and geophysical experiments. Science, 1980, 207: 1421-1444.
    [7]吴世迎.世界海底热液硫化物资源.北京:海洋出版社, 2000.
    [8] Rona P A. Hydrotheraml mineralization at oceanic ridges. Canadian Mineralogist, 1988, 26: 431-465.
    [9] Rona P A & Scott S D. A special issue on sea-floor hydrothermal mineralization: new perspectives. Econ. Geol., 1993, 88: 1935-1976.
    [10] Charlou J L, Fouquet Y, Donval J P et al. Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17°to 19°S (Naudur cruise, 1993) phase separation processes controlled by volcanic and tectonic activity. Journal of Geophysical Research, 1996, 101(B7): 15,899-15,919.
    [11] Sinton J. The Manus Spreading Center near 3°22′S and the Worm Garden hydrothermal site: results of Mir2 submersible dive 15. Marine Geology, 1997, 142(1-4): 207-209.
    [12] Ishibashi J, Suzuki R, Yamanaka, et al. Seafloor hydrothermal activity at off-axial seamounts of backarc spreading in southern Mariana Trough. Goldschmidt Conference Abstracts, 2006, A279.
    [13] Urabe T & Kusakabe M. Barite silica chimneys from the Sumisu Rift, Izu-Bonin Arc: possible analog to hematitic chert associated with Kuroko deposits. Earth and planetary Science Letters, 1990, 100: 283-290.
    [14] Hsu S C, Lin F J, Jeng W L, Chung Y C & Shaw L M. Hydrothermal signatures in the southern Okinawa Trough detected by the sequential extraction of settling particles. Marine Chemistry, 2003, 84(1-2): 49-66.
    [15] Davis E E, Goodfellow W D, Bornhold B D et al. Massive sulfides in a sedimented rift valley northern Juan de Fuca Ridge. Earth and planetary Science Letters, 1987, 82: 49-61.
    [16] Hékinian R &.Bideau D. Volcanis m and mineralization of the oceanic crust on the East Pacific Rise, in: Metallogeny of Basic and Ultrabasic Rocks. Inst. Min. Metall. London Publ, pp. I-20, 1985.
    [17]戴宝章,赵葵东,蒋少涌.现代海底热液活动与块状硫化物矿床成因研究进展.矿物岩石地球化学通报, 2004, 23(3): 246-254.
    [18]侯增谦,莫宣学.现代海底热液成矿作用研究现状及发展方向.地学前缘, 1996, 3(3-4): 263-273.
    [19] Rona P A, Scott S P. A special issue on seafloor hydrothermal mineralization: New perspectives—Preface. Econ Geol, 1993, 88: 1933~1976.
    [20] Manha J, Barriga F J, Kerrich R. High 18O ore-forming fluids in volcanic-hosted base metal massive sulfide deposits: geologic, 18O/16O and D/H evidence from the Iberian pyrite belt, Crandon, Wisconsin and Blue Hill , Maine. Econ. Geol., 1986, 81: 543-552.
    [21] Stoltz A J, Large R R. Evaluation of the source control on precious metal grade in volcanic-hosted massive sulfide deposits from western Tasmania. Econ. Geol., 1992 , 87: 720-738.
    [22]侯增谦,李延河,艾永德等.冲绳海槽活动热水成矿系统的氦同位素组成:幔源氦证据.中国科学(D), 1999, 29 (2): 155-162.
    [23] Urabe T, Mamumo K. A new model for Kuroko2type deposits of Japan. Episode, 1991, 14 (3): 246 - 251.
    [24] Large R R. Austrilian volcanic-hosted massive sulfide deposits: features, styles and genetic models. Econ Geol., 1992, l 87: 471-510.
    [25] Yang K, Scott S D. Possible contribution of a metal-rich magmatic fluid to a seafloor hydrothermal system. Nature, 1996 , 383 : 420-423.
    [26] Yang K. Magmatic fluids and mineralization-observations of subaerial volcanic-hydrothermal processes, black smokers on modern seafloor and melt inclusion studies. Earth Science Frontiers, 1998, 5 (3): 7-30.
    [27] Yang K, Scott S D. Magmatic degassing of volatiles and metals into a hydrothermal systems on the modern seafloor of the eastern Manus back-arc basin, western Pacific. Econ. Geol., 2002, 97: 1079-1100.
