用户名: 密码: 验证码:
宽带雷达信号侦察接收机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种新体制、新技术在雷达系统中的广泛应用,雷达侦察任务的复杂性日益凸显。现代雷达极宽的工作带宽、复杂多变的信号形式、更隐蔽的收发体制等新特性给雷达侦察接收机在信号截获、参数估计、辐射源分选、多信号处理方面提出了极大的挑战。面对现代复杂的侦察电磁环境,侦察接收机必须具备宽的瞬时截获带宽以截获各类雷达信号;具备大的瞬时动态范围,以应对高密度脉冲流条件下时频混叠脉冲以及复杂调制脉冲的多个同时到达强弱信号的截获;具备复杂调制信号的参数估计及识别能力以满足新体制雷达的侦察需要。针对以上雷达侦察接收机需求,本文在现有器件水平条件下,对实现宽瞬时带宽及高瞬时动态范围的新型接收机结构进行了研究,改进和提出了宽带信号截获方法,并主要针对复杂调制信号脉内参数估计及辐射源波达方向(DOA)估计等两个雷达侦察接收关键技术进行了研究。最后,本文基于相关课题,对其中的部分算法在实际工程中进行了验证。
     本文的研究工作和主要创新如下:
     1.针对超宽频段信号截获问题,本文研究了Nyquist折叠接收机(NYFR)原型结构,分析并总结出该采样结构所蕴含的超宽频段信号截获机理,在此基础上提出了基于通道编码、双本振和多本振的NYFR改进结构。这些改进结构解决了原型接收结构不能保证Nyquist区域(NZ)估计的存在和唯一性问题,并扩展了该类接收机能适用的信号类型,降低了工程实现难度。本文同时给出了基于该改进结构的频率捷变(FA)信号和线性调频(LFM)信号的参数估计方法。
     2.针对宽带、大动态信号截获问题,本文从解欠采样频域模糊思路出发,提出了一种基于相位匹配原理(SPMP)的宽带信号截获结构。该结构采用多片低速率、高精度模数转换器(ADC)对宽带、大动态范围信号进行多通道并行采样,再通过相位匹配算法对多路采样数据解欠采样频域解模糊,从而获得宽带信号的低失真重构。该宽带信号截获结构具有子信道可无缝拼接、对器件参差不敏感、易于工程实现等特点。
     3.针对复杂调制雷达信号侦察,本文基于直接序列扩频通信中的子脉冲同步方法,研究了在脉冲不同步情况下,线性调频-伪码(LFM-PRBC)卷积复合调制信号的参数估计算法。
     4.针对旋转载体上的被动雷达信号DOA估计问题,研究了一种适用于宽频段的双阵元旋转基线DOA估计技术,并结合特定信号环境,提出了工程适用的解测向模糊算法,与同类方法相比,具有解模糊概率高、运算量小、易于实现等特点。
     5.研究了被动雷达信号处理机原理样机的系统设计和硬件实现,其中包括原理样机的总体方案设计,以及双通道信道化处理板、参数估计处理板的研制。测试结果显示该原理样机满足设计指标,系统稳定可靠。
Along with wide applications of new systems and technologies in radardevelopment, the task of radar reconnaissance becomes more and more complex. Themodern radar has ultra-wide bandwidth, complicated signal form, and covert transceivermechanism, making signal interception, parameter estimation, radiation sourceclassification, and multi-signal processing in the radar reconnaissance receiver be atremendous challenge. Facing the modern complex reconnaissance environment, thereconnaissance receiver must have the wide instantaneous interception bandwidth tointercept various radar signals, wide instantaneous dynamic range to deal with theinterception of pulses mixed in time-frequency domain in the case of high density pulsestream and non-equal power complex modulated pulses which arrive at the same time,and ability of parameter estimation and recognition of the complex modulated signal tomeet the requirement of new systems radar reconnaissance. Aiming at these problems,in current level of hardware, this thesis researches the structure of the new type receiverwhich achieves wide instantaneous bandwidth and wide dynamic range, improves andproposes the interception method for the wide signal, and researches several keytechnologies in radar reconnaissance receiving such as intra-pulse parameter estimationof complex modulated signals and direction of arrival (DOA) estimation of the radiantsource. Finally, based on some relevant projects, this thesis verified part of algorithms inengineering environments.
