用户名: 密码: 验证码:
我国海区浮游纤毛虫的生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋浮游纤毛虫是在海洋中营浮游生活的纤毛虫,主要是舞毛亚纲(Choreotrichia)和寡毛亚纲(Oligotrichia)的种类。浮游纤毛虫的粒级范围为10-200μm,平均丰度约为102-103 ind. L-1,广泛分布于各种生境中。浮游纤毛虫是海洋浮游生态系统中小型浮游动物的主要类群之一,它不仅是pico-、nano-级浮游生物等初级生产者的主要摄食者,而且是中型浮游动物(如桡足类)的饵料,是微食物网向经典食物链物质和能量传递的关键环节。
     我国海区浮游纤毛虫生态学的基础资料还较少,许多海区如南海还缺乏浮游纤毛虫丰度和生物量的基础资料,东海已有的研究比较零散,黄海春季水华过程还没有纤毛虫丰度和生物量时空变化的报道。此外,关于纤毛虫的摄食作用的研究更少。本文报道了南海和东海纤毛虫丰度和生物量以及分布;探讨了东海水团对纤毛虫分布的影响;研究了纤毛虫在春季水华过程中的时空变化;并在黄海进行了小型浮游动物对浮游植物和鞭毛虫的摄食,桡足类(中华哲水蚤)对纤毛虫的摄食研究。
     不同海区纤毛虫的丰度和生物量
     2007年10月南海北部海域纤毛虫丰度为0-5757 (848±776) ind. L-1,无壳纤毛虫占绝对优势,其丰度占总丰度的比例平均为91.9±9%。纤毛虫生物量为0-12.09 (1.2μ1.54)μg C L-1,无壳纤毛虫的生物量平均为0.94±1.27μg C L-1,占总生物量的78.6μ23.8%。共发现砂壳纤毛虫16个属,49种,拟铃虫属的种类最多。纤毛虫多分布于近岸浅水区(高温低盐,高Chl a浓度)。纤毛虫最大丰度5757 ind. L-1高于我国其他海区的调查研究。
     在长江口及毗邻海域,2006年8月纤毛虫丰度为0-4163 (718±571) ind. L-1,生物量为0.00-64.88 (1.86±6.34)μg C L-1;10月纤毛虫丰度为35-1155 (358±235) ind. L-1,生物量为0.00-9.23 (0.5±1.15)μg C L-1。8月表层和水柱纤毛虫丰度、生物量高值出现在长江口和杭州湾口以东近岸,10月高值出现在远岸,且南部高于北部。10月砂壳纤毛虫占总纤毛虫生物量的比例略高于8月。DO (溶解氧,Dissolved Oxygen)浓度对纤毛虫水体垂直分布的影响不明显。
     在东海陆架区,2006年11-12月(秋季)纤毛虫丰度为0-1795 (208±266) ind. L-1,生物量为0-2.36 (0.28±0.35)μg C L-1;2007年2-3月(冬季)纤毛虫丰度为0-22695 (524±1990) ind. L-1,生物量为0-10.87 (0.47±1.01)μg C L-1。纤毛虫丰度与生物量秋季在外陆架区和中陆架区高于内陆架区,冬季中陆架区高于外陆架区和内陆架区。两个季节都是无壳纤毛虫的丰度占优势,而秋季砂壳纤毛虫对生物量的贡献大于无壳纤毛虫。ESD (Equivalent Spherical Diameter) 10-20μm的小型纤毛虫分别占秋季和冬季纤毛虫丰度的63%和82%。与20世纪90年代的调查研究相比,东海陆架区浮游纤毛虫的生态分布没有发生明显变化。
     纤毛虫丰度和水团的关系
     纤毛虫丰度在东海的分布受到水团的影响。2006年8月(夏季)在长江口及毗邻海域,冲淡水表层纤毛虫平均丰度(972±746 ind. L-1)高于远岸的混合水(475±345 ind. L-1)。盐度是影响混合水纤毛虫表层丰度分布的重要因素。2007年2-3月(冬季)在陆架区,混合水的表层纤毛虫平均丰度(452±645 ind. L-1)高于沿岸水(209±307 ind. L-1)和黑潮水(202±170 ind. L-1)。混合水的纤毛虫0-30 m水柱丰度与盐度呈显著的负相关,与Chl a浓度呈显著的正相关。纤毛虫丰度在锋面区附近比较高。夏季长江口及毗邻海域发现的砂壳纤毛虫大多为近岸浅水种,其分布在两个水团没有明显的分区;而冬季在陆架区砂壳纤毛虫的分布呈现明显的分区,有些偶见种可能指示了黑潮水入侵陆架的路径。
     黄海春季水华过程中纤毛虫水柱生物量的变化
     在不同类型的水华过程纤毛虫和红色中缢虫的丰度和生物量有显著不同。2006年在典型硅藻水华站,纤毛虫水柱生物量高于2007年和2009年水华过程中的最大水柱生物量。
     2007年,发现三次硅藻的水华过程(BM1站、BM2站和BM3站),在BM1站,红色中缢虫丰度达2.9±105 ind. L-1。在BM1站和BM2站水华过程中,红色中缢虫丰度和水柱生物量都迅速降低到低值,纤毛虫(不包括中缢虫)平均水柱生物量也降低。BM1和BM2水华过程的红色中缢虫平均水柱生物量高于纤毛虫;在BM3站水华过程中红色中缢虫丰度很低,其水柱生物量低于纤毛虫。
     2009年,在硅藻水华过程中,眼虫最大丰度3.5×104 ind. L-1,红色中缢虫丰度较低,纤毛虫平均水柱生物量远高于红色中缢虫,在水华的后期有明显的增加;而在甲藻和硅藻的混合水华过程中,红色中缢虫平均水柱生物量高于纤毛虫,纤毛虫和红色中缢虫的日平均水柱生物量都在第四天达到最大值然后降低。
     小型浮游动物对浮游植物和鞭毛虫的摄食
     2007年4月,在水华BM1-1站,浮游植物的生长率(1.18 d-1)和小型浮游动物的摄食死亡率(0.76 d-1)都高于水华后期和非水华站,小型浮游动物对初级生产力的摄食压力低于水华后期和多数的非水华站。纤毛虫和环沟藻在水华过程中的平均水柱生物量不高于非水华站。因此,小型浮游动物对春季水华的下行控制作用可能不明显。
     2007年5月在南黄海,稀释培养后纤毛虫丰度与稀释因子呈线性关系;而鞭毛虫丰度在稀释因子大时增加。在富营养站,小型浮游动物对鞭毛虫的摄食率(1.01 dμ1)高于寡营养站(0.42-0.44 dμ1)。在富营养站位,绝大多数的鞭毛虫生产力(99%)可以被小型浮游动物摄食,而在寡营养站位,小型浮游动物摄食72%-73%的鞭毛虫生产力。
     桡足类对纤毛虫的摄食
     2009年4月,在硅藻水华过程中,水华中期(B20-29站)中华哲水蚤对纤毛虫和红色中缢虫的清滤率(155 ml ind.-1 d-1,252 ml ind.-1 d-1)分别高于水华后期(B20-85站,20 ml ind.-1 d-1,147 ml ind.-1 d-1)和非水华期(B31站,98 ml ind.-1 d-1,79 ml ind.-1 d-1)。水华中期中华哲水蚤对纤毛虫和红色中缢虫现存量的摄食压力(83.3%,94.6%)也分别高于非水华B31站(67.8%, 59.8%)和水华后期(20.9%, 81.7%)。桡足类摄食可能是影响水华过程中纤毛虫生物量变化的重要因素。
     2007年5月,在南黄海寡营养站,桡足类添加培养实验中中华哲水蚤的添加明显降低了纤毛虫的丰度,而鞭毛虫的丰度没有相应地增加,蓝细菌丰度明显增加。因此,在桡足类-纤毛虫-鞭毛虫食物链中没有发现营养级联效应,纤毛虫可能是蓝细菌的主要摄食者。
Marine planktonic ciliates mainly include subclass Choreotrichia and Oligotrichia. They are unicellular and eukaryotic protists in the size range of 10-200μm. They are abundant and ubiquitous with average abundance 102-103 ind. L-1 in various marine habitats. As one of the major components of microzooplankton in the pelagic ecosystem, ciliates play a key role in the transfer of carbon and energy through microbial food web to classical food chain, acting as top-down consumer of, pico-, nano- plankton and other primary producers and as a food source for mesozooplankton (e.g. copepod).