    [28] Kamenetsky V S, Binns R A, Gemmell J B, et al . Parentalbasaltic melts and fluids in eastern Manus back-arc basin: implications for hydrothermal mineralization. Earth and planetary Science Letters, 2001, 184: 685 - 702.
    [29] Kamenetsky V S , Davidson P , Mernagh T P , Crawford A J, Gemmell J B , Portnyagin M V, Shinjo R. Fluid bubbles in melt inclusions and Pillow-rim glasses: high-temperature precursors to hydrothermal fluid. Chemical Geology, 2002, 183: 349-364.
    [30]顾连兴.块状硫化物矿床研究进展评述.地质论评, 1999, 45 (3): 265-275.
    [31] Biscoff J L, Rosenbuer R J. Salinity variation in submarine hydrothermal systems by layered double-diffusive covection. Journal of Geology, 1989, 97: 613-623.
    [32] Gamo T, Chiba H, Yamanaka T, Okudaira T, Hashimoto J, Tsuchida S, Ishibashi J, Kataoka S, Tsunogai U, Okamura K,Sano Y, Shinjo R. Chemical characteristics of newly discovered black s moker fluids and associated hydrothermal plumes at the Rodriguez Triple J unction , Central Indian Ridge. Earth and planetary Science Letters, 2001, 193: 371-379.
    [33] Gregory R T, Taylor H P J. An oxygen isotope profile in a section of cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence forδ18O buffering of the oceans by deep (>5km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research, 1981 , 86 : 2737 - 2755.
    [34] Humphris S E, Herzig P M,. Miller D J et al. The internalstructure of an active seafloor massive sulphide deposit. Nature, 1995, 377: 713-16.
    [35] Zierenberg R A, Fouquet Y, Miller D J, Bahr J M, Baker P A, Bjerkgard T, Brunner C A, Duckworth R C, Gable R, Gieskes J, Goodfellow W D, Groschel-Becker H M, Guerin G., Ishibashi J, Iturrino G., James R H, Lackschewitz K S, Marquez L L, Nehlig P, Peter J M, Rigsby C A, Schultheiss P, ShanksⅢW C, Simoneit B R T, Summit M, Teagle D A H, Urabe M, Zuffa G. G.. The deep structure of a seafloor hydrothermal deposit. Nature, 1998, 392:485-488.
    [36] Tivey, Margaret K. How to Build a Black Smoker Chimney: The Formation of Mineral Deposits At Mid-Ocean Ridges. Woods Hole Oceanographic Institution, Oceanus, 2006-07-07.
    [37] Herzig, P M & Hannington M D, Polymetallic massive sulfides at the modern seafloor a review. Ore Geology Reviews, 1995, 10(2): 95-115.
    [38] McConachy T F, Ballard R D, Mottl M J et al. Geologic form and setting of a hydrothermal vent field at lat 10°50′N, East Pacific Rise: A detailed study using Angus and Alvin.Geology, 1986, 14: 295-298.
    [39] Hannington M., Herzig P, Scott S et al. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Marine Geology, 1991, 101: 217-248.
    [40] Renard V, Hekinian R, Francheteau J, Ballard R D & Backer H. Submersible observations at the axis of the ultra-fast-spreading East Pacific Rise (17°30′S to 21°30′S). Earth and planetary Science Letters, 1985, 75:339-353.
    [41] Tivey M K & John R D. Growth of large sulfide structures on the Endeavour Segment of the Juan de Fuca Ridge. 1986, Earth and planetary Science Letters, 77:303-317.
    [42] Rona P A, Bogdanov Y A, Gurvich E G et al. Relict hydrothermal zones in the TAG hydrothermal field,mid-Atlantic ridge 26°N, 45°W. 1993, Journal of Geophysical Research, 98(B6): 9715-9730.
    [43] Münch U, Halbach P, Fujimoto H et al. Sea-floor hydrothermal mineralization from the Mt. Jourdanne, Southwest Indian Ridge. JAMSTEC J. Deep Sea Res., 2000, 16: 125-132.
    [44] Ueno H, Hamasaki H, Murakawa Y, Kitazono S & Takeda T. Ore and gangue minerals of sulfide chimneys from the North Knoll, Iheya Ridge, Okinawa Trough, Japan. JAMSTEC J. Deep Sea Res., 2003, 22: 49-62.
