用户名: 密码: 验证码:
鄂尔多斯盆地榆林地区山西组二段砂岩储层成岩作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地上古生界天然气资源丰富,勘探开发潜力巨大,勘探前景良好,榆林地区山西组2段砂岩储层具有储集砂体厚度大、横向分布稳定、单井产能高及开发效果好等特点,是上古生界主力含气层段。山2期是鄂尔多斯盆地重要的成煤期,是重要的含煤地层,与之有关的酸性流体在砂岩的成岩演化过程中具有十分重要的作用。本文运用野外岩心观察、室内铸体薄片观察、X射线衍射、扫描电镜、化学元素分析、同位素分析等手段,对鄂尔多斯盆地榆林地区山西组2段砂岩的岩石学特征、自生矿物特征、孔隙构成与物性等进行了讨论,通过上述分析,对砂岩成岩作用类型及其对储层的影响、成岩阶段演化及次生孔隙形成机制进行了细致研究。
     研究表明,研究区山2段砂岩的岩石类型以石英砂岩为主,岩石中长石含量极低,成分成熟度极高,贫长石富石英是本区砂岩骨架颗粒构成的显著特征;粒度较粗,以粗砂为主,分选好,杂基含量低;砂岩中原生孔隙含量较高,主要为剩余粒间孔,次生孔隙以高岭石晶间孔和次生溶孔为主,微裂隙不发育;平均孔隙度约5.03%,绝大多数样品的渗透率小于1.0×10-3μm2,属低孔低渗储层,孔隙度与渗透率之间具有良好的正相关性,渗透率的变化依赖于孔隙的发育程度。
     储层砂岩在埋藏成岩过程中经历的成岩作用类型包括压实压溶作用、胶结作用、溶解作用和交代作用,依据自生矿物分布和形成顺序、混层粘土矿物转化、有机质成熟度等指标,研究区砂岩的成岩演化阶段处于中成岩阶段B期。压实压溶作用是本区最主要的破坏性成岩作用,是孔隙度丧失的主要原因。自生矿物类型包括硅质胶结物、粘土矿物(主要是高岭石)和碳酸盐矿物,在岩石中的平均含量分别为6.30%、3.72%和3.28%,极高的硅质含量、较高的高岭石含量和很低的碳酸盐含量是本区砂岩自生矿物构成的显著特点。溶解作用是本区最重要的加强性成岩作用,溶解介质主要来源于与煤系地层有关的酸性流体,被溶物主要是长石等铝硅酸盐矿物,酸性流体的溶解作用发生时间早,作用时间长,使砂岩中长石消耗殆尽,并继续消耗部分不稳定岩屑,造成了砂岩中极低的长石含量和极高的硅质和高岭石含量,并形成了大量的次生孔隙,大大改善了储层的物性。
     铸体薄片结合扫描电镜观察发现,硅质胶结物主要以石英次生加大形式产出,可形成于较早的成岩阶段;高岭石的赋存状态主要是孔隙充填,多具有较好的晶间孔隙,常与硅质胶结物伴生;方解石和白云石主要以粒状结构充填孔隙,结构观察发现白云石的沉淀时间较早,而方解石往往沉淀于高岭石和石英次生加大之后,多是成岩晚期的产物,对碳酸盐矿物的碳、氧同位素分析也支持了上述观察结果。煤系地层酸性水对长石、部分不稳定岩屑等铝硅酸盐矿物的溶解为上述自生矿物提供了最主要的物质来源。较早成岩阶段形成的硅质、高岭石和白云石胶结作用增强了岩石的机械强度和抗压实能力,对压实作用起到了一定的抑制作用,在一定程度上保护了原生孔隙,是研究区砂岩中最重要的保持性成岩作用,这也是山2段砂岩在深埋藏条件下仍能保持较高含量原生孔隙的主要原因。
Upper Paleozoic sandstones contain abundant natural gas resource, among the formations, Member 2 of Shanxi Formation is the most important gas-bearing strata and has indicated a promising prospect for exploration. As an important coal-bearing stratum, Member 2 of Shanxi Formation is controlled by acid pore fliud during diagenesis evolution. Petrology, authigenic minerals, pore types and physical properties of reservoir are generally inbolved in the paper based on core description, thin sections under microcope, X-Ray diffraction (XRD), scanning electron microsope (SEM), chemical element analysis and isotopic analysis, and on the basis of the above research, diagenesis and formation mechanism of secondary pore are further discussed.
