用户名: 密码: 验证码:
雷达/通信侦察中相位编码信号分析处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代雷达和通信系统中,相位编码是广泛应用的一种调制方式。针对不同的应用需求,相位编码信号所采用的具体编码形式又各不相同,这就要求侦察接收机必须根据侦察对象的特点采取相应的处理方法,以达到最佳的截获性能。本文对雷达和数字通信中常用的几类相位编码信号的侦察处理问题进行了研究和探索,主要工作如下:
     1.针对低截获概率(LPI)雷达中常用的基于线性调频(LFM)导出的一类多相编码信号的检测和参数估计问题,利用这类信号在模糊平面和时频平面内的线性特征,提出了基于Radon-Ambiguity变换(RAT)和改进的Radon-Wigner变换(RWT)的联合检测与参数估计方法。以P4码信号为例推导了参数估计的克拉美.罗下限(CRLB),并通过仿真表明,基于RAT和RWT的参数估计性能相近,在低信噪比下均比较接近CRLB。
     2.针对卫星通信中常用的非平衡QPSK(UQPSK)信号的参数估计问题,推导了UQPSK信号的谱相关函数,提出了基于谱相关的载频、码速率、初相以及I、Q通道功率比的估计方法。对功率比的估计性能进行了分析,并通过仿真验证了性能分析的正确性。针对采用长、短周期伪码(PN码)扩频的UQPSK直扩信号的扩频周期估计问题,采用相关函数二阶矩方法进行了分析。推导了UQPSK直扩信号的相关函数二阶矩,详细分析了长、短PN码信号的扩频周期检测性能与各种参数的关系,并进行了仿真验证。
     3.针对数字通信中相位编码等线性调制信号采用的一类平方根升余弦成形滤波器的参数估计问题,提出了基于IFFT(逆快速傅立叶变换)和最小二乘的估计方法,并对滚降系数的估计性能进行了理论分析。仿真表明所提出的滚降系数和码速率估计方法具有较高的估计精度,并且具有低信噪比适应能力。
     4.针对卫星测控/数传链路中常用的BPSK、QPSK、OQPSK和UQPSK信号的调制分类问题,本文根据这四种信号的复码元序列特性提出了基于高阶矩的特征C_1和C_2,实现了层次分类,所提出的分类特征对载频偏移和相位偏移具有不变性。对分类算法的性能进行了详细的理论分析,并通过仿真验证了算法的有效性。
     5.针对长码直扩信号的参数估计问题,本文对扩频码长P与扩频增益L之比K是否为整数的情况分别进行了研究。对于K为非整数的长码直扩信号,提出了基于对相关函数二阶矩进行后处理的符号速率估计方法。结合理论推导和仿真验证表明,K为非整数的长码直扩信号的相关函数二阶矩不仅在PN码周期整数倍处出现峰值,而且还隐含了符号周期的信息。通过一系列处理后,能够在较低信噪比条件下得到符号速率的有效估计。对于K为整数的长码直扩信号,推导了其相关函数二阶矩,得出了与短码直扩信号和K为非整数的长码直扩信号不同的结论;提出了基于最大范数的符号周期和同步偏移估计方法,并进行了改进以提高低信噪比适应能力;最后,提出了对协方差矩阵进行分块特征值分解的PN码序列估计方法。
Phase-coded signals are widely used in modern radar and communication systems. The phase characteristics are usually different in various phase-coded systems, so intercept receivers must resort to sophisticated signal processing techniques to achieve best interception performance according to the characteristics of the objects. Analysis and processing of several phase-coded signals widely used in radar and digital communications is intensively studied in this dissertation. The main research works are listed as follows.
     1. To investigate the joint detection and parameter estimation of polyphase codes derived from linear frequency modulation (LFM) used in low probability of intercept (LPI) radars, the linear characteristics in ambiguity function and time-frequency distributions are utilized and algorithms based on Radon-Ambiguity transform (RAT) and modified Radon-Wigner transform (RWT) are proposed. The Cramer-Rao Lower Bound (CRLB) of parameter estimation for P4 code is deduced as an example. Simulation results show that the two methods have similar parameter estimation performance which is close to CRLB at low SNRs.