     Ecological researches of planktonic ciliate in the coastal area of China seas are limited. Basic data of ciliate abundance and biomass is scarce in the South China Sea; those in the East China Sea are scattered. There is no research on the spatio-temporal variability of ciliate abundance and biomass during blooms and much less reports on grazing impact of ciliate. In this study, abundance, biomass and distribution of planktonic ciliate were investigated in the South China Sea and East China Sea. Influence of different water masses on distribution of ciliate abundance was studied in the East China Sea. Spatio-temporal variability of ciliate abundance and biomass during spring blooms was investigated in the Yellow Sea. In addition, incubations were carried out to study the grazing of microzooplankton on phytoplankton and nanoflagellate, the grazing of copepod (Calanus sinicus) on ciliate.
     Ciliate abundance and biomass in different seas
     In the northern South China Sea in October, 2007, ciliate abundance ranged from 0 to 5757 (on average 848±776) ind. L-1, of which dominant aloricate ciliates occupied 91.9±9%. The biomass of all ciliates was 0-2.09 (on average 1.2±1.54)μg C L-1, of which aloricate ciliates (on average 0.94±1.27μg C L-1) occupied 78.6μ23.8% to the total. Forty-nine species of tintinnids in 16 genera were identified. Genus Tintinnopsis was dominant in abundance. Ciliates mainly distributed near coastal shallow waters which was warm and less salty with more Chl a concentration. The maximum abundance of ciliate in the study was higher than those in other parts of China seas.
     In the Changjiang River Estuary and its adjacent sea, ciliate abundance ranged from 0 to 4163 (on average 718±571) ind. L-1 and the biomass ranged from 0.00 to 64.88 (on average 1.86±6.34)μg C L-1 in August 2006; the ciliate abundance ranged from 35 to 1155 (on average 358±235) ind. L-1 and the biomass ranged from 0.00 to 9.23 (on average 0.5±1.15)μg C L-1 in October 2006. Higher surface and integrated abundance and biomass of ciliate occurred in the coastal water in the eastern of Changjiang River mouth and Hangzhou Bay mouth in August. However, those occurring in the offshore in October were higher in the northern than in the southern part. The contribution of tintinnid to total biomass in October was slightly higher than in August. Influence of dissolved oxygen (DO) concentration on the vertical distribution of ciliate abundance and biomass was not significant.
     In the shelf areas of East China Sea, ciliate abundance and biomass ranged from 0 to 1795 (on average 208μ266) ind. L-1 and from 0 to 2.36 (on average 0.28μ0.35)μg C L-1, respectively, in autumn (11.19-12.23), 2006. Ciliate abundance and biomass were in the range of 0 to 22695 (on average 524μ1990) ind. L-1 and 0 to 10.87 (on average 0.47μ1.01)μg C L-1, respectively, in winter (2.22-3.11), 2007. In autumn, ciliate abundance and biomass in the outer and middle shelf were higher than in the inner shelf. However, in winter, more ciliates occurred in the middle shelf than in the outer and inner shelf. Aloricate ciliates were dominant in the abundance in both autumn and winter, but contribution of tintinnid to total biomass was higher than aloricate ciliate in autumn. Small ciliates (ESD 10-20μm) accounted for 63% and 82% in abundance in autumn and winter, respectively. In comparison with reports in the 1990s in East China Sea, no distinct variation on ecological distribution of planktonic ciliates was found.
     Distribution of ciliate abundance in relation to water masses
     In the East China Sea, distribution of ciliate abundance was affected by different water masses. In August (summer) 2006, average surface ciliate abundance (972±746 ind. L-1) in the Changjiang Diluted Water (CDW) was higher than in the offshore Shelf Mixing Water (SMW) (475±345 ind. L-1) in the Changjiang River Estuary and its adjacent sea. Salinity variation had important effects on the spatial pattern of surface ciliate abundance in the SMW.
     In February-March (winter) 2007, average surface ciliate abundance in the SMW (452μ645 ind. L-1) was higher than in the Kuroshio Water (202±170 ind. L-1) and the Coastal Water (CoW) (209±307 ind. L-1) in the shelf area. Integrated ciliate abundance of 0-30 m in the SMW was not only significantly and negatively correlated with salinity, but also positively correlated with Chl a concentration.
     Ciliate distribution was characterized by increase of abundance close to the frontal areas. Most tintinnids identified as neritic species did not show discrimination of distribution between two water masses in the Changjiang River Estuary in summer. However, there were pronounced distribution zones of tintinnid species and some occasional species might indicate the intrusion route of Kuroshio Water on the continental shelf in winter.
     Variability of ciliate integrated biomass during spring blooms in the Yellow Sea
     Ciliate and Myrionecta rubra abundance and biomass responded differently to various phytoplankton blooms.
     Ciliate integrated biomass at representative diatom bloom station in 2006 was higher than the maximum integrated biomass during blooms in 2007 and 2009.
     In 2007, diatom blooms at three stations (St. BM1, St. BM2 and St. BM3) were found. At St. BM1, maximum abundance of M. rubra was up to 2.9×105 ind. L-1. During the bloom of St. BM1 and St. BM2, M. rubra abundance and integrated biomass sharply decreased. Non-Myrionecta ciliates daily average integrated biomass decreased. Average integrated biomass of M. rubra was higher than ciliate during the bloom of St. BM1 and St. BM2, but during the bloom of St. BM3, integrated biomass of M. rubra with low abundance was lower than ciliate.
     In 2009, M. rubra abundance was low during the diatom bloom with Euglena sp. occurring in the maximum abundance 3.5×104 ind. L-1. Average integrated biomass of ciliate that was much higher than M. rubra increased at the end of bloom. During the dinoflagellate and diatom mixed bloom, average integrated biomass of M. rubra was higher than ciliate. Daily average integrated biomass of ciliate and M. rubra reached a peak on the fourth day and then declined.
     Grazing of microzooplankton on phytoplankton and nanoflagellate
     In April 2007, phytoplankton growth rate (1.18 d-1) and microzooplankton grazing mortality rate (0.76 d-1) at bloom St. BM1-1 were higher than those at the post-bloom and non-bloom stations. Microzooplankton daily grazing impact on primary production at St. BM1-1 was lower than post-bloom and most of non-bloom stations. Average integrated biomass of ciliate and Gyrodinium sp. during the bloom were not higher than those at non-bloom stations. Therefore, the top-down control of microzooplankton on spring bloom might be not significant.
     In May 2007,ciliate abundance kept a proportional relationship with dilution factors after incubation in the dilution incubations while flagellate abundance increased in the more diluted series at both eutrophic and oligotrophic stations in the southern Yellow Sea. Microzooplankton grazing rate on flagellates was higher in the eutrophic water (1.01 d~(-1)) than in the oligotrophic water (0.42-0.44 d~(-1)). In the eutrophic water, most of the flagellate production (99%) was grazed by microzooplankton. In the oligotrophic water, only 72-73% of the flagellate production was grazed by microzooplankton. Grazing of Copepod on ciliate
     In April 2009, clearance rates of ciliates and M. rubra by C. sinicus (155 ml copepod~(-1)d~(-1), 252 ml copepod~(-1)d~(-1)) during the course of bloom (St. B20-29) were higher than those at the end of bloom (St. B20-85, 20 ml ind.~(-1)d~(-1), 147 ml ind.~(-1)d~(-1)) and at non-bloom stations (St. B31, 98 ml ind.~(-1)d~(-1), 79 ml ind.~(-1)d~(-1)), respectively. Daily grazing pressures on ciliate (83.3%) and M. rubra (94.6%) during the bloom (St. B20-29) were higher than those at non-bloom station (67.8%, 59.8%) and at the end of bloom (20.9%, 81.7%), respectively. Copepod grazing may be an important factor in the variability of ciliate biomass during the bloom.
     In May 2007, C. sinicus additions in the incubation significantly reduced ciliate abundance at the oligotrophic stations in the the southern Yellow Sea. Heterotrophic flagellates did not increase while Synechococcus abundance.increased significantly. Therefore, there was no trophic cascade along the copepod-ciliate-flagellate food chain. Ciliates might be the dominant grazers of Synechococcus.