     Quartzarenite is the main rock type of sandstones in the study area which has very high composition maturity. It is framework end-member compositon of sandstone that is characterized by extremely deficient feldspar and quite rich quartz. Sandstones are coarse-grained, well-sorted and lower matrix. The primary pore, dominantly residual intergranular pore, holds an important position in the pore type. Kaolinite intracrystalline micropores and secondary dissolution pores take a dominant place in secondary pore types. The average porosity is 5.03%, and permeability of most samples is below 1.0×10-3μm2. There is favorable positive correlation between porosity and permeability, while the changes of the latter are controlled by the development of the former.
     Diagenesis types include compaction, cemetion, dissolution and metasomatism. According to the diatribution and paragenesis of authigenic minerals, clay minerals transformation and organic matter maturity, the reservoir sandstone is now in middle diagenetic phase B. Compaction is the most important destructive process, which is mainly responsible for porosity loss. Authigenic minerals in sandstones involve siliceous cement, clay minerals (mainly kaolinite) and carbonate minerals, whose contents in rock are respectively 6.30%, 3.72% and 3.28%. As the formost constructive process, dissolution forms abundant secondary porosity and thus improves physical properties of reservoir. Dissolution medium roots in acid pore fluid related with coal-bearing stratum, and dissoluble material are primarily feldspar and metastable rock fragments and other aluminosilicate.
     Under thin section and SEM, siliceous cement often behaves as overgrowth, which can form during earlier diagenetic stage; as pore-filling cement, kaolinite usually has preferable ntracrystalline micropores, which is associated with quartz cements; calcite and dolomite fill the pores as a granular texture, and the latter is formed in earlier stage, while the former isprecipitated in the late stage, which is also favored by the analysis ofδ18O andδ13C of carbonate cements. Mateiral source of all these cements is provided by dissolution of feldspar via organic acid fluid. Siliceous cement, kaolinite and dolomite formed in earlier stage can enhance mechanical strength and resistance to compaction, and thus compaction is restrained in some degree and primary pore is preserved, which is also the chief reason for abnormmaly high primary pore in deep buried Shan 2 sandstone.
引文
[1] Andersen T. Detrtal zircons as tracer of sedimentary provenance: limiting conditions from and numerical simulation [J]. Chemicai Geology, 2005, 216: 249-276.
    [2] Axel G, Armin Z. Combined U-Pb and Hf isotope LA-(MS-)ICP-MS analyses of detrital zircons: comparision with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany [J]. Earth and Planet Science Letters, 2006, 249: 47-61.
    [3] Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstones: Origin and predictability [J]. AAPG Bulletin, 2002, 86(2): 301-328.
    [4] Burley S D, Kantorwiez J D, Waugh B. Clastic diagenesis [A]. In: Brenchley P T, Williams B P (eds). Sedimentology: Recent development s and applied aspects[C]. London: The Geological Society, 1995, 189-226.
    [5] Davis D W, Williams I S, Krough T E. Historical development of zircon geochronology [J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 145-173.
    [6] Garreis R M, Christ C L. Solutions, minerals and equilibrium [M]. New York: Harper and Row, 1965.
    [7] Gilg H A, Weber B, Kasbohm J, et al. Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony, Germany [J]. Clay Minerals, 2003, 38: 95-112
    [8] Hayes M J, Boles J R. Volumetric relations between dissolved plagioclase and kaolinite in sandstones: implications for aluminum mass transfer in the San Joaquin Basin, California. Special Publication-Society of Economic Paleontologists and Mineralogists [J], 1992, 47: 111-123.
    [9] Horton B K, Hassanzadeh J, Stickli D F, et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronolstratigraphiy and collisional tectonics [J]. Tectonophysics, 2008, 10: 1010-1016.
    [10] Longstaff F j. Clays and the resource geology[M]. Calgary: Mineralogical Association of Canada, 1981.
    [11] McArthur J M, Burnett J, Hancock J M. Strontium isotopes at K/T boundary; discussion [J]. Nature(London), 1992,355(6355): 28.
    [12] Mckay J L, Longstaffe F J. Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin [J]. Sedimentary Geology, 2003, 157: 175-195.
    [13] Morad S, Ketzer J M, deRos L F. Spatial and temporal distribution of diagenetic alterations in silieielastie rocks: Implications for mass transfer in sedimentary basins [J]. Sedimentology, 2000, 47(Supple. 1): 95-120.