     2. Parameter estimation methods of unbalanced quaternary phase shift keyed (UQPSK) signal widely used in satellite communications are investigated. The spectral correlation function of a UQPSK signal is derived. Signal parameters such as carrier frequency, chip rate, carrier phase and channel power ratio are estimated by means of the special cyclic spectrum amplitudes and phases. The estimation performance of channel power ratio is analyzed and verified by computer simulations. To explore the pseudo-noise (PN) code period estimation of UQPSK direct sequence spread spectrum (DSSS) signal with long and short period spreading codes, the method based on the second order moment of a correlation estimator is introduced. The relationship between periodic detection performance and signal parameters is derived, and simulation results show the validity of theoretical analysis.
     3. For estimating the parameters of the root raised cosine filter in any linear digital modulation scheme in digital communications, algorithms based on the inverse fast Fourier transform (IFFT) and least squares estimation are proposed. The estimation performance of roll-off factor is analyzed in detail. Simulations show that the proposed roll-off factor and chip rate estimators have good performance at low SNRs.
     4. To investigate the automatic modulation classification of Phase Shift Keying (PSK) signals widely used in TTC (Tracking, Telemetry and Control) and data links of satellite, such as BPSK, QPSK, OQPSK (Offset QPSK), and UQPSK, two classification features C_1 and C_2 are proposed based on the characteristics of the complex code sequnces. The proposed features are invariant with carrier frequency offset and carrier phase offset. A hierarchical scheme is used to classify the four signals based on C_1 and C_2. The classification performance is analyzed in detail and is verified by simulations.
     5. Parameter estimation of a long-code DSSS signal is studied. Denote the ratio of spreading code length P to processing gain L as K, we find that the long-code DSSS signals with K integral or not have different characteristics. An algorithm based on further processing of the autocorrelation estimator is proposed to estimate the symbol rate of a long-code DSSS signal with K not integral. Theoretical analysis and simulations show that PN code period and symbol period are hidden in the curves of the second order moment of the autocorrelation estimator. Simulation results show that the proposed algorithm is effective on symbol rate estimation at low SNRs. When K is an integer, the second order moment of the autocorrelation estimator of the long-code DSSS signal is derived, and which is shown to be different to that of a short-code DSSS signal and a long-code DSSS signal with K not integral. The maximum norm approach is introduced to estimate PN code period and timing offset. Finally, the covariance matrix is divided into several low rank matrices and eigenvalue decomposition approach is introduced to each matrix to estimate the PN sequence.
引文
[1]罗利春.无线电侦察信号分析与处理.北京:国防工业出版社,2003.
    [2]郭黎利,孙志国.通信对抗技术.哈尔滨:哈尔滨工程大学出版社,2004.
    [3]Pace P E.Detecting and classifying low probability of intercept radar.Norwood,MA:Artech House,2004.
    [4]Levanon N,Mozeson E.Radar signals.New York:Wiley-Interscience,2004.
    [5]向敬成,张明友.雷达系统.北京:电子工业出版社,2001.
    [6]Stove A G,Hume A L,et al.Low probability of intercept radar strategies,IEE Proc.-Radar Sonar Navig.,2004,151(5):249-260.
    [7]Davis R M,Fante R L,Perry R P.Phase-coded waveforms for radar.IEEE Trans.Aerospace and Electronic Systems,2007,43(1):401-408.
    [8]Lewis B L,et al.Efficient low-sidelobe pulse compression.US Patent,No.4384291,1983.
    [9]Kretschmer F F,et al.P1 Polyphase code expander-compressor.US Patent,No.4513289,1985.
    [10]Kretschmer F F,et al.P2 Polyphase code expander-compressor.US Patent,No.4524363,1985.
    [11]Kretschmer F F,et al.Generalized polyphase code pulse compressor.US Patent,No.4698827,1987.
