用户名: 密码: 验证码:
木荷、杉木人工林生态系统DOM来源、浓度和通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可溶性有机物(DOM)通常指能透过0.45μm孔径滤膜的溶解性有机物,包含可溶性有机碳(DOC),可溶性有机氮(DON)和可溶性有机磷(DOP)。DOM是陆地和水生生态系统中一类重要的、十分活跃的化学组分,它不但能促进矿物的风化,是微生物生长和生物分解过程中的重要能量来源,而且对生态系统营养物质的有效性和流动性、污染物的毒性及其迁移特性都有直接影响。森林生态系统中碳与可溶性有机养分的动态、迁移和调控机理等是目前国际研究焦点之一。但是,目前国内对森林生态系统DOM的研究很少,仅见少数零星报道,开展有关森林生态系统DOM的研究已十分迫切。为此在福建建瓯闽北水土保持定位站木荷和杉木人工林生态系统研究不同生态层面DOM来源、浓度、通量及其变化特征。研究结果如下:
     1) 试验地2002年天然降水中DOC平均浓度为1.65mg·L~(-1),DON平均浓度为0.13mg·L~(-1)。DOC、DON年通量分别为3.06和0.23g·m~(-2)·yr~(-1)。降水通过林分不同层面后DOM浓度和通量增加。木荷、杉木林穿透雨、树干茎流、枯枝落叶层、地表径流、表层土壤(0~20cm)渗滤液DOC年平均浓度分别为11.17和10.25,17.55和19.07,45.06和34.43,26.286和22.66以及37.56和24.15 mg·L~(-1)。DON年平均浓度分别为0.24和0.19,0.48和0.66,0.81和0.49,0.67和0.47,0.62和0.36 mg·L~(-1)。木荷、杉木林穿透雨、树干茎流、地表径流DOC年通量分别为16.74和12.05,0.64和2.18,4.56和2.96 g·m~(-2)·yr~(-1)。DON年通量分别为0.37和0.24,0.068和0.022,0.124和0.066g·m~2·yr~(-1)。
     2) DOC月能量在6月达到最大值,最小值出现在2月,DON浓度变化趋势与DOC变化趋势相似。木荷、杉木林穿透雨DOC浓度最小值均在1月出现,而2月出现最大值;DON浓度5月出现最大值,10月出现最小值。杉木林树干茎流与地表径流DOC和DON浓度月变化趋势与木荷林的相似。两林分树干茎流与地表径流DOC月平均浓度分别在10月和9月出现最大值;而DON的分别出现在6月和5月。两林分树干茎流与地表径流DOC和DON月通量变化趋势不—致。木荷、杉木林表层土壤(0-20cm)溶液DOC和DON浓度变化趋势相似,4月出现最小值。表层土壤溶液DOC和DON浓度总体为:木荷林>杉木林。
     3) 降水DOC浓度季节差异不大,DON浓度表现为春<冬<夏<秋,降水DOC和DON通量季节动态表现为:冬<秋<春<夏。木荷、杉木林穿透雨DOC浓度季节动态为:秋<夏<冬<春,DON的为:秋<冬<夏<春:而穿透雨DOC和DON通量表现为:冬<秋<春<夏。木荷、杉木林树干茎流、枯枝落叶层、地表径流DOC浓度季节动态模式为:秋>夏>春>冬;
    
    DON为:春》夏乒冬)秋。木荷、杉木林表层(任佗仅m)土壤〕X)浓度季节变化模式为:秋
    >名)春>夏,DON表现为:枷易争冬。
    4)土壤、枯枝落叶层以)C随淋溶时间增加而减小,释放速率表现为木荷材)杉木林。土壤、枯
     枝落叶层IXX二在静止的水中释放速率七以茂小,木荷林LxX二的释放速率比杉木林的大。在
     纵向淋溶过程中,淋溶液经过两林分卜1 ocm土壤时吸附作用最大,IX兀:浓度阳氏50%以
     上。
    5)PH值对枯枝落叶层和土壤IxX:浓度均有显著的影响,并随培养时间延长而减小。
Dissolved organic matter (DOM), including dissolved organic carbon (DOC), nitrogen (DON) and phosphorus (DOP), is often described as solutes passing filter < 0.45nm in pore size. DOM contributes significantly to carbon, nitrogen, phosphorus and nutrient eyeing, its mobilization and transport is of central importance to soil-forming processes, and transport of heavy metals.