    [14] Paul W O, Trevor R. Rare earth element chemistry of zircon and its use as a provenace indicator [J]. Geology, 2000, 28(7): 627-630.
    [15] Perrodon A, Masse P. subsidence, sedimentation and petroleum systems [J]. Journal of Petroleum Geology, 1984, 7(1): 5-26.
    [16] Prosser D J, Daws J A, Fallick A E, et al. The occurrence andδ34S orauthigenic pyrite in Middle Jurassic Brent Group Sediments [J]. Journal of Petroleum Geology, 1994, 17(4): 407-428.
    [17] Reed R S, Eriksson K A, Kowalewski M. Climatic, depositional and burial controls on diagenesis of Appalachian Carboniferous sandstones: qualitative and quantitative methods [J]. Sedimentary Geology, 2005, 176: 225-246.
    [18] Schmid S, Worden R H, Fisher Q J. Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland [J]. Marine and Petroleum Geology, 2004, 21(3): 299-315.
    [19] Schmid T V, McDonald D A. The role of secondary porosity in the course of sandstone diagnenesis [J]. SEPM special publication, 1979, 26: 175-207.
    [20] Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity. In: McDonald D A, Surdam R C (eds).Clastic diagenesis. AAPG Memoir 37, 1984, 127-151.
    [21] Surdam R C, Crossey L J, Hagen E S, et al. Organic-inorganic interactions and sandstone diagenesis [J]. AAPG Bulletin, 1989, 73: 1-23.
    [22] Surdam R C, Crossey L J. Integrated diagenetic modeling: a process-oriented approach for clastic systems. Annual Review of Earth and Planetary Sciences, 1987, 15: 141-170.
    [23] Wei G Q, Cheng M J, Sheng H J, et al. Gas pool formation pattern of the tight sandstone reservoir from the Ordos Basin [C]. An Internal Report. Exploration and Development Institute of Chinese Petroleum, 2003, 89–123 (in Chinese).
    [24] Xiaoping Xia, Min Sun, Guochun Zhao, et al. U-Pb and Hf isotopic of detrital zircons from the Wulashan Khondalites: constraints on the evolution of the Ordos terrene, Western Block of North China Craton [J]. Earth and Planetary Science Letters, 2006, 241: 581-593.
    [25] Yang w, Spencer R J, Krouse H R. Stable isotope and major element composition of fluid inclusions in Devonian and Cambrian dolomite cements, western Canada [J]. Geochimica et Cosmochimica Acta, 1995, 59(15): 3159-3172.
    [26] Yuan H Y, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes andtrace element compositions of zircon by eximer laser-ablation quadrupole and multiple- collector ICP-MS [J]. Chemical Geology, 2008, 247: 100-118.
    [27]长庆石油地质志编写组.中国石油地质志(卷十二)[M].北京:石油工业出版社, 1992: 1-543.
    [28]陈安清,陈洪德,向芳,等.鄂尔多斯东北部山西组—上石盒子组砂岩特征及物源分析[J].成都理工大学学报(自然科学版), 2007, 34(3): 305-311.
    [29]陈娟萍.鄂尔多斯盆地东北部山西组储层控制因素分析[D].西安:西北大学,2005.
    [30]樊爱萍,杨仁超,李义军.成岩作用研究进展及研究方向[J].特种油气藏, 2009, 16(2): 1-8.
    [31]樊爱萍.鄂尔多斯盆地上古生界储层流体包裹体研究[D].西安:西北大学, 2004.
    [32]付金华,王怀厂,魏新善,等.榆林大型气田石英砂岩储集层特征及成因[J].石油勘探与开发, 2005, 32(1): 30-32.
    [33]付金华,魏新善,任军锋,等.鄂尔多斯盆地天然气勘探形势与发展前景[J].石油学报, 2006, 27(6): 1-4.
    [34]郭英海,刘焕杰,权彪,等.鄂尔多斯地区晚古生代沉积体系及古地理演化[J].沉积学报, 1998, 16(3): 44-51.
    [35]韩宗元,苗建宇,许威,等.鄂尔多斯盆地子洲—清涧地区上古生界山23段储层砂岩成岩作用[J].地质科技情报, 2008, 27(2): 49-55.
    [36]郝蜀民,李良,惠宽洋,等.鄂尔多斯盆地北部天然气成藏规律及目标评价[R].中国石油化工股份有限公司华北分公司, 2005.