    [12]Frank R L.Polyphase codes with good non-periodic correlation properties.IEEE Trans.Information Theory,1963,IT-9(1):43-45.
    [13]Lewis B L,Kretschmer F F.A new class of polyphase pulse compression codes and techniques.IEEE Trans.Aerospace and Electronic Systems,1981,17:364-371.
    [14]Lewis B L,Kretschmer F F.Linear frequency modulation derived polyphase pulse compression codes.IEEE Trans.Aerospace and Electronic Systems,1982,18:637-641.
    [15]Levanon N,Getz B.Comparison between linear FM and phase-coded CW radars.IEE Proc.Radar,Sonar Navig.,1994,141(4):230-240.
    [16]Felhauer T.Design and analysis of new P(n,k) polyphase pulse compression codes.IEEE Trans.Aerospace and Electronic Systems,1994,30(3):865-874.
    [17]Yang J,Sarkar T K.A novel Doppler-tolerant polyphase codes for pulse compression based on hyperbolic frequency modulation.Digital Signal Process.(2006),doi:10.1016/j.dsp.2006.09.006.
    [18]Milne P R,Pace P E.Wigner distribution detection and analysis of FMCW and P-4 polyphase LPI waveforms.Proc.IEEE International Conf.on Acoustics, Speech,and Signal Processing,2002:3944-3947.
    [19]Jennison B K.Detection of polyphase pulse compression waveforms using the Radon-ambiguity transform.IEEE Trans.Aerospace and Electronic Systems,2003,39:335-343.
    [20]Akay O,Erozden E.Use of fractional autocorrelation in efficient detection of pulse compression radar signals.IEEE First International Symposium on Control,Communications and Signal Processing,2004:33-36.
    [21]Lunden J,Terho L and Koivunen V.Waveform recognition in pusle compression radar systems.IEEE MLSP'05 workshop,Mystic,CT,2005:271-276.
    [22]Lunden J,Koivunen V.Automatic radar waveform recognition.IEEE Journal of Selected Topics in Signal Processing,2007,1(1):124-136.
    [23]俞根苗,吴顺君,罗永健.多相脉压编码在旁瓣抑制下的多普勒性能.现代雷达,2002,3:26-30.
    [24]俞根苗,罗永健,王超,吴顺君.多相脉冲压缩编码波形产生及压缩处理技术.系统工程与电子技术,2002,24(8):49-52.
    [25]张群逸.雷达中的相位编码信号与处理.火控雷达技术,2005,34:29-32.
    [26]袁伟明,王敏,吴顺君.低截获概率雷达信号的调制识别研究.信号处理,2006,22(2):153-156.
    [27]徐健.多相编码脉冲压缩雷达信号的优化设计与仿真.南京:河海大学硕士论文,2007.
    [28]Wirth W D.Omnidirectional low probability of intercept radar.International Conference on Radar,Paris,1989:25-30.
    [29]Wirth W D.Long term coherent integration for a floodlight radar.IEEE International Conference on Radar,1995:698-703.
    [30]Wirth W D.Polyphase coded CW radar.Proc.of the IEEE Fourth International Symposium on Spread Spectrum Techniques and Applications,Mainz,Germany,1996,Vol.1:186-190.
    [31]Gordon L Stuber.Principles of mobile communication,2nd ed.New York:Kluwer Academic Publishers,2002.
    [32]Flikkema P G.Spread-spectrum techniques for wireless communications.IEEE Signal Processing Magazine,1997,14(5):26-36.
    [33]Radio frequency and modulation systems-part1:earth stations.CCSDS 411.0-G-3.Green Book,Issue 3,Brazil,May 1997.
    [34]Space link extension-service management-service specification.CCSDS 910.11-R-1.Red Book,Issue 1,Washington,DC,USA,March 2006.
    [35]姜昌,范晓玲.航天通信跟踪技术导论.北京:北京工业大学出版社,2003.
    [36]黄宇民,周钠,战勇杰.中继卫星系统测控传输体制的选择考虑.空间电子 技术,2002(4):15-21.