    [45] Kim J, Insung Lee, Peter Halbach et al. Formation of hydrothermal vents in the North Fiji Basin: Sulfur and lead isotope constraints. Chemical Geology, 2006, 233: 257-275.
    [46] Fouquet Y, Stackelberg U V, Charlou J Let al. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature, 1991, 349: 778-781.
    [47] Wright I C, Ronde C E J, Faure K et al. Discovery of hydrothermal sulfide mineralization from southern Kermadec arc volcanoes (SW Pacific). Earth andPlanetary Science Letters, 1998, 164: 335-343.
    [48] Houghton J L, Shanks W C & Seyfried W E. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge. Geochimica et Cosmochimica Acta, 2004, 68(13): 2863–2873.
    [49] Kuhn T, Herzig P M, Hannington M D et al., 2003. Origin of fluids and anhydrite precipitation in the sediment-hosted hydrothermal field north of Iceland. Chemical Geology, 202: 5-21.
    [50] Mills R A, Tivey, M K, 1999. Sea water entrainment and fluid evolution within the TAG hydrothermal mound: evidence from analyses of anhydrite. In: Cann, J.R., Elderfield, H., Laughton, A. (Eds.), Mid-Ocean Ridges. The Royal Society, Cambridge, pp. 225-263.
    [51] Shikazono N, Holland H D. The partitioning of strontium between anhydrite and aqueous solutions from 150℃to 250℃. Econ. Geol. Monogr. 5, 1983, 320-328.
    [52] Mills R A, Teagle, D A H, Tivey, M K, 1998. Fluid mixing and anhydrite precipitation within the TAG mound. In: Herzig P M, Humphris S E, Miller D J, Zierenberg R A. (Eds.), Proc. Ocean Drill. Program, Sci. Results, vol. 158, pp. 119-127. College Station, TX.
    [53] Devey C W, shipboard scientific party, 2002. Hydrothermal studies of Grimsey Field, volcanic studies of Kolbeinsey Ridge. Cruise Report POS 291 of R/V Poseidon, University of Bremen. 42 pp.
    [54] Prieur D. Microbiology of deep-sea hydrothermal vents. Marine Biotechnology, 1997, 15: 242-244.
    [55] Rouxel O, Fouquet Y & Ludden J N. Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge: Evidence from sulfur, selenium, and iron isotopes. Geochimica et Cosmochimica Acta, 2004, 68(10): 2295-2311.
    [56] Janecky D R & Shanks W C. Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: Chimneys, massive sulfides, and subjacent alteration zones. Canadian Mineralogist, 1988, 26: 805-825.
    [57] Shanks W C. Stable isotopes in seafloor hydrothermal systems. In Stable Isotope Geochemistry, Reviews in Minerology and Geochemistry. Minerological Society of America, 2001, 43 (eds. J.W. Valley and D. Cole): 469-525.
    [58] Ohmoto H & Goldhaber M B. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed (ed. H. L.Barnes), pp. 517-611. Wiley, 1997.
    [59] Bach W & Humphris S E. Relationship between the Sr and O isotope compositions of hydrothermal fluids and the spreading and magma-supply rates at ocean spreading centers. Geology, 1999, 27: 1067-1070.
    [60] Charlou J L, Donval J P, Douville E, Jean-Baptiste P, Radford-Knoery J, Fouquet Y, Dapoigny A, Stievenard M. Compared geochemical signatures and the evolution of Menez Gwen (37°50'N) and Lucky Strike (37°17'N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chemical Geology, 2000, 171: 49-75.
    [61] Shanks W C, Bischoff J L & Rosenbauer R J. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: Interaction of seawater with fayalite and magnetite at 200–350°C. Geochimica et Cosmochimica Acta, 1981, 45, 1977-1995.
    [62] Machel H G, Krouse H R & Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem, 1995, 10: 373-389.
    [63] Deming J W & Baross J A. Deep-sea smokers: Windows to a subsurface biosphere? Geochimica et Cosmochimica Acta, 1993, 57: 3219-3230.
    [64] McCollom T & Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrotehrmal systems. Geochimica et Cosmochimica Acta, 1997, 61, 4375-4391.
    [65] Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cos mochimica Acta, 2001, 65, 1117-1124.
    [66] Habicht K S, Canfield D E & Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta, 1998, 62, 2585-2595.