    [37]何东博,应凤祥,郑浚茂,等.碎屑岩成岩作用数值模拟及其应用[J].石油勘探与开发, 2004, 31(6): 66-68.
    [38]何自新,南珺祥.鄂尔多斯盆地上古生界储层图册[M].北京:石油工业出版社, 2004.
    [39]何自新等.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社, 2003.
    [40]河北省地矿局编.河北省北京市天津市区域地质志[M].北京:地质出版社, 1989.
    [41]河南省地矿局编.河南省区域地质志[M].北京:地质出版社, 1989.
    [42]黄思静,侯中健.地下孔隙度和渗透率在空间和时间上的变化及影响因素[J].沉积学报, 2001, 19(2): 224-231.
    [43]黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏, 2007b, 19(3): 7-13.
    [44]黄思静,佟宏鹏,黄可可,等.阴极发光分析在恢复砂岩碎屑长石含量中的应用—鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球科学进展, 2008, 23(10): 1013-1019.
    [45]黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例[J].地球科学—中国地质大学学报, 2003, 28(4): 419-424.
    [46]黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究.地质学报, 1997, 71(1): 45-53.
    [47]黄思静等.鄂尔多斯盆地碎屑岩成岩作用和低渗透储层的形成机制[R].成都:成都理工大学, 2007a.
    [48]黄思静等.孝-新-合地区须家河组砂岩沉积期后水-岩相互作用机制研究[R].成都:成都理工大学, 2009.
    [49]季汉成,翁庆萍,杨潇.鄂尔多斯盆地安塞—神木地区山西组成岩与沉积相耦合关系[J].石油勘探与开发, 2009, 36(6): 709-717.
    [50]姜在兴.沉积学[M].北京:石油工业出版社, 2003.
    [51]金玉玕,王向东,尙庆华,等.中国二叠纪年代地层划分与对比[J].地质学报, 1999, 73(2): 97-108.
    [52]李芳,蒋加钰,杨彩娥.鄂尔多斯盆地上古生界山二3亚段储层预测方法及效果[J].石油天然气学报(江汉石油学院学报), 2005, 27(6): 859-861.
    [53]李贵东,温显瑞.鄂尔多斯动员中北部太原组火山灰层的特征[J].地学前缘, 1999, 6(增刊): 22-25.
    [54]李凌,王兴志,方少仙,等.鄂尔多斯东部上古生界储层特征及控制因素[J].西南石油学院学报, 2002, 24(6): 4-6.
    [55]李明瑞,张清,孙六一,等.根据流体包裹体确定神木地区上古生界气藏成藏期[J].新疆石油地质, 2005, 26(1): 47-49.
    [56]李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-ICPMS的精确测定[J].地球化学, 2003, 32(1): 86-90.
    [57]李忠.沉积盆地大尺度成岩作用研究[J].地学前缘, 1998, 5(3): 157-158.
    [58]梁细荣,李献华,刘永康,等.激光探针等离子体质谱法(LAM-ICPMS)用于年轻锆石U-Pb定年[J].地球化学, 2000, 29(1): 1-5.
    [59]刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社, 1992:2-3, 65-92.
    [60]刘宝珺.沉积成岩作用研究的若干问题[J].沉积学报, 2009, 27(5): 787-791.
    [61]刘宝珺.沉积岩石学[M].北京:地质出版社, 1980.
    [62]刘建清,赖兴运,于炳松,等.成岩作用的研究现状及展望[J].石油实验地质, 2006, 28(1): 65-72.
    [63]刘建章,陈红汉,李剑,等.鄂尔多斯盆地伊—陕斜坡山西组2段包裹体古流体压力分布及演化[J].石油学报, 2008, 29(3): 226-230.
    [64]刘建章,陈红汉,李剑,等.运用流体包裹体确定鄂尔多斯盆地上古生界油气成藏期次和时期[J].地质科技情报, 2005, 24(4): 60-66.
    [65]刘小洪.鄂尔多斯盆地上古生界砂岩储层的成岩作用研究与孔隙成岩演化分析[D].西北大学, 2008.
    [66]刘岩,张哨楠,丁晓琪,等.鄂尔多斯盆地定边北部石盒子组-山西组储层成岩作用[J].成都理工大学学报(自然科学版), 2009, 36(1): 29-34.
    [67]罗明高.定量储层地质学[M].北京:地质出版社, 1998.