    [37]王诺,戴逸民.用于卫星通信的一类UQPSK载波恢复算法及其性能的研究.电子学报,2004,32(7):1219-1222.
    [38]Braun W R,Lindsey W C.Carrier synchronization techniques for unbalanced QPSK signals(Parts Ⅰ and Ⅱ).IEEE Trans.Communications,Sept.1978,COM-26(9):1325-1341.
    [39]Simon M K,Alem W K.Tracking performance of unbalanced QPSK demodulators:Part Ⅰ - biphase costas loop with passive arm filters.IEEE Trans.Communications,Aug.1978,COM-26:1147-1156.
    [40]Bricker P,Luecke J.Integrated receiver for NASA tracking and data relay satellite system.IEEE MILCOM '90,Oct.1990:1-5.
    [41]Clark A P,Aftelak A.Cartier-phase synchronization in the demodulation of UQPSK signals.IEEE Proceedings Communications,Oct.1989,136(5):351-360.
    [42]Hill D A,Bodie J B.Carrier detection of unbalanced QPSK direct sequence signals.Proc MILCOM'99,1999:437-441.
    [43]Hill D A,Bodie J B.Carrier detection of PSK signals.IEEE Trans.Communications,2001,49(3):487-496.
    [44]Urkowitz H.Energy Detection of unknown deterministic signal.Proc IEEE,1967,55:523-531.
    [45]Park K Y.Performance evaluation of energy detectors.IEEE Trans.Aerospace and Electronic Systems,1978,14(2):237-241.
    [46]Dillard R A.Detectability of spread-spectrum signals.IEEE Trans.Aerospace and Electronic Systems,1979,15:526-537.
    [47]Mills P F,Prescott G E.A comparision of various radiometer detection models.IEEE Trans.Aerospace and Electronic Systems,1996,32(1):468-473.
    [48]Lehtom(a|¨)ki J J,Juntti M,and Saamisaari H.CFAR strategies for channelized radiometer.IEEE Signal Processing Letters,2005,12(1):13-16.
    [49]Lehtom(a|¨)ki J J,Juntti M,and Saarnisaari H.Detection of frequency hopping signals with a sweeping channelized radiometer.IEEE 38th Asilomar Conf.on Signals,Systems and Computers,2004,2:2178-2182.
    [50]Ciblat P,Ghogho M.Blind NLLS carder frequency-offset estimation for QAM,PSK and PAM modulations:performance at low SNR.IEEE Trans.Communications,2006,54(10):1725-1730.
    [51]Reed D E,Wickert M A.Minimization of detection of symbol-rate spectral lines by delay and multiply receivers.IEEE Trans.Communications,1988,36(1):118-120.
    [52]Reed D E,Wickert M A.A performance comparison of optimum and sub-optimum receiver structures for rate-line detection of digitally modulated carriers.IEEE Region 5 Conference,1988:177-181.
    [53]Kuehls J F,Geraniotis E.Presence detection of binary-phase-shift-keyed and direct-sequence spread-spectrum signals using a prefilter-delay-and-multiply device.IEEE journal on SAIC,1990,8(5):915-933.
    [54]Gardner W A.The spectral correlation theory of cyclostationary time-series.Signal Processing,1986,11(1):13-36.
    [55]Gardner W A.Measurement of spectral correlation.IEEE Trans.Acoustics,Speech,and Signal Processing,1986,34(5):1111-1123.
    [56]Gardner W A.Exploitation of spectral redundancy in cyclostationary signals.IEEE SP Magazine,1991,8(2):14-36.
    [57]Gardner W A.Signal interception:a unifying theoretical framework for feature detection.IEEE Trans.Communications,1988,36(8):897-906.
    [58]Dandawate A V et al.Statistical tests for presence of cyclostationarity.IEEE Trans.Signal Processing,1994,42(9):2165-2173.