    Numerous studies have examined internal cycling or fluvial export of DOM in forested landscapes. Fluvial export of DOM (major in DOC) has received considerable attention, and has been the subject of several review papers in which global compilations and cross-biome comparisons are made. Internal fluxes of DOM (measurements of DOM in rainfall, throughfall, stemflow, forest floor extract solution, runoff and soil solution) are much less frequently reported, and characterization of differences across biomes has not been attempted.
    Despite considerable information on various aspects of DOM cycling, very few studies address the many linkages between precipitation and its solution processes that work to regulate the concentration, composition, and fluxes of DOM within a sub-tropic forest ecosystem. Multidisciplinary studies within the Minbei Located Research Station of Water and Soil Conservation provide an opportunity to make some of this linkages. This thesis show the internal concentrations and fluxes and their dynamics (monthly and seasonal dynamics )of DOM during 2002 within the Schima superba and Ctominghamia lanceolata plantation ecosystems such as:
    1) In precipitation, annual mean concentrations of DOC and DON were 1.65 and 0.13 mg-L-1 respectively. DOM concentrations increased with pass through water through different ecosystem profiles (the forest canopy, forest floor, soil etc.). In Schima superba and Curminghamia lanceolata plantation ecosystem, annual mean concentrations were estimated as 11.17 and 1025 , 17.55 and
    
    
    19.07, 45.06 and 34.43, 26286 and 22.66,37.56 and 24.15 mg-L"1 in throughfall, stemflow, forest floor extract solution, runoffand soil solution respectively. While those for DON were 0.24 and 0.19, 0.48 and 0.66, 0.81 and 0.49,0.67and 0.47,0.62 and 0.36 mg-L-1. Annual fluxes of DOC in through, stemflow and runoff were 16.74 and 12.05 , 0.64and2.18, 4.56 and 2.96 g *m"2 *yf\ respectively. DON fluxes was lower than DOC in both ecosystems, and were estimated as 037 and 0.24 , 0.068 and0.022, 0.124and0.066g m"2 yr-1.
    2) In precipitation, monthly concentrations of DOC ranged from 1.5 to 1.8 mg-L"1, while those for DON ranged from 0.08 to 0.17 mg-L"1. Peak monthly fluxes of DOC and DON occurred in June, and both lowest values were observed in February. DOC and DON concentrations in throughfall peaked in February and May respectively in both forest While the lowest concentrations of DOC and DON occurred in January and October respectively. The trends of monthly mean DOC concentration dynamics showed in the following order: decreasing at the beginning and increasing later. While DON showed the reverse response. Monthly fluxes of DOM did not exhibit significant trend. Concentrations of DOC in top soil solutions acted the same dynamic trends in both forest types. Lowest concentrations of DOM were observed in April, and then increased gradually. The average concentration of DOM in top soil solution in Schima superba site was highter than that in Ciffininghamia lanceolata site.
    3) Seasonal mean concentrations of DOC in precipitation had no obvious difference. However DON showed the seasonal dynamics and increased in the following order spring < winter < summer < fall. Seasonal fluxes of DOM in precipitation increased in following order winter < fall < spring < summer. Seasonal fluxes of DOC concentration in throughfall in both forest types exhibited as follows: fall < summer
引文
1 Sundquist E T. The global carbon dioxide budget. Science, 1993, 259: 935~941.
    2 Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185~190.
    3 Wofsy S C, Goulden M L, Munger J W, et al. Net exchange of CO2 in a mid-latitude forest. Science, 1993, 260: 1314~1317.