     The main researches and contributions of this thesis are as follows:
     1. Aiming at the problem of ultra-wide band signal interception, this thesisresearches the structure of the Nyquist folding receiver (NYFR) prototype anddemonstrates the principle of interception of the ultra-wide band signal in this samplingstructure. From this analysis, we propose an improved NYFR structure based on thechannel coding, double local oscillators, and multiple local oscillators. These improvedstructures figure out the problem that the original receiving structure cannot assure theexistence and uniqueness of the Nyquist zone (NZ) estimation, extend the applicablesignal types of the receiver, and reduce difficulty of engineering realization. Besides, this thesis also gives the parameter estimation algorithm for the frequency agility (FA)signal and the linear frequency modulation (LFM) signal based on this improvedstructure.
     2. Aiming at the problem of wide band and wide dynamic range signal interception,this thesis proposes a wide band signal interception structure based on the signal phasematching principle (SPMP) from the idea of solving frequency ambiguity in the case ofundersampled signals. This structure uses parallel multiple low velocity and highprecision analog-to-digital converters (ADCs) to sample wide band and wide dynamicsignals in multiple channels. Subsequently, to get the low distortion reconstruction ofthe wide band signal, we solve frequency ambiguity in the case of multi-channelundersampled signals using the SPMP algorithm. This wide band signal interceptionstructure has the properties of seamless connection of sub-channels, non-sensitivity ofdevice differences, easy to implement in engineering, and so on.
     3. Aiming at the problem of reconnaissance of the complex modulated radar signal,this thesis researches parameter estimation of the convolutive signal combined LFM andPRBC (LFM-PRBC) hybrid modulated signal in the pulse asynchrony situation basedon the sub-pulse synchronization method in direct sequence spread spectrumcommunication.
     4. Aiming at the problem of radar signal DOA estimation on rotating carrier, thisthesis proposes a direction finding technology based on double antennas rotatingbaseline which is applicable in wide frequency range and researches a solving directionambiguity algorithm for the specific signal environment. As opposed to the similarmethods, this one has the properties of high probability of solving ambiguity, easy toimplement, and so on.
     5. This thesis researches the system design and hardware implementation ofpassive radar signal processor pricinple prototype, including overall scheme design ofthe pricinple prototype and development of the ADC and digital channelized board andthe parameter estimation board. The testing results show that this pricinple prototypemeets the design index and the system is stable and reliable.
引文
[1] G. Richard.Electronic Intelligence: the Analysis of Radar Signals: Artech House Inc,1993
    [2] D. C. Schleher.Electronic warfare in the information age: Artech House, Inc.,1999
    [3] J. H. Collins, P. M. Grant. A review of current and future components for electronic warfarereceivers. IEEE Transactions on Microwave Theory and Techniques,1981,29(5):395-403
    [4] J. Tsui.Digital techniques for wideband receivers.Boston: SciTech Publishing,2004
    [5] A. G. Stove, A. L. Hume, C. J. Baker. Low probability of intercept radar strategies. IET Radar,Sonar and Navigation,2004,151(5):249-260