    [67]初风友,陈丽蓉,石学法.大西洋中脊热液黄铁矿的标型演化特征研究.科学通报, 1995, 40(12): 1119-1121.
    [68]吴世迎,刘焱光,白黎明等.太平洋三海区热液硫化物中黄铁矿的形态标型和矿物标型特征研究.海洋科学进展, 2005, 23(1): 27-34.
    [69]郑建斌,曹志敏,安伟.东太平洋海隆9°~10°N热液烟囱体矿物成分、结构和形成条件.地球科学——中国地质大学学报, 2008, 33(1): 19-25.
    [70]包申旭,周怀阳,彭晓彤等. Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征.地球化学, 2007, 36(3): 303-310.
    [71]曾志刚,蒋富清,翟世奎等.冲绳海槽Jade热液活动区块状硫化物的铅同位素组成及地质意义.地球化学,2000, 29(3): 239-245.
    [72]曾志刚,翟世奎,杜安道.冲绳海槽Jade热液区海底块状硫化物的Os同位素组成.海洋与湖沼,2003,34(4): 407-413.
    [73]曾志刚,翟世奎,杜安道.大西洋中脊TAG热液区中块状硫化物的Os同位素研究.沉积学报, 2002, 20(3): 394-398.
    [74]曾志刚,秦蕴珊,翟世奎.大西洋中脊TAG热液区硫化物中流体包裹体的He-Ne-Ar同位素组成.中国科学(D), 2000, 30(6): 628-633.
    [75]曾志刚,秦蕴珊,翟世奎.冲绳海槽Jade热液区块状硫化物中流体包裹体的氦、氖、氩同位素组成.海洋学报, 2003, 25(4): 36-42.
    [76] Fouquet Y, Aucla G, Cambon P & Etoubleau J. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise. Marine Geology, 1988, 84(3-4): 145-178.
    [77] Francis T J G. Resistivity measurements of an ocean floor sulfide mineral deposit from the submersible Cyana. Marine Geophys Res, 1985, 7, 419-438.
    [78] Haymon R M & Kastner M. Hot spring deposits on the East Pacific Rise at 21°N: Prelininary description of mineralogy and genesis. Earth and Planetary Science Letters, 1980, 53: 363-381.
    [79] Rona P A. Hydrothermal mineralization at seafloor spreading centers. Earth Sci. Rev., 1984, 20: 1-104.
    [80] Lalou C., Labeyrie L, Beichet E & Perez-Leclaire H. les dép?ts hydrothermaux de la dorsale Est Pacifique. Radiochronologie des sulfures et géochimie isotopique des dép?ts de silice. Bull. Soc. Géol. Fr., 1984, (7), 26(1): 9-14.
    [81] Lalou C, Brichet E & Hekinian R. Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12°N50′. Earth and Planetary Science Letters, 1985, 75: 59-71.
    [82] Ono S, Shanks III W C, Rouxel O J et al. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochimica et Cosmochimica Acta, 2007, 71(5): 1170-1182.
    [83] Fouquet Y, Knott R, Cambon P et al. Formation of large sulfide mineral depositsalong fast spreading ridges. Example from off-axial deposits at 12°43'N on the East Pacific Rise. Earth and Planetary Science Letters, 1996, 144: 147-162.
    [84] Fouquet Y, Marcoux E. Lead isotope systematics in Pacific hydrothermal sulfide deposits. Journal of Geophysical Research, 1995, 100(B4): 6025-6040.
    [85] Jean-Baptiste P & Fouquet Y. Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N. Geochlmica et Cosmochimica Acta, 1996, 60(1): 87-93.
    [86] Francheteau J & Ballard R D, 1983. The East Pacific Rise near 21°N, 13°N and 20°N: Inferences for along-strike variability of axial processes of the mid-ocean ridge. Earth and Planetary Science Letters, 64: 93-116.
    [87] Hékinian R, Fevrier M., Avedik F et al. East Pacific Rise near 13°N: Geology of New Hydrothermal Fields. Science, 1983, 219: 1321-1324.
    [88] Hékinian R, Francheteau J, Renard V et al. Intense hydrothermal activity at the axis of the East Pacific Rise near 13°N. Submersible witnesses the growth of a sulfide chimney. Marine Geophys Res, 1983, 6: 1-14.
    [89] Hékinian R & Fouquet Y. Volcanis m and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13°N. Econ. Geol., 1985, 80: 221-243.