    4 Wang X K (王效科), Bai Y Y (白艳莹), Ouyang Z Y (欧阳志云), et al. Missing sink in global carbon cycle and its causes. Acta Ecologica Sinica (in Chinese) (生态学报), 2002, 22(1): 94~103.
    5 Schiff S L, Trumbore S E, Dillon P J. Dissolved organic carbon cycling in forested watersheds: A carbon isotope approach. Water Resour. Res., 1990, 26: 2949~2957.
    6 Zech W, Guggenberger G, Schulten H R. Budgets and chemistry of dissolved organic carbon in forest soils: effects of anthropogenic soil acidification. Sci. Total Environ., 1994, 152: 49~62.
    7 杨玉盛,郭剑芬,陈光水等.森林生态系统DOM的来源、特性及流动.[J].生态学报,2003,23(3):547~558.
    8 Michalzik B and Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem. Eur. J. Soil Sci., 1999, 50: 579~590.
    9 Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci., 2000, 165(4): 277~304.
    10 Flessa H, Ludwig B, Heil B, et al. The origin of soil organic C, dissolved organic C and respiration in a long-term experiment in Halle, Germany, determined by ~(13)C natural abundance. Journal of Plant Nutr. Soil Sci., 2000, 163: 157~163.
    11 Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol., 2002, 36: 742~746.
    12 Evans J A. Effects of dissolved organic carbon and sulfate on aluminum mobilization in forest soil columns. Soil Sci. Soc. Am. J., 1986, 50: 1576~1578.
    13 Quails R G, Haines B L, Swank W T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology, 1991, 72: 254~266.
    14 Lehman R M, Mills A L. Field evidence for copper mobilization by dissolved organic matter. Water Res., 1994, 28(12): 2487~2497.
    15 Kalbitz K, Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Sci. Total Environ., 1998, 209(1): 27~39.
    16 Zhou H N, Thompson M L. Copper-binding ability of dissolved organic matter derived from
    
    anaerobically digested biosolids. J. Environ. Qual., 1999, 28(3): 939~944.
    17 McHale,M R, Mitchell M J, McDonnell J J, et al. Nitrogen solutes in an Adirondack forested watershed: Importance of dissolved organic nitrogen. Biogeocheraistry, 2000, 48(2): 165~184.
    18 Peterson D L. Control of nitrogen export from watersheds by headwater streams [re: nitrogen and eutrophication of lakes a nd streams]. Science, 2001, 292: 86~92.
    19 Perakis S S, Hedin L O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 2002, 415: 416~419.
    20 Perakis S S, Hedin L O. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology, 2001, 82(8): 2245~2260.
    21 Nasholm T, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen. Nature, 1998, 392: 914~916.
    22 Watson R T, V erardo D J.Land-use change and forestry [M]Cambridge University Press,2000.
    23 Canadell J G, Mooney HA. Ecosystem merabolism and the global carbon cycle [J]Tree, 1999,14(6):249
    24 Spiker E C, Rubin M. Petroleum pollutants in surface and groundwater as indicated by the carbon-14 activity of dissolved organic carbon. Science, 1975, 187: 61~64.
    25 Post W.M. et al. 1982. Soil carbon pools and world life zones. Nature. 298:157-159
    26 Detwiler R.P. and Charles A.S. Hall. 1988. Tropical forests and the global carbon cycle. Science. 239:42-47
    27 Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Trexler M.C. and Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science. 263:185-190
    28 Fang J.W., Chen A.P., Pang C.H., Zhai S.Q., Ci L.J. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science. 292(22): 2320-2322
    29 杨玉盛著.杉木林可持续经营的研究.北京:中国林业出版社,1998
    30 Dalva, M. and T.R. Moore. 1991. Sources and sinks of dissolved organic carbon in a forested swamp catchment.Biogeochemistry 15: 1-19.