引文
Abboud-Abi Saab M (1989) Distribution and ecology of tintinnids in the plankton of Lebanese coastal waters (eastern Mediterranean). J. Plankton Res. 11: 203-222
    Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150: 668-681
    Admiraal W, Venekamp LAH (1986) Significance of tintinnid grazing during blooms of Phaeocystis pouchetii (haptophyceae) in Dutch coastal waters. Neth. J. Sea Res. 20: 61-66
    Aelion C, Chisholm S (1985) Effect of temperature on growth and ingestion rates of Favella sp. J. Plankton Res. 7: 821-830
    Agatha S (2003a) Morphology and ontogenesis of Novistrombidium apsheronicum nov. comb. and Strombidium arenicola (Protozoa, Ciliophora): a comparative light microscopical and SEM study. Europ. J. of Protistol. 39: 245-266
    Agatha S (2003b) Redescription of Strombidinopsis minima (Gruber, 1884) Lynn et al., 1991 (Protozoa, Ciliophora), with notes on its ontogenesis and distribution. Europ. J. Protistol. 39: 233-244
    Agis M, Granda A, Dolan JR (2007) A cautionary note: Examples of possible microbial community dynamics in dilution grazing experiments. J. Exp. Mar. Biol. Ecol. 341: 176-183
    Ahn Y, Shanmugam P, Moon J, Ryu J (2008) Satellite remote sensing of a low-salinity water plume in the East China Sea. Ann. Geophys. 26: 2019-2035
    Ahn YH, Shanmugam P (2006) Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters. Remote Sens. Environ. 103: 419-437
    Alder VA, Boltovskoy D (1993) The ecology of microzooplankton in the Weddell-Scotia Confluence area: horizontal and vertical distribution patterns. J. Mar. Res. 51: 323-344
    Archer SD, Leakey RJG, Burkill PH, Sleigh MA (1996) Microbial dynamics in coastal waters of East Antarctica: Herbivory by heterotrophic dinoflagellates. Mar. Ecol. Prog. Ser. 139: 239-255
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257-263
    Bamstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman M (2000) Feeding. In: Harris RP, Wiebe PH, lenz J, Skjoldal, M H (eds) ICES Zooplankton Methodology Manual Academic Press, New York, p 297-399
    Batten SD, Fileman ES, Halvorsen E (2001) The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain. Prog. Oceanogr. 51: 385-398
    Beardsley RC, Limeburner R, Yu H, Cannon GA (1985) Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont. Shelf Res. 4: 57-76
    Beers JR, Stewart G (1967) Micro-zooplankton in the euphotic zone at five locations across the California Current. J. Fish. Res. Board Can. 24: 2053-2068
    Beers JR, Stewart GL (1971) Microzooplankters in the plankton communities of the upper waters of the eastern tropical Pacific. Deep-Sea Res. 18: 861-883
    Belkin IM, Cornillon PC, Sherman K (2009) Fronts in Large Marine Ecosystems. Prog. Oceanogr. 81: 223-236
    Berggreen U, Hansen B, Ki rboe T (1988) Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Ecol. 99: 341-352
    Bernard C, Rassoulzadegan F (1993) The role of picoplankton (cyanobacteria and plastidic picoflagellates) in the diet of tintinnids. J. Plankton Res. 15: 361-373
    Bj(?)rnsen PK, Nielsen TG (1991) Decimeter scale heterogeneity in the plankton during a pycnocline bloom of Gyrodinium aureolum. Mar. Ecol. Prog. Ser. 73: 263-267
    Bojanic N, Solic M, Krstulovic N, Marasovic I, Nincevic Z, Vidjak O (2001) Seasonal and vertical distribution of the ciliated protozoa and micrometazoa in Kastela Bay (central Adriatic). Helgol. Mar. Res. 55: 150-159
    Borsheim KY (1984) Clearance rates of bacteria-sized particles by freshwater ciliates, measured with monodisperse fluorescent latex beads. Oecologia 63: 286-288
    Broglio E, Jónasdóttir SH, Calbet A, Jakobsen HH, Saiz E (2003) Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat. Microb. Ecol. 31: 267-278
    Broglio E, Saiz E, Calbet A, Trepat I, Alcaraz M (2004) Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat. Microb. Ecol. 35:65-78
    Bulit C, Diaz-Avalos C, Signoret M, Montagnes DJS (2003) Spatial structure of planktonic ciliate patches in a tropical coastal lagoon: an application of geostatistical methods. Aquat. Microb. Ecol. 30: 185-196
    Burkill PH, Edwards ES, John AWG, Sleigh MA (1993) Microzooplankton and their herbivorous activity in the northeastern Atlantic-ocean. Deep-Sea Res. II 40: 479-493
    Burkill PH, Edwards ES, Sleigh MA (1995) Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea. Deep-Sea Res. II 42: 1277-1290
    Calbet A (2001) Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnol. Oceanogr. 46: 1824-1830
    Calbet A (2008) The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science, p 325-331
    Calbet A, Broglio E, Saiz E, Alcaraz M (2002) Low grazing impact of mesozooplankton on the microbial communities of the Alboran Sea: a possible
    case of inhibitory effects by the toxic dinoflagellate Gymnodinium catenatum. Aquat. Microb. Ecol. 26: 235-246
    Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49: 51-57
    Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38: 157-167
    Campbell A (1954) Tintinnina. In: Moore ea (ed) Treatise on Invertebrate Paleontology, pt. D, Protista, Vol 3. Kansas press, Lawrence, p 166-180
    Caron DA (2000) Symbiosis and mixotrophic among pelagic microorganism. In: In Kirchman DL (ed) Microbial Ecology of the Oceans. Wiley-Liss Inc., New York, p 495-523
    Castellani C, Irigoien X, Harris RP, Lampitt RS (2005) Feeding and egg production of Oithona similis in the North Atlantic. Mar. Ecol. Prog. Ser. 288: 173-182
    Castellani C, Irigoien X, Mayor DJ, Harris RP, Wilson D (2008) Feeding of Calanus finmarchicus and Oithona similis on the microplankton assemblage in the Irminger Sea, North Atlantic. J. Plankton Res. 30: 1095-1116
    Chen BZ, Liu HB, Lau MTS (2010) Grazing and growth responses of a marine oligotrichous ciliate fed with two nanoplankton: does food quality matter for micrograzers? Aquat. Ecol. 44: 113-119
    Chen C (2009) Chemical and physical fronts in the Bohai, Yellow and East China seas. J. Mar. Syst. 78: 394-410
    Chen C, Ruo R, Pai S, Liu CT, Wong GTF (1995) Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Cont. Shelf Res. 15: 19-39
    Chen CC, Shiah FK, Chiang KP, Gong GC, Kemp WM (2009) Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea. J. Geophys. Res. 114: 1-15
    Chern C, Wang J (1990) On the mixing of waters at a northern offshore area of Taiwan. Terrest. Atmos. Oceanic Sci. 1: 297-306
    Chiang K, Lin C, Lee C, Shiah FK, Chang J (2003) The coupling of oligotrich ciliate populations and hydrography in the East China Sea: spatial and temporal variations. Deep-Sea Res. II 50: 1279-1293
    Cho BC, Choi JK, Chung CS, Hong GH (1994) Uncoupling of bacteria and phytoplankton during a spring diatom bloom in the mouth of the Yellow Sea. Mar. Ecol. Prog. Ser. 115: 181-190
    Choi JW, Stoecker DK (1989) Effects of fixation on cell volume of marine planktonic protozoa. Appl. Environ. Microbiol. 55: 1761-1765
    Christaki U, Dolan JR, Pelegri S, Rassoulzadegan F (1998) Consumption of picoplankton-size particles by marine ciliates: Effects of physiological state of the ciliate and particle quality. Limnol. Oceanogr. 43: 458-464
    Christaki U, Jacquet S, Dolan JR, Vaulot D, Rassoulzadegan F (1999) Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol. Oceanogr. 44: 52-61
    Christoffersen K, Gonzalez JM (2003) An approach to measure ciliate grazing on living heterotrophic nanoflagellates. Hydrobiologia 491: 159-166
    Cleven EJ (1996) Indirectly fluorescently labelled flagellates (IFLF): a tool to estimate the predation on free-living heterotrophic flagellates. J. Plankton Res. 18: 429
    Corliss JO (1979) The Ciliated Protozoa: Characterization, Classification and Guide to the Literature. Pergamon Press, Oxford
    Crawford DW (1989) Mesodinium rubrum - the phytoplankter that wasn't. Mar. Ecol. Prog. Ser. 58: 161-174
    Dale T, Dahl E (1987) Mass occurrence of planktonic oligotrichous ciliates in a bay in southern Norway. J. Plankton Res. 9: 871-879
    Demadariaga I (1995) Photosynthetic characteristics of phytoplankton during the development of a summer bloom in the urdaibai estuary, bay of biscay. Estuar. Coast. Shelf Sci. 40: 559-575
    Dolan J (1992) Mixotrophy in ciliates: A review of Chlorella symbiosis and chloroplast retention. Marine Microbial Food Webs 6: 115-132
    Dolan J, Coats D (1991) Changes in fine-scale vertical distributions of ciliate microzooplankton related to anoxia in Chesapeake Bay waters. Marine Microbial Food Webs 5:
    Dolan JR (1991a) Guilds of ciliate microzooplankton in the Chesapeake Bay. Estuar. Coast. Shelf Sci. 33: 137-152
    Dolan JR (1991b) Microphagous ciliates in mesohaline Chesapeake Bay waters: estimates of growth rates and consumption by copepods. Mar. Biol. 111: 303-309
    Dolan JR, Claustre H, Carlotti F, Plounevez S, Moutin T (2002) Microzooplankton diversity: relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean.