    [6] M. Malanowski, C. Contartese, L. Maslikowski, et al. Preliminary results of noise radarexperiments. SPIE,2009,1189-1195
    [7] K. Kulpa, K. Lukin, W. Miceli, et al. Signal Processing in Noise Radar Technology. IETRadar, Sonar&Navigation,2008,2(4):229-232
    [8]武文,李冠章,林云生,等.一类复合调制信号的脉冲压缩及旁瓣抑制.系统工程与电子技术,2004,26(4):474-475
    [9]熊刚,杨小牛,赵惠昌.脉间伪随机二相码与线性调频复合调制探测系统.兵工学报,2007,28(4):425-430
    [10]熊刚,赵惠昌,杨小牛.伪码调相与正弦调频复合调制脉冲串引信.现代雷达,2007,29(2):12-16
    [11]李天一.基于OFDM的雷达体制研究:[硕士学位论文].南京:南京理工大学,2008
    [12]江志红,赵懿,皇甫堪,等.调频连续波SAR的研究进展.现代雷达,2008(2):20-24
    [13]强勇,张冠杰,李斌.MIMO雷达进展及其应用研究.火控雷达技术,2010(1):1-10
    [14]王怀军,许红波,陆珉,等.MIMO雷达技术及其应用分析.雷达科学与技术,2009,7(4):245-249
    [15] P. E. Pace.Detecting and classifying low probability of intercept radar.Norwood: ArtechHouse Publishers,2004
    [16]丁丽.超宽带雷达信号高速数据采集与三级信道化FPGA实现:[硕士学位论文].成都:电子科技大学,2011
    [17] A. Petraglia, S. K. Mitra. Analysis of mismatch effects among A/D converters in atime-interleaved waveform digitizer. IEEE Transactions on Instrumentation and Measurement,1991,40(5):831-835
    [18] G. L. Fudge, R. E. Bland, M. A. Chivers, et al. A Nyquist folding analog-to-informationreceiver. IEEE42nd Asilomar Conference on Signals, Systems and Computers. Pacific Grove:IEEE,2008,541-545
    [19] J. Yen. On nonuniform sampling of bandwidth-limited signals. IRE Transactions on CircuitTheory,1956,3(4):251-257
    [20]汪安民.基于非均匀采样的信号频率检测方法及其实现:[博士学位论文].武汉:华中科技大学,2004
    [21] W. S. Song. A new3-GSPS65-GOPS UHF digital radar receiver and its performancecharacteristics. IEEE Thirty-First Asilomar Conference on Signals, Systems&Computers.California: IEEE,1997,1542-1546
    [22]郭福成,皇甫堪.数字下变频实现技术研究.国防科技大学学报,1999,21(005):95-97
    [23]宋虎,陈建军.一种新的高效数字下变频方法及其FPGA实现.雷达与对抗,2006(2):33-36
    [24]覃岭,邓小炜,何子述,等.宽带数字下变频的高效实现方法研究.电子科技大学学报,2008,37(5):668-700
    [25] B. Baseghi. A radar countermeasures receiver. IET International Conference Radar92.Brighton: IET,1992,180-183
    [26] T. W. Fields, D. L. Sharpin, J. B. Tsui. Digital channelized IFM receiver. IEEE NationalTelesystems Conference. San Diego: IEEE,1994,1667-1670
    [27] J. Tsui, J. J. Schamus, D. H. Kaneshiro. Monobit receiver. IEEE MTT-S InternationalMicrowave Symposium Digest. Denver: IEEE,1997,469-471
    [28]陈思兴.电子战新技术.电子侦察干扰,1997(004):4-9
    [29]蒋宗明.宽带数字接收中双信号数据率转换技术与实现研究:[硕士学位论文].成都:电子科技大学,2005
    [30]吴伟.通带匹配数字侦察接收技术研究:[博士学位论文].成都:电子科技大学,2007
    [31] J. B. Y. Tsui.Microwave receivers with electronic warfare applications.New York:Krieger,1992
    [32] D. R. Zahirniak, D. L. Sharpin, T. W. Fields. A hardware-efficient, multirate, digitalchannelized receiver architecture. IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):137-152
    [33] T. Karp, N. J. Fliege. Modified DFT filter banks with perfect reconstruction. IEEETransactions on Circuits and Systems II: Analog and Digital Signal Processing,1999,46(11):1404-1414
    [34] J. Z. Jiang, P. L. Shui, Z. J. Zhang. Design of oversampled DFT-modulated filter banks viamodified Newton's method. IET Signal Processing,2011,5(3):271-280
    [35] R. Mahesh, A. P. Vinod. Reconfigurable Low Area Complexity Filter Bank ArchitectureBased on Frequency Response Masking for Nonuniform Channelization in Software RadioReceivers. IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):1241-1255
    [36] Y. Zhao, S. Luo, J. Wan. An Adaptive Broadband Channelization Scheme Using NonuniformSubband Decomposition.6th International Conference on Wireless CommunicationsNetworking and Mobile Computing. Zhengzhou: IEEE,2010,1-4