    31 Carlisle A, Brown AHF, White EJ (1966) The organic matter and nutrient elements in theprecipitation beneath a sessile oak (Quercus petraea) canopy. J. Ecol. 54:87-98
    32 Chang, F.H., and Alexander. 1984. Effects of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils. Soil Science 138:226-234
    33 Cronan CS(1985) Comparative effects of precipitation acidity on three forest soils: carbon cycling responses. Plant and Soil 88: 101-112
    34 Parker G G. Throughfall and stemflow in the forest nutrient cycle. Advances in ecological research, 1983,13:57-113
    
    
    35 Nsholm T, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen. Nature, 1998, 392: 914~916
    36 刘世海,余新晓 密云水库集水区人工油松水源保护林降水化学性质研究[J]应用生态学报 2001,12(5):697~700
    37 Guggenberger G, Zech W & Schulten H-R (1994b) Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Org. Geochem. 21: 51-66
    38 Kranabetter J. M., Banner A. Selected biological and chemical properties of forest floors across bedrock types on the north coast of British Columbia. Can. J. For. Res., 2000, 30 (6): 971~981.
    Nalder I. A., Wein R. W. Long-term forest floor carbon dynamics after fire in upland boreal forests of western Canada. Global Biogeochemical Cycles, 1999, 13(4): 951~968.
    39 Post W M, Ⅲ. Organic carbon in soil and the global carbon cycle. In: Heimann M eds. The Global Carbon Cycle. Springer-Verlag Berlin/Heidelberg. 1993.277~302.
    40 Casals, P., J. Romanya, J. Cortina, J. Fons, M. Bode, and V.R. Vallejo. 1995. Nitrogen supply rate in Scots pine(Pinus syivestris L.)forests of contrasting slope aspect. Plant Soil 168/169:67~73. Quails R G, Haines BL. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci. Soc. Am. J., 1992, 56: 578~586
    41 Currie W S, Aber J D, McDowell W H, et al. Vertical transport of dissolved organic C and N under long-term amendments in pine and hardwood forests. Biogeochemistry, 1996, 35: 471~505.
    42 Qualls R G, Haines B L, Swank W T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology, 1991, 72: 254~266.
    43 Kaiser K, Guggenberger G, Haumaier L, et al. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry, 2001, 55: 103~143.
    44 Guggenberger G, Kaiser K, Zech W. Mobilization and immobilization of dissolved organic matter in forest soils. Z. Pflanzenernhr. Bodenk., 1998, 161: 401~408.
    45 Quails R G, Haines B L. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci. Soc. Am. J., 1992, 56: 578~586.
    46 Cronan C S. Patterns of organic acid transport from forested watersheds to aquatic ecosystems. In: Perdue E M and Gjessing E T eds. Organic Acids in Aquatic Ecosystems. Life Sciences Research Report 48. John Wiley and Sons Ltd., Chichester. 1990. 245~260.
    47 Northup R R, Yu Z S, Dahlgren R A, et al. Polyphenol control of nitrogen release from pine litter. Nature, 1995, 377(21): 227~229.
    
    
    48 曹建华,潘根兴,袁道先.不同植物凋落物对土壤有机碳淋失的影响及岩溶效应.第四纪研究,2000,20(4):359~366.
    49 McDowell W H, Likens G E. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr., 1988, 58: 177~195.
    50 Zsolnay A, Steindl H. Geovariability and biodegradability of the water-extractable organic material in an agricultural soil. Soil Biol. Biochem., 1991, 23: 1077~1082.
    51 Huang W Z, Schoenau J J. Fluxes of water-soluble nitrogen and phosphorous in the forest floor and surface mineral soil of a boreal aspen stand. Geoderma, 1998, 81: 251~264.
    52 Flessa H, Ludwig B, Hell B, et al. The origin of soil organic C, dissolved organic C and respiration in a long-term experiment in Halle, Germany, determined by ~(13)C natural abundance, Journal of Plant Nutr. Soil Sci., 2000, 163: 157~163.
    53 Uselman S M, Quails R G, Thomas R B. Effects of increased atmospheric CO_2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil, 2000, 222: 191~202.
    54 Strobel B W, Hansen H C B, Borggaard O K, et al. Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeoehemistry, 2001, 56(1): 1~26.