    Deep-Sea Res. I 49: 1217-1232
    Dolan JR, Coats DW (1990) Seasonal abundances of planktonic ciliates and microflagellates in mesohaline Chesapeake Bay waters. Estuar. Coast. Shelf Sci. 31: 157-175
    Dolan JR, Gallegos CL, Moigis A (2000) Dilution effects on microzooplankton in dilution grazing experiments. Mar. Ecol. Prog. Ser. 200: 127-139
    Dolan JR, Marrase C (1995) Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan sea, NW Mediterranean, June 1993. Deep-Sea Res. I 42: 1965-1987
    Dolan JR, McKeon K (2005) The reliability of grazing rate estimates from dilution experiments: Have we over-estimated rates of organic carbon consumption by microzooplankton? Ocean Sci. 1: 1-7
    Dolan JR, Ritchie ME, Ras J (2007) The "neutral" community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the SE Tropical Pacific Ocean. Biogeosciences 4: 297-310
    Dolan JR, Simek K (1997) Processing of ingested matter in Strombidium sulcatum, a marine ciliate (Oligotrichida). Limnol. Oceanogr. 42: 393-397
    Ducklow HW (1983) Production and fate of bacteria in the oceans. BioScience 33: 494-501
    Dussart B (1965) Les différentes catégories de plancton. Hydrobiologia 26: 72-74
    Duttagupta S, Gupta S, Gupta A (2004) Euglenoid blooms in the floodplain wetlands of Barak Valley, Assam, north eastern India. J.Environ.Biol. 25: 369-373
    Edler L (1979) Recommendations on methods for marine biological studies in the Baltic Sea. Publication-Baltic Marine Biologists BMB (Sweden):
    Elloumi J, Carrias J, Ayadi H, Sime-Ngando T, Boukhris M, Boua n A (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar. Coast. Shelf Sci. 67: 21-29
    Fenchel T (1980) Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13-25
    Fenchel T (1986) Protozoan filter feeding. Protistology 1: 65-113
    Fenchel T, Finlay B (1983) Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol. 9: 99-122
    Fenchel T, Kristensen LD, Rasmussen L (1990) Water column anoxia: vertical zonation of planktonic protozoa. Mar. Ecol. Prog. Ser. 62: 1-10
    Fessenden L, Cowles TJ (1994) Copepod predation on phagotrophic ciliates in Oregon coastal waters. Mar. Ecol. Prog. Ser. 107: 103-111
    Fiala M, Kopczynska EE, Jeandel C, Oriol L, Vetion G (1998) Seasonal and interannual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. J. Plankton Res. 20: 1341-1356
    Fileman E, Smith T, Harris R (2007) Grazing by Calanus helgolandicus and Para-Pseudocalanus spp. on phytoplankton and protozooplankton during the spring bloom in the Celtic Sea. J. Exp. Mar. Biol. Ecol. 348: 70-84
    Fileman ES, Leakey RJG (2005) Microzooplankton dynamics during the development of the spring bloom in the north-east Atlantic. J. Mar. Biol. Assoc. U.K. 85: 741-753
    First MR, Lavrentyev PJ, Jochem FJ (2007) Patterns of microzooplankton growth in dilution experiments across a trophic gradient: Implications for herbivory studies. Mar. Biol. 151: 1929-1940
    First MR, Miller HL, Lavrentyev PJ, Pinckney JL, Burd AB (2009) Effects of microzooplankton growth and trophic interactions on herbivory in coastal and offshore environments. Aquat. Microb. Ecol. 54: 255-267
    Frost BW (1972) Effects of size and concentration of food particles on feeding behavior of marine planktonic copepod Calanus-pacificus. Limnol. Oceanogr. 17: 805-815
    Gasol JM (1994) A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance. Mar. Ecol. Prog. Ser. 113: 291-300
    Gifford DJ (1988) Impact of grazing by microzooplankton in the Northwest Arm of Halifax Harbour Nova Scotia. Mar. Ecol. Prog. Ser. 47: 249-258 Gifford DJ, Fessenden LM, Garrahan PR, Martin E (1995) Grazing by microzooplankton and mesozooplankton in the high-latitude North Atlantic Ocean: spring versus summer dynamics. J. Geophys. Res. 100: 6665-6675
    Gilron GL, Lynn DH (1989) Assuming a 50% cell occupancy of the lorica overestimates tintinnine ciliate biomass. Mar. Biol. 103: 413-416
    Gismervik I (2005) Numerical and functional responses of choreo- and oligotrich planktonic ciliates. Aquat. Microb. Ecol. 40: 163-173
    Godhantaraman N (2002) Seasonal variations in species composition, abundance, biomass and estimated production rates of tintinnids at tropical estuarine and mangrove waters, Parangipettai, southeast coast of India. J. Mar. Syst. 36: 161-171
    Gold K (1979) Scanning electron microscopy of tintinnopsis parva: studies on particle accumulation and the striae. J. Eukaryot. Microbiol. 26: 415-419
    Gold K, Morales EA (1976) Studies on the sizes, shapes, and the development of the lorica of agglutinated Tintinnida. Biol. Bull. 150: 377-392
    Gomez F (2007) Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecol.-Int. J. Ecol. 32: 188-202
    Gong G, Lee Chen Y, Liu K (1996) Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Cont. Shelf Res. 16: 1561-1590
    Gong G, Shiah F, Liu K, Chuang WS, Chang J (1997) Effect of the Kuroshio intrusion on the chlorophyll distribution in the southern East China Sea during spring 1993. Cont. Shelf Res. 17: 79-94
    Gong G, Wen Y, Wang B, Liu GJ (2003) Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Res. II 50: 1219-1236
    Gonzalez JM, Sherr EB, Sherr BF (1990) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56: 583
    Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. WILEY-VCH, Weinheim
    Guillou L, Jacquet S, Chretiennot-Dinet MJ, Vaulot D (2001) Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus. Aquat. Microb. Ecol. 26: 201-207
    Hansen BW, Jensen F (2000) Specific growth rates of protozooplankton in the marginal ice zone of the central Barents Sea during spring. J. Mar. Biol. Assoc. U.K. 80: 37-44
    Hansen FC, Reckermann M, Breteler W, Riegman R (1993) Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser 102: 51-57
    Hansen PJ (1991) Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser 73: 253-261
    Harris R, Wiebe P, Lenz J, Skjoldal H, Huntley M (2000) Zooplankton methodology manual
    Heinbokel JF (1978a) Studies on functional role of tintinnids in southern California Bight .1. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177-189
    Heinbokel JF (1978b) Studies on functional role of tintinnids in southern California Bight. 2. Grazing rates of field populations. Mar. Biol. 47: 191-197
    Henjes J, Assmy P, Klaas C, Verity P, Smetacek V (2007) Response of microzooplankton (protists and small copepods) to an iron-induced phytoplankton bloom in the Southern Ocean (EisenEx). Deep-Sea Res. II 54: 363-384
    Hibberd DJ (1977) Observations on ultrastructure of cryptomonad endosymbiont of redwater ciliate Mesodinium rubrum. J. Mar. Biol. Ass. U. K. 57: 45-61
    Holligan P (1981) Biological implications of fronts on the northwest European continental shelf. Phil. Trans. R. Soc. Lond. A 302: 547-562
    Horner RA, Postel JR, Halsband-Lenk C, Pierson JJ, Pohnert G, Wichard T (2005) Winter-spring phytoplankton blooms in Dabob Bay, Washington. Prog. Oceanogr. 67: 286-313
    Hsueh Y (2000) The Kuroshio in the East China Sea. J. Mar. Syst. 24: 131-139
    Huo YZ, Wang SW, Sun S, Li CL, Liu MT (2008) Feeding and egg production of the planktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. J. Plankton Res. 30: 723-734
    Irigoien X, Titelman J, Harris RP, Harbour D, Castellani C (2003) Feeding of Calanus finmarchicus nauplii in the Irminger Sea. Mar. Ecol. Prog. Ser. 262: 193-200
    Jakobsen HH, Hansen PJ (1997) Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanioncomatum - a comparative study. Mar. Ecol. Prog. Ser. 158: 75-86
    Jakobsen HH, Hyatt C, Buskey EJ (2001) Growth and grazing on the'Texas brown tide' alga Aureoumbra lagunensis by the tintinnid Amphorides quadrilineata. Aquatic Microbial Ecology 23: 245-252
    Jeong HJ, Shim JH, Lee CW, Kim JS, Kon SM (1999) Growth and grazing rates of the marine planktonic ciliate Strombidinopsis sp. on red-tide and toxic dinoflagellates. J. Euk. Microbiol. 46: 69-76
    Jeong HJ, Song JE, Kang NS, Kim S, Yoo Y, Park JY (2007) Feeding by heterotrophic dinoflagellates on the common marine heterotrophic nanoflagellate Cafeteria sp. Mar. Ecol. Prog. Ser. 333: 151-160
    Jerome CA, Montagnes DJS, Taylor FJR (1993) The effect of the quantitative protargol stain and Lugol's and Bouin's fixatives on cell size: a more accurate estimate of oliate species biomass. J. Euk. Microbiol. 40: 254-259
    Johansson M, Gorokhova E, Larsson U (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J. Plankton Res. 26: 67-80