    [68]马新华.鄂尔多斯盆地天然气勘探开发形势分析[J].石油勘探与开发, 2005, 32(4): 50-53.
    [69]煤炭科学研究院地质勘探分院,山西省煤田地质勘探公司著.太原西山含煤地层沉积环境[M].北京:煤炭工业出版社, 1987.
    [70]孟元林,王志国,杨俊生,等.成岩作用过程综合模拟及其应用[J].石油实验地质, 2003, 25(2): 211-215.
    [71]任战利.中国北方沉积盆地构造热演化史研究[M].北京:石油工业出版社, 1999.
    [72]陕西地质矿产局.陕西省区域地质志[M].北京:地质出版社, 1986.
    [73]寿建峰,张惠良,斯春松,等.砂岩动力成岩作用[M].北京:石油工业出版社, 2005, 113.
    [74]汪正江,陈洪德,张锦泉.鄂尔多斯盆地晚古生代沉积体系演化与煤成气藏[J].沉积与特提斯地质, 2002, 22(2): 18-23.
    [75]王建伟,鲍志东,田海芹,等.前前陆盆地层系砂岩成岩环境特征及其孔隙演化—以鄂尔多斯盆地西缘二叠系为例[J].岩石矿物学杂志, 2004, 23(1): 37-42.
    [76]王岚,林潼,于轶星,等.榆林—神木气田包裹体特征及油气地质意义[J].大庆石油地质与开发, 2008, 27(1): 26-29.
    [77]王同和,王喜双,韩宇春,等.华北克拉通构造演化与油气聚集[M].北京:石油工业出版社, 1999, 1-194.
    [78]席胜利,李文厚,魏新善,等.鄂尔多斯盆地上古生界两大气田不同石英砂岩储层特征对比研究[J].沉积学报, 2009, 27(2): 221-229.
    [79]席胜利,王怀厂,秦伯平.鄂尔多斯盆地北部山西组、下石盒子组物源分析[J].天然气工业, 2002, 22(2): 21-25.
    [80]向芳.鄂尔多斯盆地东北部二叠系层序地层和砂体展布规律研究[D].成都:成都理工大学, 2006.
    [81]杨华,席胜利,魏新善,等.鄂尔多斯多旋回叠合盆地演化与天然气富集[J].中国石油勘探, 2006, 1: 17-25.
    [82]杨俊杰,裴锡古.中国天然气地质学:鄂尔多斯盆地.卷四[M].北京:石油工业出版社, 1996: 1-197.
    [83]叶加仁.沉积盆地热流体活动及其成藏动力学意义[J].沉积学报, 2001, 19(2): 214-218.
    [84]应凤祥,罗平,何东博.中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M].北京:石油工业出版社, 2004, 101-223, 239-278.
    [85]于忠平,贾亚妮,姬红,等.鄂尔多斯盆地东部上古生界碎屑岩储层特征[J].天然气工业, 2002, 22(6): 27-30.
    [86]张道峰,杨文敬,漆亚玲,等.鄂尔多斯盆地神木地区上古生界山西组物源分析[J].天然气地球科学, 2009, 20(6): 902-906.
    [87]张福礼,黄舜兴,杨昌贵,等.鄂尔多斯盆地天然气地质[M].北京:地质出版社, 1994: 1-152.
    [88]张刘平,罗晓容,马新华,等.深盆气—成岩圈闭:以鄂尔多斯盆地榆林气田为例[J].科学通报, 2007, 52(6): 679-687.
    [89]郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社, 1989.
    [90]郑荣才,周祺,王华,等.鄂尔多斯盆地长北气田山西组2段高分辨率层序构型与砂体预测[J].高校地质学报, 2009, 15(3): 69-79.
    [91]中国煤田地质总局.鄂尔多斯盆地聚煤规律及煤炭资源评价[M].北京:煤炭工业出版社, 1996.
    [92]中国石化集团公司.石油地质样品分析测试技术及应用[M].北京:石油工业出版社, 2006.
    [93]钟玉芳,马昌前,于振兵.锆石地球化学特征及地质应用研究综述[J].地质科技情报, 2006, 25(1): 27-40.
    [94]周立发,邓昆,杨文敬,等.惠探1井地质综合评价研究[R].西北大学, 2005.
    [95]周祺.鄂尔多斯盆地长北气田山西组二段高分辨率层序地层和储集砂体综合研究[D].成都:成都理工大学, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700