    [37] Y. Zhao, S. Luo, J. Wan. Performance analysis of channelization architecture based onsubband filterbanks. IEEE10th International Conference on Signal Processing. Beijing:2010,1624-1627
    [38]董晖,姜秋喜.数字信道化接收机信号处理技术.电子信息对抗技术,2007,22(2):3-6
    [39]王洪,吕幼新,汪学刚.WOLA滤波器组信道化接收机技术.电子科技大学学报,2008(1):43-46
    [40] M. A. Sanchez, M. Garrido, M. Lopez-Vallejo, et al. Implementing FFT-based digitalchannelized receivers on FPGA platforms. IEEE Transactions on Aerospace and ElectronicSystems,2008,44(4):1567-1585
    [41] J. Lillington. Comparison of Wideband Channelisation Architectures. International signalprocessing conference. Dallas:2003,1156-1159
    [42] J. Lillington, S. Matthews. Flexible architectures for wideband SDR channelisation. The2ndIEE/EURASIP Conference on DSP enabled Radio. London: IET,2005,7-9
    [43]王旭东.基于FPGA的雷达信号侦察数字接收机关键技术研究:[博士学位论文].南京:南京航空航天大学,2007
    [44]王永明,王世练,张尔扬.1.2GSPS数字信道化接收机的设计与实现.系统工程与电子技术,2009(006):1324-1327
    [45] Z. Jun, T. Bin, W. U. Wei, et al. Design and implementation of a cueing wideband digital EWreceiver. Journal of Electronic Science and Technology,2006,4(3):257-264
    [46]罗勇江,汤建龙,赵国庆,等.一种高效的宽带数字接收机及其FPGA实现.系统工程与电子技术,2010(5):916-920
    [47]王宏伟,赵国庆,王玉军,等.一种宽带数字信道化接收机.西安电子科技大学学报,2010(3):487-491
    [48]姜冬梅.雷达信号数字侦察接收的FPGA实现:[硕士学位论文].成都:电子科技大学,2008
    [49]王森.宽带数字信道化接收机FPGA实现技术研究:[硕士学位论文].成都:电子科技大学,2008
    [50] J. Elbornsson, F. Gustafsson, J. E. Eklund. Blind equalization of time errors in atime-interleaved ADC system. IEEE Transactions on Signal Processing,2005,53(4):1413-1424
    [51]张俊杰,武杰,刘尉悦,等.高速交替/并行数据采集系统时钟研究.中国科学技术大学学报,2006,36(003):281-284
    [52] S. Vitali, G. Cimatti, R. Rovatti, et al. Adaptive Time-Interleaved ADC Offset Compensationby Nonwhite Data Chopping. IEEE Transactions on Circuits and Systems II: Express Briefs,2009,56(11):820-824
    [53] J. M. D. Pereira, P. M. B. S. Girao, A. M. C. Serra. An FFT-based method to evaluate andcompensate gain and offset errors of interleaved ADC systems. IEEE Transactions onInstrumentation and Measurement,2004,53(2):423-430
    [54] N. Won. A channelized digital ultrawideband receiver. IEEE Transactions on WirelessCommunications,2003,2(3):502-510
    [55] S. R. Velazquez, T. Q. Nguyen, S. R. Broadstone. Design of hybrid filter banks foranalog/digital conversion. IEEE Transactions on Signal Processing,1998,46(4):956-967
    [56] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,2006,52(4):1289-1306
    [57] E. J. Candès, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstructionfrom highly incomplete frequency information. IEEE Transactions on Information Theory,2006,52(2):489-509
    [58] M. F. Duarte, Y. C. Eldar. Structured compressed sensing: from theory to applications. IEEETransactions on Signal Processing,2011,59(9):4053-4085
    [59] M. D. Migliore. A Compressed Sensing Approach for Array Diagnosis From a Small Set ofNear-Field Measurements. IEEE Transactions on Antennas and Propagation,2011,59(6):2127-2133
    [60] Y. Chi, L. L. Scharf, A. Pezeshki, et al. Sensitivity to basis mismatch in compressed sensing.IEEE Transactions on Signal Processing,2011,59(5):2182-2195
    [61] P. Flandrin, P. Borgnat. Time-frequency energy distributions meet compressed sensing. IEEETransactions on Signal Processing,2010,58(6):2974-2982
    [62] M. A. Herman, T. Strohmer. High-resolution radar via compressed sensing. IEEETransactions on Signal Processing,2009,57(6):2275-2284