    Johnson MD, Rome M, Stoecker DK (2003) Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnol. Oceanogr. 48: 238-248
    Jonsson PR (1986) Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 33: 265-277
    Jonsson PR (1987) Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina). Marine Microbial Food Webs 2: 55-67
    Jonsson PR (1989) Vertical distribution of planktonic ciliates - an experimental analysis of swimming behavior. Mar. Ecol. Prog. Ser. 52: 39-53
    Jonsson PR, Tiselius P (1990) Feeding behavior, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60: 35-44
    Kamiyama T (1997) Growth and grazing responses of tintinnid ciliates feeding on the toxic dinoflagellate Heterocapsa circularisquama. Mar. Biol. 128: 509-515
    Kamiyama T, Arima S (2001) Feeding characteristics of two tintinnid ciliate species on phytoplankton including harmful species: effects of prey size on ingestion rates and selectivity. J. Exp. Mar. Biol. Ecol. 257: 281-296
    Kamiyama T, Tsujino M (1996) Seasonal variation in the species composition of tintinnid ciliates in Hiroshima Bay, the Seto Inland Sea of Japan. J. Plankton Res. 18: 2313-2327
    Kamiyama T, Tsujino M, Matsuyama Y, Uchida T (2005) Growth and grazing rates of the tintinnid ciliate Favella taraikaensis on the toxic dinoflagellate Alexandrium tamarense. Mar. Biol. 147: 989-997
    Karayanni H, Christaki U, Van Wambeke F, Dalby AP (2004) Evaluation of double formalin--Lugol's fixation in assessing number and biomass of ciliates: an example of estimations at mesoscale in NE Atlantic. J. Microbiol. Methods 56: 349-358
    Karayanni H, Christaki U, Van Wambeke F, Denis M, Moutin T (2005) Influence of ciliated protozoa and heterotrophic nanoflagellates on the fate of primary production in the northeast Atlantic Ocean. J. Geophys. Res. 110:
    Kato S, Taniguchi A (1993) Tintinnid ciliates as indicator species of different water masses in the western North Pacific Polar Front. Fish. Oceanogr. 2: 166-174 Khan MA (1993) Occurrence of a rare euglenoid causing red-bloom in Dal Lake waters of the Kashmir Himalaya. Arch. Hydrobiol. 127: 101-103
    Khan MA (2000) Anthropogenic eutrophication and red tide outbreak in lacustrine systems of the Kashmir Himalaya. Acta Hydrochim. Hydrobiol. 28: 95-101
    Kim D, Choi SH, Kim KH, Shim J, Yoo S, Kim CH (2009) Spatial and temporal variations in nutrient and chlorophyll-a concentrations in the northern East China Sea surrounding Cheju Island. Cont. Shelf Res. 29: 1426-1436
    Kiorboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 143: 65-75
    Kiorboe T, Visser AW (1999) Predator and prey perception in copepods due to hydromechanical signals. Mar. Ecol. Prog. Ser. 179: 81-95
    Kivi K, Kaitala S, Kuosa H, Kuparinen J, Leskinen E, Lignell R, Marcussen B, Tamminen T (1993) Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38: 893-905
    Kivi K, Setala O (1995) Simultaneous Measurement of Food Particle Selection and Clearance Rates of Planktonic Oligotrich Ciliates (Ciliophora, Oligotrichina). Mar. Ecol.-Prog. Ser. 119: 125-137
    Kofoid C, Campbell A (1929) A conspectus of the marine fresh-water ciliate belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the eastern tropical Pacific 1904-1905.Univ. Calif. Pub. Zool. 34: 1-403
    Kofoid CA, Campbell AS (1939) Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of A. Agassiz, by the USA Fish Commission Steamer“Albatross”, from October, 1904, to March, 1905. The Ciliata: The Tintinnoinea
    Koski M, Schmidt K, J E-?, Viitasalo M, S. J, Repka S, Sivonen K (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol. Oceanogr. 47: 878-885
    Krsinic F (1982) On vertical distribution of tintinnines (Ciliata, Oligotrichida, Tintinnina) in the open waters of the South Adriatic. Mar. Biol. 68: 83-90
    Kudoh S, Kanda J, Takahashi M (1990) Specific growth rates and grazing mortality of chroococcoid cyanobacteria Synechococcus spp. in pelagic surface waters in the sea. J. Exp. Mar. Biol. Ecol. 142: 201-212
    Landry M, Calbet A (2005) Reality checks on microbial food web interactions in dilution experiments: responses to the comments of Dolan and McKeon. Ocean Sci. 1: 39-44
    Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283-288
    Laval-Peuto M (1977) Reconstruction d'une lorica de forme Coxiella par le trophonte nu de Favella ehrenbergii (Ciliata, Tintinnina). Comptes Rendus de l'Academie des Sciences 284: 547-550
    Laval-Peuto M (1981) Construction of the lorica in ciliata tintinnina. in vivo study of Favella ehrenbergii: variability of the phenotypes during the cycle, biology, statistics, biometry. Protistologica 17: 249-272
    Laval-Peuto M, Rassoulzadegan F (1988) Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159: 99-110
    Le Fevre J (1986) Aspects of the biology of frontal systems. Adv. Mar. Biol 23: 163-299
    Leakey RJG, Burkill PH, Sleigh MA (1992) Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114: 67-83
    Leakey RJG, Burkill PH, Sleigh MA (1994a) Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. Mar. Biol. Assoc. U.K. 74: 849-861
    Leakey RJG, Burkill PH, Sleigh MA (1994b) A comparison of fixatives for theestimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16: 375-389
    Leakey RJG, Burkill PH, Sleigh MA (1996) Planktonic ciliates in the northwestern Indian Ocean: Their abundance and biomass in waters of contrasting productivity. J. Plankton Res. 18: 1063-1071
    Lei Y, Xu K, Ki Choi J, Pyo Hong H, Wickham S (2009) Community structure and seasonal dynamics of planktonic ciliates along salinity gradients. Eur. J. Protistol. 45: 305-319
    Leising AW, Horner R, Pierson JJ, Postel J, Halsband-Lenk C (2005) The balance between microzooplankton grazing and phytoplankton growth in a highly productive estuarine fjord. Prog. Oceanogr. 67: 366-383
    Levinsen H, Nielsen TG (2002) The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnol. Oceanogr. 47: 427-439
    Levinsen H, Turner J, Nielsen T, Hansen B (2000) On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar. Ecol. Prog. Ser. 204: 65-77
    Li C, Sun S, Wang R, Wang X (2004) Feeding and respiration rates of a planktonic copepod (Calanus sinicus) oversummering in Yellow Sea Cold Bottom Waters. Mar. Biol. 145: 149-157
    Li D, Dag D (2004) Ocean pollution from land-based sources: East China Sea, China. Journal Information 33:
    Liu H, Suzuki K, Saino T (2002) Phytoplankton growth and microzooplankton grazing in the subarctic Pacific Ocean and the Bering Sea during summer 1999. Deep-Sea Res. I 49: 363-375
    Lonsdale D, Caron D, Dennett M, Schaffner R (2000) Predation by Oithona spp. on protozooplankton in the Ross Sea, Antarctica. Deep-Sea Res. II 47: 3273-3283
    Lynn DH (2002) Subphylum 2. Intramacronucleata: Class 1. Spirotrichea-Ubiquitous and Morphologically Complex. In: The Ciliated Protozoa, Guelph, p 141-174
    Lynn DH, Small EB (2002) Phylum Ciliophora Dofein, 1901. In: lee JJ, Leedale GF, Bradbury PC (eds) An illustrated guide to the protozoa, 2nd ed. Kanasas, USA: Society of Protozoologists, Lawrence, p 371-656
    Müller O (1776) Zoologiae Danicae Prodromus, seu Animalium Daniae et Norvegiae Indigenarum Characteres, Nomina, et Synonyma Imprimis Popularium: Hallageris. Havniae
    Martin-Cereceda M, Williams RAJ, Novarino G (2008) Easy visualization of the protist oxyrrhismarina grazing on a live fluorescently labelled heterotrophic nanoflagellate. Curr. Microbiol. 57: 45-50
    Mayor DJ, Anderson TR, Irigoien X, Harris R (2006) Feeding and reproduction of Calanus finmarchicus during non-bloom conditions in the Irminger Sea. J. Plankton Res. 28: 1167
    Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569-579
    Middlebrook K, Emerson CW, Roff JC, Lynn DH (1987) Distribution and abundance of tintinnids in the Quoddy Region of the Bay of Fundy. Can. J. Zool. 65: 594-601
    Modigh M (2001) Seasonal variations of photosynthetic ciliates at a Mediterranean coastal site. Aquat. Microb. Ecol. 23: 163-175
    Modigh M, Franze G (2009) Changes in phytoplankton and microzooplankton populations during grazing experiments at a Mediterranean coastal site. J. Plankton Res. 31: 853-864
    Montagnes D (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241-254
    Montagnes D, Poulton A, Shammon T (1999) Mesoscale, finescale and microscale distribution of micro-and nanoplankton in the Irish Sea, with emphasis on ciliates and their prey. Mar. Biol. 134: 167-179
    Montagnes DJS, Lessard EJ (1999) Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms. Aquat. Microb. Ecol. 20: 167-181