    [59]Gardner W A,Spooner C M.Signal interception:performance advantages of cyclic-feature detectors.IEEE Trans.Communications,1992,40(1):149-159.
    [60]Spooner C M,Gardner W A.Robust feature detection for signal interception.IEEE Trans.Communications,1994,42(5):2165-2173.
    [61]Enserink S,Cochran D.On detection of cyclostationary signals.ICASSP 1995:2004-2007.
    [62]Enserink S,Cochran D.Cyclostationary feature detector.IEEE Asilomar Conference on Signals,Systems and Computers,1994:806-810.
    [63]Brown W A,Loomis H H.Digital implementations of spectral correlation analyzers.IEEE Trans.Signal Processing,1993,41(2):703-720.
    [64]Ueung G K,Gardner W A.Search-efficient methods of detection of cyclostationary signals.IEEE Trans.Signal Processing,1996,44(5):1214-1223.
    [65]Burel G.Detection of spread spectrum transmissions using fluctuations of correlation estimators.IEEE-ISPACS,November 2000:B8.2.5.1-B8.2.5.6.
    [66]Burel G,Bouder C,Berder O.Detection of direct sequence spread spectrum transmissions without prior knowledge.IEEE GLOBECOM,2001,1:236-239.
    [67]张天骐,周正中.直扩信号伪码周期的谱检测.电波科学学报,2001,16(4):518-521.
    [68]Huang XianGao,Huang Wei,Wang Chao et al.Blind reconnaissance of the pseudo-random sequence in DSSS signal with negative SNR.Science in China Series F:Information Sciences,2007,50(3):510-520.
    [69]张建立.直扩信号的检测.无线电工程.1994,24(2):19-21.
    [70]杨忠,张建立.低信噪比直扩信号的周期特征检测与参数估计.无线电工程, 1995,25(6):14-20.
    [71]冯富强,陈鹏举等.低信噪比条件下DS信号的检测和参数估计.通信学报,2002,23(9):63-68.
    [72]何哲平,肖先赐.BPSK信号检测的小波相关法.信号处理,1999,15(4):81-84.
    [73]Mammone R J,Rothaker R J,Podilchuk C I.Estimation of carrier frequency,modulation type and bit rate of an unknown modulated signal.ICC'87,1987:1006-1012.
    [74]Yu Z,Shi Y Q,Su W.A blind carrier frequency estimation algorithm for digitally modulated signals.IEEE MILCOM 2004:48-53.
    [75]范海波,杨志俊,曹志刚.卫星通信常用调制方式的自动识别.通信学报,2004,25(1):140-149.
    [76]Reed D E,Wickert M A.Performance of a fourth-power envelop detector for symbol-rate tone generation.Proc ICC'88,1988,7:12-15.
    [77]Reed D E,Wickert M A.Spread spectrum signals with low probability of chip rate detection.IEEE MILCOM'88,1988,2:437-441.
    [78]Reed D E.Comparison of symbol rate detector and radiometer intercept receiver performance in a nonstationary environment.IEEE MILCOM'89,1989,2:359-363.
    [79]Chan Y T,Plews J W,Ho K C.Symbol rate estimation by the wavelet transform.Proc.IEEE International Symposium on Circuits and Systems(ISCAS'97),Hong Kong,June 1997:177-180.
    [80]Mazet L,Loubaton Ph.Cyclic correlation based symbol rate estimation.Proc.33rd Asilomar Conference on Signals,Systems,and Computers,Piscataway,USA,1999:1008-1012.
    [81]Ciblat P,Loubaton P,Serpedin E,et al.Asymptotic analysis of blind cyclic correlation-based symbol-rate estimators.IEEE Trans.Inform.Theory,2002,48(7):1922-1934.
    [82]黄春琳.基于循环平稳特性的低截获概率信号的截获技术研究.长沙:国防科学技术大学博士学位论文,2001.
    [83]Yu Z,Shi Y Q,Su W.Symbol-rate estimation based on filter bank.Proc.IEEE International Symposium on Circuits and Systems(ISCAS'05),Kobe,Japan,2005:1437-1440.