    [90] Gente P, Auzende J M, Renard V, Fouquet Y & Bideau D. Detailed geological mapping by submersible of the East Pacific Rise axial graben near 13°N. Earth and Planetary Science Letters, 1986, 78: 224-236.
    [91] Moss R & Scott S D. Silver in sulfide chimneys and mounds from 13 degrees N and 21 degrees N, East Pacific Rise. Canadian Mineralogist, 1996, 34: 697-716.
    [92] Klitgord K D, Manderickx J. Northern East Pacific Rise: magnetic anomaly and bathymetry framework. Journal of Geophysical Research, 1982, 87(B8), 6725-6750.
    [93]Choukroune P, Franceteau J & Hekinian R. Tectonics of the East Pacific Rise near 12°50'N: A Submersible Study, Earth and Planetary Science Letters, 1984, 68: 115–127.
    [94]Sinton J M, Detrick R S. Mid-ocean ridge magma chambers. Journal of Geophysical Research, 1992, 97(B1): 197-216.
    [95]Ballard R D, Hekinian R, Francheteau J. Geological setting of hydrothermal activity at 12°50′N on the East Pacific Rise: a submersible study. Earth and Planetary Science Letters, 1984, 69: 176-186.
    [96]张国良,曾志刚,殷学博,陈代庚,王晓媛,汪小妹.东太平洋海隆13°N附近岩浆周期性混合作用:模拟计算和环带斜长石证据.中国科学(D), 2009, 39(1): 35-50.
    [97]Marchig V, Erzinger J, Rosch H. Sediments from a hydrothermal field in the Central Valley of the Galapagos rift spreading center. Marine geology, 1987, 76(3-4): 243-251.
    [98]Ames D E, Franklin J M & Hannington M D. Mineralogy and geochemistry of active and inactive chimneys and massive sulfide, Middle Valley, northern Juan de Fuca Ridge: an evolving hydrothermal system. Canadian Mineralogiu, 1993, 31: 997-1024.
    [99]Butterfield D A, Fouquet Y, Halbach M, et al.Group report: How can we describe fluid-mineral processes and the related energy and material fluxes?In: Halbach P M, Tunnicliffe V, Hein J R, eds. Energy and Mass Transfer in Marine Hydrothermal Systems. Berlin: Dahlem univeristy press, 2003: 183-209.
    [100]张宜华.精通SPSS.北京:清华大学出版社, 2001, 108-203.
    [101]Trefry J H, Butterfield D B, Metz S, Massoth G J, Trocine R P, Feely R A. Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge. Journal of Geophysical Research, 1994, 99(B3): 4925-4935.
    [102]Metz S, Trefry J H. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochlmica et Cosmochimica Acta, 2000, 64: 2267-2279.
    [103]Schmidt K, Koschinsky A, Garbe-Sch?nberg D et al. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chemical Geology, 2007, 242: 1-21.
    [104]Jean-Baptiste P, Charlou J L, Stievenard M, Donval J P, Bougault H, Mevel C. Helium and methane measurements in hydrothermal fluids from the mid-Atlantic Ridge: the Snake Pit site at 23°N. Earth and Planetary Science Letters, 1991, 106: 17-28.
    [105]Douville E, Charlou J L, Oelkers E H et al. The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology, 2002, 184: 37-48.
    [106]Charlou J L, Donval J P, Jean-Baptiste P, Dapoigny A. Gases and helium isotopes in high temperature solutions sampled before and after ODP Leg 158 drilling at TAG hydrothermal field (26°N, MAR). Geophysical Research Letters, 1996, 23: 3491-3494.
    [107]Charlou J L, Fouquet Y, Bougault H et al. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 1998, 62: 2323-2333.
    [108]Charlou J L, Donval J P, Fouquet Y, Jean-Baptiste P, Holm N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology, 2002, 191: 345-359.
    [109]Koschinsky A, Seifert R, Halbach P et al. Geochemistry of diffuse low-temperature hydrothermal fluids in the North Fiji Basin. Geochimica et Cosmochimica Acta, 2002, 66(8): 1409-1427.
    [110]Butterfield D A & Massoth G J. Geochemistry of north Cleft segment vent fluids: Temporal changes in chlorinity and their possible relation to recent volcanism. Journal of Geophysical Research, 1994, 99(B3): 4951-4968.