    [63] L. C. Potter, E. Ertin, J. T. Parker, et al. Sparsity and compressed sensing in radar imaging.Proceedings of the IEEE,2010,98(6):1006-1020
    [64] J. Provost, F. Lesage. The application of compressed sensing for photo-acoustic tomography.IEEE Transactions on Medical Imaging,2009,28(4):585-594
    [65] D. Takhar, J. Laska, M. B. Wakin, et al. A new compressive imaging camera architectureusing optical-domain compression. Proc. IS&T/SPIE Computational Imaging IV. Boston:2006,86-90
    [66] J. A. Tropp, J. N. Laska, M. F. Duarte, et al. Beyond Nyquist: Efficient sampling of sparsebandlimited signals. IEEE Transactions on Information Theory,2010,56(1):520-544
    [67] J. N. Laska, S. Kirolos, M. F. Duarte, et al. Theory and implementation of ananalog-to-information converter using random demodulation. IEEE International Symposiumon Circuits and Systems. New Orleans: IEEE,2007,1959-1962
    [68] J. Romberg. Compressive sensing by random convolution. SIAM J. Imaging Sciences,2009,2(4):1098-1128
    [69] J. A. Tropp, M. B. Wakin, M. F. Duarte, et al. Random filters for compressive sampling andreconstruction. IEEE International Conference on Acoustics, Speech and Signal Processing.Toulouse: IEEE,2006,III-III
    [70] Y. Depeng, L. Husheng, G. D. Peterson, et al. Compressed sensing based UWB receiver:Hardware compressing and FPGA reconstruction.43rd Annual Conference on InformationSciences and Systems. Maryland:2009,198-201
    [71] X. Chen, Z. Yu, S. Hoyos, et al. A sub-Nyquist rate sampling receiver exploiting compressivesensing. IEEE Transactions on Circuits and Systems I: Regular Papers,2011,58(3):507-520
    [72] M. Mishali, Y. C. Eldar. Wideband spectrum sensing at sub-Nyquist rates. IEEE SignalProcessing Magazine,2011,28(4):102-135
    [73]江海,林月冠,张冰尘,等.基于压缩感知的随机噪声成像雷达.电子与信息学报,2011(3):672-676
    [74]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用.电子与信息学报,2010(1):12-16
    [75] S. C. Surender, R. M. Narayanan. UWB Noise-OFDM Netted Radar: Physical Layer Designand Analysis. IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):1380-1400
    [76] R. B. Sinitsyn. Copula based detection algorithm for MIMO ultrawideband noise radars.European Radar Conference. Rome:2009,121-124
    [77] J. Lv, H. Gu, W. Su. High speed space objects detection using noise frequency modulatedpulse radar. IET International Radar Conference. Guillin: IET,2009,20-22
    [78] O. O. Odejide, C. M. Akujuobi, A. Annamalai, et al. Application of analytic wavelettransform for signal detection in Nyquist Folding Analog-to-Information Receiver. IEEEInternational Conference on Communications. Dresden: IEEE,2009,1-5
    [79] L. Mingquan, X. Xianci, L. Leming. Cyclic spectral features based modulation recognition.International Conference on Communication Technology Proceedings. Beijing: IEEE,1996,792-795
    [80] O. A. Dobre, Y. Bar-Ness, W. Su. Higher-order cyclic cumulants for high order modulationclassification. IEEE Military Communications Conference. Piscataway: IEEE,2003,112-117
    [81]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998
    [82] I. Moraitakis, M. P. Fargues. Feature extraction of intra-pulse modulated signals usingtime-frequency analysis.21st Century Military Communications Conference Proceedings.Los Angel: IEEE,2000,737-741
    [83]姜园.通信对抗中的现代信号处理技术应用研究:[博士学位论文].杭州:浙江大学,2004