    [84]Flohberger M,Kogler W,Gappmair W,et al.Symbol rate estimation with inverse Fourier transforms.2006 International Workshop on Satellite and Space Communications,2006:110-113.
    [85]徐晨.成形滤波器下直扩信号的载频和码速率估计研究.成都:电子科技大学硕士学位论文,2006.
    [86]沈振惠,唐斌.基于四阶统计2-D切片的直扩信号多参数估计.信号处理.2005,21(3):304-306.
    [87]孙铭芳.直扩信号检测和PN码参数估计的研究.哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [88]张天骐,周正中,邝育军等.低信噪比长伪码直扩信号伪码周期的估计方法.系统工程与电子技术,2007,29(1):12-16.
    [89]钟志,赵雅琴,杨刚等.一种简单的长码周期估计方法.湖南科技大学学报,2006,21(4):75-78.
    [90]Li Hongbin,Xia Yuan,Guo Zangxiang.A neural network approach to estimation of PN spreading sequence in DS/SS communications.International Conference on Neural iInformation Processing,Beijing,1993:3584-3590.
    [91]Burel G,Bouder C.Blind estimation of the pseudo-random sequence of a direct sequence spread spectrum signal.IEEE-MILCOM,2000,2(10):967-970.
    [92]Bouder C,Azou S,Burel G.A robust synchronization procedure for blind estimation of the symbol period and the timing offset in spread spectrum transmissions.IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications,2002,1:238-241.
    [93]詹亚锋.通信信号自动制式识别及参数估计.北京:清华大学博士学位论文,2004.
    [94]Adams E R,Hill P C J.Detection of direct sequence spread spectrum signals using higher-order statistical processing.IEEE ICASSP-97,1997:3849-3852.
    [95]Adams E R,Gouda M,Hill P C J.Statistical techniques for blind detection &discrimination of M-Sequence codes in DS/SS systems.IEEE 5th Int.Symp.On Spread-Spectrum Technique & Application,1998:853-857.
    [96]Hill P C J,Ridley M E.Blind estimation of direct-sequence spread spectrum m-sequence chip codes.IEEE 6th Int.Symp.On Spread-Spectrum Technique &Application,2000:305-309.
    [97]Bouder C,Azou S,Burel G.Performance analysis of a spreading sequence estimator for spread spectrum transmissions.Journal of the Franklin Institute,2004,341(7):595-614.
    [98]Bouder C,Burel G.Spread spectrum codes identification by neural networks.System and Control:Theory and Applications,2000:257-262.
    [99]张天骐,周正中,郭宗祥.一种DS/SS信号PN码序列估计的神经网络方法.信号处理,2001,17(6):533-537.
    [100]Dominique F,Reed J H.Simple PN code sequence estimation and synchronization technique using the constrained Hebbian rule.Electronics Letters,1997,33(1):37-38.
    [101]Dominique F,Reed J H.Subspace based PN code sequence estimation for direct sequence signals using a simplified Hebb rule.Electronics Letters,1997,33(13):1119-1120.
    [102]Zhang T,Lin X,et al.A Modified PCA neural network to blind estimation of the PN sequence in lower SNR DS-SS signals.Lecture Notes in Computer Science,2005,3496:1022-1027.
    [103]Chen Yongqian,Xiao Xianci.PN code sequence estimation using tabu search.Proceedings of ISCIT2005,2005:1315-1318.
    [104]Asghari V R,Ardebilipour M.Spread spectrum code estimation by genetic algorithm.International Journal of Signal Processing,2004,1(4):301-304.
    [105]Asghari V R,Ardebilipour M.Spread spectrum code estimation by particle swarm algorithm.Transactions on Engineering,Computing and Technology,2005,7:207-210.
    [106]Nzéza C N,Gautier R,Burel G.Blind Multiuser Identification in Multirate CDMA Transmissions:A New Approach.40th IEEE-Asilomar Conf.on Signals,Systems and Computers,Oct.29-Nov.1,2006,Pacific Grove,California.