    [111]Butterfield D A, McDuff R E, Mottl M J et al. Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: Phase separation and brine loss. Journal of Geophysical Research, 1994, 99(B5): 9561-9583.
    [112]Charlou J L, Fouquet Y, Donval J P et al. Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17°to 19°S (Naudur cruise, 1993) phase separation processes controlled by volcanic and tectonic activity. Journal of Geophysical Research, 1996, 101(B7): 15899-15919.
    [113]Pichler T, Veizer J. Precipitation of Fe III oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea. Chemical Geology, 1999, 162: 15-31.
    [114]Filella M, Nelson Belzile N, Chen Y W. Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth-Science Reviews, 2002, 59: 265-285.
    [115]Kuhn T, Bostickb B C, Koschinsky A et al. Enrichment of Mo in hydrothermal Mn precipitates: possible Mo sources, formation process and phase associations. Chemical Geology, 2003, 199: 29-43.
    [116]Vink B W. Stability relations of antimony and arsenic compounds in the light ofrevised and extended Eh–pH diagrams. Chemical Geology, 1996, 130: 21-30.
    [117]Descostes M, Vitorge P & Beaucaire C. Pyrite dissolution in acidic media. Geochimica et Cosmochimica Acta, 2004, 68(22): 4559-4569.
    [118]Glynn S, Mills R A, Palmer M R et al. The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides. Earth and Planetary Science Letters, 2006, 244: 170-185.
    [119]Christel L & Alexandra N. Energetics of stable and metastable low-temperature iron oxides and oxyhydroxides. Geochimica et Cosmochimica Acta, 1998, 62(17): 2905-2913.
    [120]Byrne R H & Laurie S H. Influence of pressure on chemical equilibria in aqueous system s—with particular reference to seawater. Pure Appl. Chem., 1999, 71: 871-890.
    [121]Michard G, Albarede F, Michard A, Minster J F, Charlou J L, Tan N. Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site. Earth and Planetary Science Letters 1984, 67, 297-307.
    [122]Bowers T S, Campbell A C, Measures C I, Spivack A J, Khadem M, Edmond J. Chemical controls on the composition of vent-fluids at 13°N-11°N and 21°N, East Pacific Rise. Journal of Geophysical Research, 1988, 93(B5), 4522-4536.
    [123]German C R, Colley S, Palmer M R, Khripounoff A, Klinkhammer G P. Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise. Deep-Sea Research I, 2002, 49: 1921-1940.
    [124]Robie R A & Hemingway B S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105pascals) and at higher temperatures. U.S. Geol. Survey Bull, 2131, 1995, 461pp.
    [125]Beverskog B & Puigdomenech I. Revised pourbaix diagrams for iron at 25-300°C. Corrosion Science, 1996, 38(12): 2121-2135.
    [126]Kelsall G H & Williams R A. Thermodynamics of Fe-Si-H2O at 298K. J. Electrochem. Soc, 1991, 138: 931-940.
    [127]Hemingway B S. Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, on selected oxygen buffer reactions. Am. Mineral, 1990, 75: 781-790.
    [128]Cornell R M & Schwertmann U. The Iron Oxides. VCH, New York, 1996.
    [129]Mills K C. Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides. Butterworths, London, 1974.
    [130]傅献彩,沈文霞,姚天扬.物理化学(第四版).北京:高等教育出版社, 1990.
    [131]Anderko A & Shuler P J. A computational approach to predicting the formation of iron sulfide species using stability diagrams. Computers & Geosciences, 23(6), 1997: 647-658.
    [132]Rickard D & Luther III G W. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanis m. Geochimica et Cosmochimica Acta, 1997, 61(1): 135-147.
    [133]Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochimica et Cosmochimica Acta, 1997, 61(1): 115-134.
    [134]Wilkin R T & Barnes H L. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
    [135]Butler I B, B?ttcher M E, Rickard D, Oldroyd A. Sulfur isotope partitioning during experimental formation of pynite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth and Planetary Science Letters, 2004, 228: 495-509.
    [136]Naumov G. B, Ryzhenko B N, Khodakovsky I L. Handbook of Thermodynamic Data, U.S. Geological Survey: Washington, D.C., 1974.
    [137]Taylor D F, Thermodynamic properties of metal-water systems at elevated temperatures. J. Electrochem. Soc., 1978, 125: 808-812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700