    [84] R. Mingqiu, C. Jinyan, Z. Yuanqing, et al. Radar signal feature extraction based on waveletridge and high order spectra analysis. IET International Radar Conference. Guillin: IET,2009,1-5
    [85] Z. Zhenbo, H. Minghao, W. Yusheng. Extraction of the In-pulse Characteristics of SignalBased on Approximate Wavelet Transform. Journal of Air Force Radar Academy,2002,1(4):8-10
    [86]柳征,姜文利,周一宇.基于小波包变换的辐射源信号识别.信号处理,2006,21(5):460-464
    [87]张葛祥,荣海娜,金炜东.基于小波包变换和特征选择的雷达辐射源信号识别.电路与系统学报,2007,11(6):45-49
    [88] G. Zhang, W. Jin, L. Hu. Application of wavelet packet transform to signal recognition.International Conference on Intelligent Mechatronics and Automation. Chengdu: IEEE,2004,542-547
    [89] E. Avci, D. Avci. A novel approach for digital radio signal classification: Wavelet packetenergy-multiclass support vector machine (WPE-MSVM). Expert Systems with Applications,2008,34(3):2140-2147
    [90] A. Swami, B. M. Sadler. Hierarchical digital modulation classification using cumulants. IEEETransactions on Communications,2000,48(3):416-429
    [91] W. Dai, Y. Wang, J. Wang. Joint power estimation and modulation classification usingsecond-and higher statistics. IEEE Wireless Communications and Networking Conference.Florida: IEEE,2002,155-158
    [92] G. B. Giannakis, M. K. Tsatsanis. Signal detection and classification using matched filteringand higher order statistics. IEEE Transactions on Acoustics, Speech and Signal Processing,1990,38(7):1284-1296
    [93] Y. Ye, M. Wenbo. Digital modulation classification using multi-layer perceptron andtime-frequency features. Journal of Systems Engineering and Electronics,2007,18(2):249-254
    [94] M. Ren, J. Cai, Y. Zhu. Classification of radar signals using time-frequency transforms andfuzzy clustering. International Conference on Microwave and Millimeter Wave Technology.Chengdu:2010,2067-2070
    [95] H. Ketterer, F. Jondral, A. H. Costa. Classification of modulation modes using time-frequencymethods. IEEE international conference on acoustics, speech, and signal processing. Phoenix:IEEE,1999,2471-2474
    [96]冀贞海,朱伟强,赵力.基于时频分布图像和主分量分析的脉内调制识别算法研究.电路与系统学报,2009,14(002):22-26
    [97]普运伟,金炜东,朱明,等.雷达辐射源信号模糊函数主脊切面特征提取方法.红外与毫米波学报,2008,27(2):133-137
    [98] M. Zhu, W. D. Jen, Y. W. Pu, et al. Classification of radar emitter signals based on the featureof time-frequency atoms. International Conference on Wavelet Analysis and PatternRecognition. Beijing: IEEE,2007,1232-1236
    [99]曾德国,熊辉,龙柯宇,等.基于相位差分的脉内调制信号类型识别.电子测量与仪器学报,2009,23(10):85-90
    [100]张容权,杜雨沼,杨建宇,等.一种LFM信号最大似然估计模型与参数估计快速算法.电波科学学报,2005,20(005):651-655
    [101]齐林,陶然,周思永,等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计.中国科学:E辑,2003,33(8):749-759
    [102] S. Barbarossa. Analysis of multicomponent LFM signals by a combined Wigner-Houghtransform. IEEE Transactions on Signal Processing,1995,43(6):1511-1515
    [103]黄春琳,柳征.基于循环谱包络的扩谱直序信号的码片时宽,载频,幅度估计.电子学报,2002,30(9):1353-1356
    [104]黄知涛,周一宇.一种相位编码序列恢复方法.信号处理,2002,18(002):141-146
    [105] K. C. Ho, W. Prokopiw, Y. T. Chan. Modulation identification of digital signals by thewavelet transform. IEE Proceedings Radar, Sonar and Navigation,2000,147(4):169-176
    [106]熊刚,赵惠昌,王李军.伪码-载波调频侦察信号识别的谱相关方法(Ⅱ)——伪码-载波调频信号的调制识别和参数估计.电子与信息学报,2005,27(007):1087-1092
    [107]林俊,熊刚,王智学.基于时频分析的伪码与线性调频复合体制侦察信号参数估计研究.电子与信息学报,2006,28(6):1045-1048
    [108]司锡才,赵建民.宽频带反辐射导弹导引头技术基础.哈尔滨:哈尔滨工程大学出版社,1996,77-83
    [109]周亚强,陈翥,皇甫堪,等.噪扰条件下多基线相位干涉仪解模糊算法.电子与信息学报,2005,27(2):259-261
    [110]龚享铱,袁俊泉,孙晓昶.基于参差距离的相位差变化值的解模糊方法研究.信号处理,2003,19(4):308-311