    55 Leenheer J A, Huffman Jr EWD. Classification of organic solutes in water by using macroparticular resins, J. Res. US. Geol. Survey, 1976, 4(6): 737~751
    56 Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci., 2000, 165(4): 277~304.
    57 Moore T R. Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand. 1. Maimai. Water Resour. Res., 1989, 25(6): 1321~1330.
    58 Meyer J L, Tate C M. The effects of watershed disturbance on dissolved organic carbon dynamics of a stream. Ecology, 1983, 64(1): 33~44.
    59 Easthouse K B, Mulder J, Christophersen N, et al. Dissolved organic carbon fractions in soil and stream water during variable hydrological conditions at Birkenes, Southern Norway. Water Resour Res., 1992, 28: 1585~1596.
    60 Tipping E, Marker A F H, Butterwick C, et al. Organic carbon in the Humber rivers. Sci. Total Environ., 1997, 194: 345~355.
    61 McDowell W H, Currie W S, Aber J D, et al. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut., 1998, 105: 175~182.
    62 Tipping E, Woof C, Rigg E, et al. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ. Int., 1999, 25: 83~95
    
    
    63 Cronan C S, Aiken G R. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim. Cosmochim. Acta, 1985, 49:1697~1705.
    64 Liechty H O, Kuuseoks E, Mroz G D. Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes. J. Environ. Qual., 1995, 24: 927~933.
    65 McDowell W H, Wood T. Podzolization: soil processes control dissolved organic carbon concentrations in stream water. Soil Sci., 1984, 137: 23~32.
    66 Lundquist E J, Jackson L E, Scow K M. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol. Biochem., 1999, 31:1031~1038.
    67 Prechtel A, Alewell C, Michaizik B, et al. Difference effect of drying on the fluxes of dissolved organic carbon and nitrogen from a Norway spruce forest floor. Journal of Plant Nutr. Soil Sci., 2000, 163: 517~521.
    68 Gosz J R, Likens G E, Bormann F H. Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook Forest. Oecologia, 1976, 22: 305~320.
    69 Carlson C A, Ducklow H W, Michaels A F. Annual flux of dissolved organic-carbon from the euphoric zone in the northwestern sargasso sea. Nature, 1994, 371:405~408
    70 Michalzik B, Kalbitz K, Park J H, et al. Fluxes and concentrations of dissolved organic carbon and nitrogen-a synthesis for temperate forests. Biogeochemistry, 2001, 52(2): 173~205.
    71 Quails R G, Haines B L, Swank W T, et al. Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests. Soil Sci. Soc. Am. J., 2000, 64: 1068~1077.
    72 Lewis Jr W M, Melack J M, McDowell W H, et al. Nitrogen yields from undisturbed watersheds in the America. Biogeochemistry, 1999, 46: 149~162.
    73 Sharpley A N, Ahuja L R, Menzel R G. J. Environ. Qual., 1981, 10: 386~391.
    74 Liang T(梁涛), Tao S(陶澍), Liu G J (刘广君), et al. Autochthonous release modeling of dissolved humic substances in Yichun river. Acta Scientiae Circumstantiae (in Chinese) (环境科学学报), 1997, 17(2): 136-140.
    75 Schiff S, Aravena R, Mewhinney E, et al. Precambrian Shield Wetlands: Hydrological control of the sources and export of dissolved organic matter. Climatic Change, 1998, 40: 167~188.
    76 Hagedorn F, Schleppi P, Waldner P. Export of dissolved organic carbon and nitrogen from Gleysol dominated catchments-the significance of water flow paths. Biogeochemistry, 2000, 50:1 37~161.
    77 鲁如坤.农业土壤化学分析[M].北京:中国农业科技出版社,2000.
    78 中华人民共和国林业部科技司.林业标准汇编(三)[S].北京:林业出版社,1991.
    79 Likens, G.E., Edgerton, E.S., Galloway, J.N. The composition and deposition of organic carbon in precipitation. Tellus, 1983, 35: 16~24.