    Montagnes DJS, Lynn DH, Roff JC, Taylor WD (1988) The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99: 21-30
    Muller H, Geller W (1993) Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126: 315-327
    Muylaert K, Van Mieghem R, Sabbe K, Tackx M, Vyverman W (2000) Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary. Hydrobiologia 432: 25-36
    Nakamura Y, Suzuki S, Hiromi J (1995) Population dynamics of heterotrophic dinoflagellates during a Gymnodinium mikimotoi red tide in the Seto Inland Sea.Mar. Ecol. Prog. Ser. 125: 269-277
    Nakamura Y, Suzuki S, Hiromi J (1996) Development and collapse of a Gymnodinium mikimotoi red tide in the Seto Inland Sea. Aquat. Microb. Ecol. 10: 131-137
    Nakamura Y, Turner JT (1997) Predation and respiration by the small cyclopoid copepod Oithona similisr: How important is feeding on ciliates and heterotrophic flagellates? J. Plankton Res. 19: 1275-1288
    Nejstgaard JC, Hygum BH, Naustvoll LJ, Bamstedt U (2001) Zooplankton growth, diet and reproductive success compared in simultaneous diatom- and flagellate-microzooplankton-dominated plankton blooms. Mar. Ecol. Prog. Ser. 221: 77-91
    Nie D, Cheng P (1947) Tintinnoinea of the Hainan Region. Contr. Biol. Lab. Sci. Soc. China, Zoological Series 16: 41-86
    Nielsen T, Kiorboe T (1994) Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519
    Ohman MD, Runge JA (1994) Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol. Oceanogr. 39: 21-36
    Ohman MD, Snyder RA (1991) Growth-kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36: 922-935
    Olli K, Heiskanen AS, Lohikari K (1998) Vertical migration of autotrophic micro-organisms during a vernal bloom at the coastal Baltic Sea–coexistence through niche separation. Hydrobiologia 363: 179-189
    Ota T, Taniguchi A (2003) Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep-Sea Res. II 50: 423-442
    Parsons T, Maita Y, Lalli C (1984) A manual of chemical and biological methods for seawater analysis
    Passow U (1991) Vertical migration of Gonyaulax catenata and Mesodinium rubrum. Mar. Biol. 110: 455-463
    Perez MT, Dolan JR, Fukai E (1997) Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Mar. Ecol. Prog. Ser. 155: 89-101
    Perez MT, Dolan JR, Vidussi F, Fukai E (2000) Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterranean (May 1995). Deep-Sea Res. I 47: 479-503
    Pierce RW, Turner JT (1992) Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6: 139–181
    Pierce RW, Turner JT (1993) Global biogeography of marine tintinnids. Mar. Ecol. Prog. Ser. 94: 11-26
    Pingree R, Mardell G, Cartwright D (1981) Slope turbulence, internal waves and phytoplankton growth at the Celtic Sea Shelf-Break. Phil. Trans. R. Soc. Lond. A 302: 663-682
    Pitta P, Giannakourou A, Christaki U (2001) Planktonic ciliates in the oligotrophic Mediterranean Sea: longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquat. Microb. Ecol. 24: 297-311
    Pomeroy LR (1974) The ocean's food web, a changing paradigm. BioScience 24: 499-504
    Premke K, Arndt H (2000) Predation on heterotrophic flagellates by protists: food selectivity determined using a live-staining technique. Arch. Hydrobiol. 150: 17-28
    Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097-1103
    Quevedo M, Viesca L, Anadon R, Fernandez E (2003) The protistan microzooplankton community in the oligotrophic north-eastern Atlantic: large- and mesoscale patterns. J. Plankton Res. 25: 551-563
    Rassoulzadegan F, Laval-Peuto M, Sheldon RW (1988) Partitioning of the food ration of marine ciliates between pico-and nanoplankton. Hydrobiologia 159: 75-88
    Rassoulzadegan F, Sheldon RW (1986) Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine-environment. Limnol. Oceanogr. 31: 1010-1021
    Revelante N, Gilmartin M (1983) Microzooplankton distribution in the Northern Adriatic Sea with emphasis on the relative abundance of ciliated protozoans. Oceanol. Acta 6: 407-415
    Robinson A, McCarthy J, Rothschild B (2005) Biological-physical interactions in the sea. Harvard Univ Pr
    Saage A, Vadstein O, Sommer U (2009) Feeding behaviour of adult Centropages hamatus (Copepoda, Calanoida): Functional response and selective feeding experiments. J. Sea Res. 62: 16-21
    Safi K, Brian Griffiths F, Hall JA (2007) Microzooplankton composition, biomass andgrazing rates along the WOCE SR3 line between Tasmania and Antarctica. Deep-Sea Res. I 54: 1025-1041
    Saito H, Ota T, Suzuki K, Nishioka J, Tsuda A (2006) Role of heterotrophic dinoflagellate Gyrodinium sp in the fate of an iron induced diatom bloom. Geophys. Res. Lett. 33: 4
    Saito H, Suzuki K, Hinuma A, Ota T, Fukami K, Kiyosawa H, Saino T, Tsuda A (2005) Responses of microzooplankton to in situ iron fertilization in the western subarctic Pacific (SEEDS). Prog. Oceanogr. 64: 223-236
    Saiz E, Kiorboe T (1995) Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar. Ecol. Prog. Ser. 122: 147-158
    Samuelsson K, Andersson A (2003) Predation limitation in the pelagic microbial food web in an oligotrophic aquatic system. Aquat. Microb. Ecol. 30: 239-250
    Santoferrara L, Alder V (2009) Abundance trends and ecology of planktonic ciliates of the south-western Atlantic (35-63oS): a comparison between neritic and oceanic environments. J. Plankton Res. 31: 837-851
    Schnetzer A, Caron DA (2005) Copepod grazing impact on the trophic structure of the microbial assemblage of the San Pedro Channel, California. J. Plankton Res.: 959-971
    Set?l? O (1991) Ciliates in the anoxic deep water layer of the Baltic. Arch. Hydrobiol. 122: 483-492
    Set?l? O, Kivi K (2003) Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquat. Microb. Ecol. 32: 287-297
    Sherr E, Rassoulzadegan F, Sherr B (1989) Bacterivory by pelagic choreotrichous ciliates in coastal waters of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 55: 235-240
    Sherr E, Sherr B (1988) Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33: 1225-1227
    Sherr E, Sherr B (2008) Understanding roles of microbes in marine pelagic food webs: a brief history. Wiley-Liss
    Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710-711
    Sherr EB, Sherr BF (1993) Preservation and storage of samples for enumeration of heterotrophic protists. In: Kemp PF, Sherr, B.F., Sherr, E.B., Cole, J.J. (ed) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers., p207–212
    Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28: 223-235
    Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81: 293-308
    Sherr EB, Sherr BF (2007) Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352: 187-197
    Sherr EB, Sherr BF (2009) Capacity of herbivorous protists to control initiation and development of mass phytoplankton blooms. Aquat. Microb. Ecol. 57: 253-262
    Sherr EB, Sherr BF, Fallon RD, Newell SY (1986) Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177-183
    Sherr EB, Sherr BF, Fessenden L (1997) Heterotrophic protists in the Central Arctic Ocean. Deep-Sea Res. II 44: 1665-1682
    Sherr EB, Sherr BF, Wheeler PA, Thompson K (2003) Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean. Deep-Sea Res. I 50: 557-571
    Shiah F, Liu K, Kao S, Gong G (2000) The coupling of bacterial production and hydrography in the southern East China Sea: Spatial patterns in spring and fall. Cont. Shelf Res. 20: 459-477
    Sime Ngando T, Groliere C (1991) Quantitative effects of fixatives on the storage of freshwater planktonic ciliates. Arch. Protistenk 140: 109-120
    Simpson J, Edelsten D, Edwards A, Morris NCG, Tett PB (1979) Islay front - physical structure and phytoplankton distribution. Est. Coast. Mar. Sci. 9: 713-726
    Sipura J, Lores E, Snyder RA (2003) Effect of copepods on estuarine microbial plankton in short-term microcosms. Aquat. Microb. Ecol. 33: 181-190
    Smetacek V (1981) The annual cycle of protozooplankton in the Kiel Bight. Marine Biology 63: 1-11
    Solic M, Krstulovic N (1994) Role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. Mar. Ecol. Prog. Ser. 114: 219-219
    Sommer U, Stibor H, Katechakis A (2002) Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484: 11-20
    Song W, Bradbury PC (1998) Studies on some new and rare reported marine planktonic ciliates (Ciliophora: Oligotricha) from coastal waters in North China. J. Mar. Biol. Ass. U.K. 78: 767-794
    Song W, Packroff G (1997) Taxonomische Untersuchungen an marinen Ciliaten aus China mit Beschreibungen von 2 neuen Arten, Strombidium globosaneum nov.