    [111]陈大昊,游志刚,张剑云,等.基于相位差变化率方法的双基线相位解模糊.现代雷达,2006,28(006):19-21
    [112] G. L. Fudge, J. E. Harvey, M. A. Chivers, et al. Nyquist folded bandpass sampling receiverswith narrow band filters for UWB pulses and related methods. USA, US20070081578A1,2007
    [113] D. Zeng, H. Cheng, J. Zhu, et al. Parameter Estimation of Lfm Signal Intercepted bySynchronous Nyquist Folding Receiver. Progress In Electromagnetics Research,2011,23(1):69-81
    [114]曾德国,熊辉,龙柯宇,等.伪码-线性调频复合信号快速参数估计方法.系统工程与电子技术,2010,32(5):891-894
    [115] E. Aboutanios, B. Mulgrew. Iterative frequency estimation by interpolation on Fouriercoefficients. IEEE Transactions on Signal Processing,2005,53(4):1237-1242
    [116] S. Peleg, B. Porat. The Cramer-Rao lower bound for signals with constant amplitude andpolynomial phase. IEEE Transactions on Signal Processing,1991,39(3):749-752
    [117] J. Tsui.Digital techniques for wideband receivers.Boston: Artech House,2001
    [118] S. C. Chan, K. S. Yeung. On the design and multiplier-less realization of digital IF forsoftware radio receivers with prescribed output accuracy.14th International Conference onDigital Signal Processing. Greece:2002,277-280
    [119] W. Zhu, J. Sun. Parameter estimation of sinusoidal signals by using principle of signalmatched-phase. Progress in Natural Science,2002,12(4):301-304
    [120] G. J. Orris. Matched-phase noise reduction. Journal of the Acoustical Society of America,1994,96(6):3499-3503
    [121] P. Lander, E. J. Berbari. Time-frequency plane Wiener filtering of the high-resolution ECG:development and application. IEEE Transactions on Biomedical Engineering,1997,44(4):256-265
    [122]曾德国,熊辉,龙柯宇,等.基于相位差分的脉内调制信号类型识别.电子测量与仪器学报,2009(10):85-90
    [123] IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters. IEEEStandard for Terminology and Test Methods for Analog-to-Digital Converters. IEEE Std1241-2010(Revision of IEEE Std1241-2000),2011:1-139
    [124] P. J. Tu, J. F. Kiang. Estimation on location, velocity, and acceleration with high precision forcollision avoidance. IEEE Transactions on Intelligent Transportation Systems,2010,11(2):374-379
    [125]徐庆,徐继麟,周先敏,等.线性调频-二相编码雷达信号分析.系统工程与电子技术,2000,22(12):7-8
    [126]徐庆,徐继麟.一类新的脉冲压缩信号的旁瓣抑制.电波科学学报,2001,16(4):513-517
    [127] D. Lynch.Introduction to RF Stealth.USA: SciTech Publishing,2004
    [128]熊刚,赵惠昌,王李军.伪码-载波调频侦察信号识别的谱相关方法(Ⅱ)—伪码-载波调频信号的调制识别和参数估计.电子与信息学报,2005,27(007):1087-1092
    [129]林俊,熊刚,王智学.基于时频分析的伪码与线性调频复合体制侦察信号参数估计研究.电子与信息学报,2006,28(6):1045-1048
    [130]熊刚,杨小牛,赵惠昌.基于平滑伪Wigner分布的伪码与线性调频复合侦察信号参数估计.电子与信息学报,2008,30(9):2115-2119
    [131]曾德国,熊辉,龙柯宇,等.伪码-线性调频复合信号快速参数估计方法.系统工程与电子技术,2010,32(5):891-894
    [132] G. Burel, C. Bouder. Blind estimation of the pseudo-random sequence of a direct sequencespread spectrum signal.21st Century Military Communications Conference Proceedings. LosAngeles: IEEE,2000,967-970
    [133]金艳,姬红兵.基于循环自相关的PSK信号码速率估计的噪声影响分析.电子与信息学报,2008,30(2):505-508
    [134]刘渝.快速解线性调频技术.数据采集与处理,1999,14(2):175-178
    [135] D. C. Rife, R. Boorstyn. Single tone parameter estimation from discrete-time observations.IEEE Transactions on Information Theory,1974,20(5):591-598
    [136]肖秀丽.干涉仪测向原理.中国无线电,2006(005):43-49
    [137]宋才水,盛晓文,顾尔顺.捷联干涉仪体制被动导引头测角解模糊算法.现代防御技术,2004,32(004):48-53
    [138]司伟建,初萍,孙圣和.基于半圆阵的解模糊技术研究.系统工程与电子技术,2008,30(011):2128-2131
    [139]司伟建.反辐射导弹抗多点源技术研究:[博士学位论文].哈尔滨:哈尔滨工程大学,2004
    [140]孔德强,刘作学,田战丽.干涉仪相位差抖动分析.兵工自动化,2010,1:77-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700