    [107]Koivisto T,Koivunen V.Blind despreading of short-code DS-CDMA signals in asynchronous multi-user systems.Signal Processing,2007,4:1-9.
    [108]张红波,吕明.基于子空间跟踪的扩频码盲估计算法.系统工程与电子技术,2006,28(10):1470-1472.
    [109]Dobre O A,Abdi A,Bar-Ness Y,et al.A Survey of automatic modulation classification techniques:classical approaches and new trends.IET Proc.Commun.,2007,1(2):137-156.
    [110]Liedtek F F.Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters.Signal Processing,1984,6(4):311-323.
    [111]Azzouz E E,Nandi A K.Automatic identification of digital modulation types.Signal Processing,1995,47(1):55-69.
    [112]Ho K C,Prokopiw W,Chan Y T.Modulation identification of digital signals by the wavelet transform.IEE Proc.Radar,Sonar and Navig.,2000,47:169-176.
    [113]Zhao Zhijin,Shang Junna.A new method for modulation types recognition based on the time frequency representation.Proc.ICSP,2002:208-211.
    [114]Gardner W A,Spooner C M.Cyclic spectral analysis for signal detector and modulation recognition.IEEE MILCOM,1988:419-424.
    [115]Gardner W A,Brown W A,Chen C-K.Spectral correlation of modulated signals:Part Ⅱ-Digital modulation.IEEE Trans.Communications,1987,COM-37(6):595-601.
    [116]Dai W,Wang Y,Wang J.Joint power estimation and modulation classification using second- and higher statistics. Proc. WCNC, 2002: 155-158.
    [117] Swami A, Sadler B M. Hierarchical digital modulation classification using cumulates. IEEE Trans. Communications, 2000, 48(3): 416-429.
    [118] Dobre O A, Bar-Ness Y, Su W. Higher-order cyclic cumulants for high order modulation classification. Proc. IEEE MILCOM, 2003, pp. 112-117.
    [119] Neeser F D, Massey J L. Proper complex random processes with applications to information theory. IEEE Trans. Information Theory, 1993, 39(4): 1293-1302.
    [120] Picinbono B, Bondon P. Second-order statistics of complex signals. IEEE Trans.on Signal Processing, 1997, 45(2): 411-420.
    [121] Schreier P J, Scharf L L, Mullis C T. Detection and estimation of improper complex random signals. IEEE Trans. Information Theory, 2005, 51(1): 306-312.
    [122] Villares J. Sample covariance based parameter estimation for digital communications. Doctoral Dissertation, Technical University of Catalonia (UPC),Barcelona, Catalonia, Spain, 2005.
    [123] 和昆英,李麟,郭虹等. BPSK、 QPSK与OQPSK、 UQPSK调制识别方法初探.微计算机信息, 2006, 22(4): 286-288.
    [124] Naik M V, Bhattacharjee R, Mahanta A, et al. Blind adaptive recognition of different QPSK modulated signals for software defined radio applications. Proc.IEEE First International Conference on Communication System Software and Middleware, Jan. 2006: 1-6.
    [125] Levanon N, Freedman A. Periodic ambiguity function of CW signals with perfect periodic autocorrelation. IEEE Trans. Aerospace and Electronic Systems, 1992,28(2): 387-395.
    [126] Freedman A, Levanon N. Properties of the Periodic Ambiguity Function. IEEE Trans. Aerospace and Electronic Systems, 1994, 30(3): 938-941.
    [127] Getz B, Levanon N. Weight effects on the periodic ambiguity function. IEEE Trans. Aerospace and Electronic Systems, 1995, 31(1): 182-193.
    [128] Lee W K, Griffiths H D. Pulse compression filter generation optimal uniform range sidelobe level. IEE Electronics Letters, 1999, 35(11): 873-875.
    [129] Lee W K, Griffiths H D, et al. Integrated sidelobe energy reduction technique using optimal polyphase codes. IEE Electronics Letters, 1999, 35(24):2090-2091.