    spec. und Strombidium platum nov. spec. (Protozoa, Ciliophora). Arch. Protistenkd. 147: 331-360
    Song WB (2005) Taxonomic description of two new marine oligotrichous ciliates (Protozoa, Ciliophora). J. Nat. His. 39: 241-252
    Stelfox-Widdicombe CE, Edwards ES, Burkill PH, Sleigh MA (2000) Microzooplankton grazing activity in the temperate and sub-tropical NE Atlantic: summer 1996. Mar. Ecol. Prog. Ser. 208: 1-12
    Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12: 891-908
    Stoecker DK, Gifford DJ, Putt M (1994) Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Mar. Ecol. Prog. Ser. 110: 293-299
    Stoecker DK, Gustafson DE, Verity PG (1996) Micro- and mesoprotozooplankton at 140o W in the equatorial Pacific: Heterotrophs and mixotrophs. Aquat. Microb. Ecol. 10: 273-282
    Stoecker DK, Michaels AE (1991) Respiration, photosynthesis and carbon metabolism in planktonic ciliates. Mar. Biol. 108: 441-447
    Stoecker DK, Michaels AE, Davis LH (1987) Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326: 790-792
    Stoecker DK, Taniguchi A, Michaels AE (1989) Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50: 241-254
    Strom S, Miller C, Frost B (2000) What sets lower limits to phytoplankton stocks in high-nitrate, low-chlorophyll regions of the open ocean? Mar. Ecol. Prog. Ser. 193: 19-31
    Strom SL, Brainard MA, Holmes JL, Olson MB (2001) Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Mar. Biol. 138: 355-368
    Strom SL, Macri EL, Olson MB (2007) Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top-down control of phytoplankton. Limnol. Oceanogr. 52: 1480-1494
    Strom SL, Morello TA (1998) Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J. Plankton Res. 20: 571-584
    Su Q, Huang LM, Tan YH, Xu RL, Li T, Xu ZZ, Zhang JL, Qiu DJ (2007) Preliminary study of microzooplankton grazing and community composition in the north of South China Sea in autumn. Mar. Sci. Bull. 9: 43-53
    Suzuki K, Nakamura Y, Hiromi J (1999) Feeding by the small calanoid copepod Paracalanus sp. on heterotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol. 17: 99-103
    Suzuki T, Miyabe C (2007) Ecological balance between ciliate plankton and its prey candidates, pico-and nanoplankton, in the East China Sea. Hydrobiologia 586: 403-410
    Suzuki T, Yamada N, Taniguchi A (1998) Standing crops of planktonic ciliates and nanoplankton in oceanic waters of the western Pacific. Aquat. Microb. Ecol. 14: 49-58
    Tamigneaux E, Mingebier M, Klein B, Legendre L (1997) Grazing by protists and seasonal changes in the size structure of protozooplankton and phytoplankton in a temperate nearshore environment (western Gulf of St. Lawrence, Canada). Mar. Ecol. Prog. Ser. 146: 231-247
    Taniguchi A (1977) Distribution of microzooplankton in the Philippine Sea and the Celebes Sea in summer 1972. J. Oceanogr. 33: 82-89
    Tappan H, Loeblich AR (1973) Evolution of oceanic plankton. Earth Sci. Rev. 9: 207-240
    Tappan H, Loeblich ARJ (1968) Lorica composition of modern and fossil Tintinnida (ciliate Protozoa), systematics, geologic distribution, and some new Tertiary taxa. J. Paleontol. 42: 1378-1394
    Tillmann U (2004) Interactions between planktonic microalgae and protozoan grazers. J. Eukaryot. Microbiol. 51: 156-168
    Tiselius P (1989) Contribution of aloricate ciliates to the diet of Acartia clausi and Centropages hamatus in coastal waters. Mar. Ecol. Prog. Ser. 56: 49-56
    Tsuda A, Saito H, Machida RJ, Shimode S (2009) Meso- and microzooplankton responses to an in situ iron fertilization experiment (SEEDS II) in the northwest subarctic Pacific. Deep-Sea Res. II 56: 2767-2778
    Turner JT, Levinsen H, Nielsen TG, Hansen BW (2001) Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disk Bay, West Greenland. Mar. Ecol. Prog. Ser. 221: 209-219
    Umani SF, Beran A (2003) Seasonal variations in the dynamics of microbial plankton communities: first estimates from experiments in the Gulf of Trieste, Northern Adriatic Sea. Mar. Ecol. Prog. Ser. 247: 1-16
    Urrutxurtu I, Orive E, Sota A (2003) Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci. 57: 1169-1182
    Uterm?hl H (1958) Zur Vervollkommnumg der quantitaven Phytoplankton-methodik. Mitt. int. Ver. theor. angew. Limnol. 9: 1-38
    Vadstein O, Stibor H, Lippert B, Loseth K, Roederer W, Sundt-Hansen L, Olsen Y (2004) Moderate increase in the biomass of omnivorous copepods may ease grazing control of planktonic algae. Mar. Ecol. Prog. Ser. 270: 199-207
    Vaque D, Blough H, Duarte C (1997) Dynamics of ciliate abundance, biomass and community composition in an oligotrophic coastal environment (NW Mediterranean). Aquat. Microb. Ecol. 12: 71-83
    Verity P (1985) Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr. 30: 1268-1282
    Verity PG (1987) Abundance, community composition, size distribution, and production rates of tintinnids in Narragansett Bay, Rhode Island. Estuar. Coast. Shelf Sci. 24: 671-690
    Verity PG (1991) Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Limnol. Oceanogr. 36: 729-750
    Verity PG, Langdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in narragansett bay. J. Plankton Res. 6: 859-868
    Verity PG, Stoecker DK, Sieracki ME, Nelson JR (1993) Grazing, growth and mortality of microzooplankton during the 1989 North-Atlantic spring bloom at 47oN, 18oW. Deep-Sea Res. I 40: 1793-1814