    80 B.Michalzik, K.Kalbitz,J-H.Park,et.al. Fluxes and concentrations of dissolved organic carbon and
    
    nitrogen-a synthesis for temperate forests. Biogeochemistry 2001,52: 173-205.
    81 Fahey TJ & Yavitt JB (1988) Soil solution chemistry in lodgepole (Pinus contorta spp. latifolia) ecosystems, southeastern Wyoming, USA. Biogeochemistry 6: 91-118
    82 Currie W S, Aber J D. Modeling leaching as a decomposition process in humid montane forests. Ecology, 1997, 78(6): 1844~1860
    83 Dosskey MG & Bertsch PM (1997) Transport of dissolved organic matter through a sandyforest soil. Soil Sci. Soc. Am. J. 61: 920-927.
    84 Fernandez-Sanjurjo MJ, Fernandez Vega V & Garcia-Rodeja E (1997) Atmospheric deposition and ionic concentration in soils under pine and deciduous forests in the river Sorcatchment (Galicia, NW Spain). Sci. Total Environ. 204: 125~134.
    85 Arthur MA & Fahey TJ (1993) Controls on soil solution chemistry in a subalpine forest in North-Central Colorado. Soil Sci. Soc. Am. J. 57:1122-1130.
    86 McLaughlin, J W, Lewin J C, Reed D D et al. Soil factors related to dissolved organic carbon concentrations in a black spruce swamp, Michigan. Soil Sci., 1994,158(6): 454~464.
    87 Nambu Kei, Yonebayashi Koyo. Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferious and broad leaf forest. Soil Sci. Plant Nutr., 1999,45(2):307~319.
    88 Godde M M, David B, Christ M J, Krupenjoan M, Vance G F. Carbon mobilization from the forest floor under red spruce in the Northeastern U. S. A. Soil Biol. Biochem., 1996,28(9): 1181~1189.
    89 Miller.H.G. The possible role of forests in streamwater acidification. [J] Soil Use and Management,1985.1: 8~29.
    90 Gundersen P, Emmett BA, Kjonaas OJ, Koopmans CJ & Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manage.
    91 Hendrick R L, Pregitzer K S. Temporal and depth-related patterns of fine root dynamics in northern hardwood forest. Ecology, 1996, 77(1): 167~176
    92 M. David.,G.Vance,and J. Kahl Chemistry of dissolved organic carbon at Bear Brook watershed Maine: stream water response to (NH_4)_2SO_4. Environmental Monitoring and Assesment 1999,55:149-163
    93 林滨,陶澍,刘晓航.土壤与沉积物中水溶性有机物释放动力学研究[J].环境科学学报,1997,17(1):8~13.
    94 陶澍,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].中国环境科学,1996,16(4):307~310
    95 Tephan Solinger, Karsten Kalbitz.& Egbert Matzner. Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest Biogeochemistry 2001,55: 327~349.
    
    
    96 Michael D. MaArthur and John S. Richardson Microbial utilization of dissolved organic carbon leached from riparian litterfall. Can. J. Fish. Aquat. sci. 2002, Vol. 59: 1668~1672.
    97 Homann P S, Grigal D F. Molecular weight distribution of soluble organics from laboratory-manipulated surface soil. Soil Sci. Soc. Am. J., 1992, 56: 1305~1310.
    98 Jandl R, Sollins P. Water-extractable soil carbon in relation to the bclowground carbon cycle. Biol. Fertil. Soils., 1997, 25: 196~201.
    99 Nelson P N, Dictor M C, Soulas G. Availability of organic carbon in soluble and particle-size fractions from a soil profile. Soil Biol. Biochem., 1994, 26: 1549~1555.
    100 Boyer J N, Groffman P M. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biol. Biochem., 1996, 28: 783~790.
    101 Vance G F, David M B. 1989. Effect of acid treatment on dissolved organic carbon retention by a Spodic horizon. Soil Sci. Soc. Am. J., 53: 1242~1247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700