    [130] Grishin Y P, Zankiewicz A. A neural network sidelobe suppression filter for a pulse-compression radar with powers-of-two weights. IEEE 10th Mediterranean Electrotechnical Conference, 2000, 2: 713-716.
    [131] Lee W K, Griffiths H D. A new pulse compression technique generating optimal uniform range sidelobe and reducing integrated sidelobe level. IEEE International Radar Conference, 2000: 441-446.
    [132]Lewis B L.Range-time-sidelobe reduction technique for FM-derived polyphase PC codes.IEEE Trans.Aerospace and Electronic Systems,1993,29(3):834-840.
    [133]Painchaud G R,et al.An experimental adaptive digital pulse compression subsystem for multi-function radar applications.IEEE International Radar Conference,1990:153-158.
    [134]Wood J C,Barry D T.Radon transformation of time-frequency distributions for analysis of multicomponent signals.IEEE Trans.Signal Processing,1994,42(11):3166-3177.
    [135]Wang M,Chan A K,Chui C K.Linear frequency-modulated signal detection using radon-ambiguity transform.IEEE Trans.Signal Processing,1998,46:571-586.
    [136]Steven M.Kay著,罗鹏飞等译.统计信号处理基础--估计与检测理论.北京:电子工业出版社,2003.
    [137]黄春琳,姜文利,周一宇.对低截获概率相位编码信号检测的有限多循环检测器.电子学报,2002,30(6):916-918.
    [138]黄春琳,柳征,姜文利等.基于循环谱包络的扩谱直序信号的码片时宽、载频、幅度估计.电子学报,2002,30(9):1353-1356.
    [139]黄春琳,姜文利,周一宇.直接序列扩频信号的初相和扩频码初始时间的循环谱估计.通信学报,2002,23(7):1-7.
    [140]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,1993.
    [141]刘庆云,李志舜.高斯白噪声序列谱的统计特性及应用研究.声学与电子工程,2003,1:9-11.
    [142]Papoulis A.Probability,random variables and stochastic processes,3rd ed.New York:McGraw-Hill,1991.
    [143]Proakis J G.Digital communications,4th ed.北京:电子工业出版社,2001.
    [144]皇甫堪,陈建文,楼生强.现代数字信号处理.北京:电子工业出版社,2003.
    [145]Torrieri D J.Performance of direct sequence systems with long pseudo-noise sequences.IEEE Selected Areas in Communications,1992,10(4):770-781.
    [146]Parkvall S.Variability of user performance in cellular DS-CDMA-long versus short spreading sequences.IEEE Trans.Communications,2000,48(7):1178-1187.
    [147]Tang K,Siegel P H,et al.A comparison of long versus short spreading sequences in coded asynchronous DS-CDMA systems.IEEE Journal on Selected Areas in Communications,2001,19(8):1614-1624.
    [148]王剑,贾坤,朱银川等.直扩信号检测与估计的改进.电讯技术,2004,1:44-47.
    [149]Fusco T,Izzo L,et al.On the Second-order cyclostationarity properties of long-code DS-SS signals.IEEE Trans.Communications,2006,54(10):1741-1746.
    [150]Tsatsanis M K,Giannakis G B.Blind estimation of direct-sequence spread spectrum signals in multipath.IEEE Trans.Signal Process,1997,45(5):1241-1252.
    [151]Leong W Y,Homer J.Blind multiuser receiver for DS-CDMA wireless system.IEE Proc.-Commun.,2006,153(5):733-739.
    [152]Goldsmith A.Wireless communications.Cambridge:Cambridge University Press,2005.
    [153]Golub G H,Van Loan C F.Matrix computations.Baltimore:John Hopkins University Press,1983.
    [154]徐海源,李强,周一宇,卢启中.一种基于FPGA的中频数字接收机设计.现代雷达,2006,28(11):81-86.
    [155]徐海源,周一宇,冯道旺.滑动DFT在宽带数字接收机中的应用.现代雷达,2007,29(9):92-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700