    Villarino ML, Figueiras FG, Jones KJ, Alvarezsalgado XA, Richard J, Edwards A (1995) Evidence of in situ diel vertical migration of a red-tide microplankton species in Ria De Vigo (NW Spain). Mar. Biol. 123: 607-617
    Vincent D, Hartmann HJ (2001) Contribution of ciliated microprotozoans and dinoflagellates to the diet of three Copepod species in the Bay of Biscay. Hydrobiologia 443: 193-204
    Wang C, Nie DS (1932) A survey of the marine protozoa of Amoy. Zool.Ser. 8: 285–385
    Wang CC (1936) Notes on Tintinnoinea From the Gulf of Pe-Hai. Sinensia 7: 353-370
    Weisse T, Scheffelmoser U (1990) Growth and grazing loss rates in single-celled Phaeocystis sp. (Prymnesiophyceae). Mar. Biol. 106: 153-158
    Weng X, Wang C (1984) A preliminary study on the T-S characteristics and the origin of Taiwan Warm Current Water in summer. Stud. Mar. Sin. 21: 113-133
    Wickham SA (1995) Trophic relations between cyclopoid copepods and ciliated protists: complex interactions link the microbial and classic food webs. Limnol. Oceanogr. 40: 1173-1181
    Wong G, Chao S, Li Y, Shiah F (2000) The Kuroshio edge exchange processes (KEEP) study - an introduction to hypotheses and highlights. Cont. Shelf Res. 20: 335-347
    Yang EJ, Choi JK, Hyun JH (2004) Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146: 1-15
    Yang EJ, Choi JK, Hyun JH (2008) Seasonal variation in the community and size structure of nano-and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar. Coast. Shelf Sci. 77: 320-330
    Zarauz L, Irigoien X, Fernandes J (2008) Modelling the influence of abiotic and biotic factors on plankton distribution in the Bay of Biscay, during three consecutive years (2004 to 06). J. Plankton Res. 30: 857
    Zeitzschel B (1990) Zoogeography of marine protozoa: an overview emphasizing distribution of planktonic forms. Oxford University Press New York
    Zeldis J, James MR, Grieve J, Richards L (2002) Omnivory by copepods in the New Zealand Subtropical Frontal Zone. J. Plankton Res. 24: 9-23
    Zhang CX, Zhang WC, Xiao T, Lu RH, Sun S, Song WB (2009) Wintertime meso-scale horizontal distribution of large tintinnids in the southern Yellow Sea. Chin. J. Oceanol. Limnol. 27: 31-37
    Zhang CX, Zhang WC, Xiao T, Lue RH, Sun S, Song WB (2008) Meso-scale spatial distribution of large tintinnids in early summer in southern Yellow Sea. Chin. J. Oceanol. Limnol. 26: 81-90
    Zhang WC, Li HB, Xiao T, Zhang J, Li CL, Sun S (2006) Impact of microzooplankton and copepods on the growth of phytoplankton in the Yellow Sea and East China Sea. Hydrobiologia 553: 357-366
    Zhang WC, Wang R (2000) Summertime ciliate and copepod nauplii distribution and microzooplankton herbivorous activity in the Laizhou Bay, Bohai Sea, China. Estuar. Coast. Shelf Sci. 51: 103-114
    Zhang WC, Wang R (2002) Short time dynamics of ciliate abundance in the Bohai Sea (China). Chin. J. Oceanol. Limnol. 20: 135-141
    Zhang WC, Xiao T, Wang R (2001) Abundance and biomass of copepod nauplii and ciliates and herbivorous activity of microzooplankton in the East China Sea. Plankton Biol. Ecol. 48: 28-34
    Zhang WC, Xu KD, Wan R, Zhang GT, Meng T, Xiao T, Wang R, Sun S, Choi JK (2002) Spatial distribution of ciliates, copepod nauplii and eggs, Engraulis japonicus post-larvae and microzooplankton herbivorous activity in the Yellow Sea, China. Aquat. Microb. Ecol. 27: 249-259
    Zuo T, Wang R, Chen YQ, Gao SW, Wang K (2006) Autumn net copepod abundance and assemblages in relation to water masses on the continental shelf of the Yellow Sea and East China Sea. J. Mar. Syst. 59: 159-172
    于非,臧家业等(2002)黑潮水入侵东海陆架及陆架环流的若干现象.海洋科学进展20: 21-28
    于莹,张武昌,徐恒龙,肖天(2011)海洋寡毛类纤毛虫的室内培养.海洋科学35: (待刊)
    尹光德(1952)胶州湾砂壳纤毛虫初步调查.山东大学学报1: 36-56
    王学锋,李纯厚,贾晓平(2005)微型浮游动物摄食生态学研究进展.南方水产1: 70-76
    宁修仁(1997)微型生物食物环.东海海洋15: 66-68
    宋微波, A.沃,胡晓钟(2009)中国黄渤海的自由生纤毛虫.科学出版社,北京
    宋微波等译(2007)原生生物学.中国海洋大学出版社,青岛
    李子聪(2009)寡毛类及缘毛类纤毛虫的分子系统学研究及扇形游仆虫组蛋白H3基因克隆.硕士论文,中国海洋大学
    李道季,张经,吴莹,梁俊,黄大吉(2002)长江口外氧的亏损.中国科学D辑32: 686-694
    沈国英,黄凌风,郭丰,施并章(2010)海洋食物网与能流分析. In:海洋生态学. 科学出版社,北京, p 159-161
    沈焕庭,茅志昌,朱建荣(2003)长江河口盐水入侵.中国海洋出版社,北京
    柯林(1998)台湾海峡及厦门西海域纤毛虫原生动物在碳循环中的作用研究.硕士论文,厦门大学
    洪华生,商少凌,张彩云,黄邦钦,胡建宇,黄加祺,卢振彬(2005)台湾海峡生态系统对海洋环境年际变动的响应分析.海洋学报27: 63-69
    胡敦欣,杨作升(2001)东海海洋通量关键过程.海洋出版社
    唐启升,苏纪兰(2000)中国海洋生态系统动力学研究:I关键科学问题域研究发展战略.科学出版社,北京
    徐大鹏(2007)青岛沿海寡毛类纤毛虫的分类学研究.博士论文,中国海洋大学
    徐奎栋,洪华生,宋微波,柯林,马洪钢(2001)台湾海峡的砂壳纤毛虫研究(纤毛动物门:砂壳亚目).动物分类学报26: 454-466
    徐润林,白庆笙(1994)南沙群岛及其邻近海区海洋生物多样性研究.科学出版社,北京
    高生泉,林以安,金明明,高大伟(2004)春、秋季东、黄海营养盐的分布变化特征及营养结构.东海海洋22: 38-50
    蔡榕硕,陈际龙,黄荣辉(2006)我国近海和邻近海的海洋环境对最近全球气候变化的响应.大气科学30: 1019-1033
    乐凤凤,宁修仁(2006)南海北部浮游植物生物量的研究特点及影响因素.海洋学研究24: 60-69
    吕华庆(2006)东海1999年夏、冬上层水团的温、盐分布及其与历史平均状况的比较.海洋学研究24: 28-36
    孙书存,陆健健(2001)微型浮游生物生态学研究概述.生态学报21: 302-308
    孙军, Dawson J,刘东艳(2004)夏季胶州湾微型浮游动物摄食初步研究(英文). 应用生态学报15: 1425-1252
    张武昌,王荣(2001)胶州湾桡足类幼虫和浮游生纤毛虫的丰度和生物量.海洋与湖沼32: 280-287
    张武昌,王荣,王克(2002) 1997年7月一航次中莱州湾自由生纤毛虫和桡足类幼虫的分布.海洋科学26: 20-21
    张武昌,肖天,王荣(2001)海洋微型浮游动物的丰度和生物量.生态学报21: 1893—1908
    张武昌,张翠霞,肖天(2009)海洋浮游生态系统中小型浮游动物的生态功能. 地球科学进展24: 1195-1201
    汤毓祥,郑义芳(1990)关于黄、东海海洋锋的研究.海洋通报9: 89-96
    经志友,齐义泉,华祖林(2008)南海北部陆架区夏季上升流数值研究.热带海洋学报27: 1-8
    苏纪兰(2001)中国近海的环流动力机制研究.海洋学报23: 1-16
    苏纪兰,潘玉球(1989)台湾以北陆架环流动力学初步研究.海洋学报11: 1-14
    赵楠(2008)黄海纤毛虫的丰度与生物量.硕士论文,中国科学院海洋研究所
    赵楠,张武昌,孙松,宋微波,张永山,李国民(2007)胶州湾中大型砂壳纤毛虫的水平分布.海洋与湖沼38: 468-475
    陈吉余,陈祥禄,杨启伦(1988)上海海岸带和海涂资源综合调查报告.上海科技出版社,上海
    陈清潮(1964)中华哲水蚤的繁殖、性比率和个体大小的研究.海洋与湖沼6: 272-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700