用户名: 密码: 验证码:
大型立式玻璃磨边机关键力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国建筑单位面积能耗是发达国家的2至3倍,建筑能耗占能源消费总量的27.45%。玻璃门窗产生的热损失占建筑总能耗的50%,被称为“热洞”。中空玻璃具有隔热、隔音、防结露等优点,是一种高性价比的建筑节能材料,具有广阔的市场前景。
     玻璃磨边是中空玻璃生产过程中的一道重要工序,可以消除原片玻璃切割后玻璃边缘存在的微观裂纹、应力集中等缺陷,提高钢化工序的成品率,避免对操作人员及设备造成伤害。立式玻璃磨边机具有占地面积小、调整简单、自动识别玻璃长宽尺寸等优点,适合多品种、多规格尺寸玻璃的批量加工。
     目前国内立式玻璃磨边机市场被韩国明日之星、瑞士百超等国外公司所垄断。自主研发的立式玻璃磨边机存在砂轮堵转、砂轮架振动较大及启动慢等问题,主要原因是对磨削力、砂轮架动力学分析、传动系统快速响应特性等关键力学问题的研究不足。因此,上述关键力学问题的研究和突破,对大型立式玻璃磨边机的国产化、替代进口及设备的合理使用,具有重要的理论意义和实际应用价值。
     磨削力是磨削过程的重要参数。本文针对立式磨边机砂轮悬臂安装、空间狭小、工作环境恶劣等特点,创造性地设计了一种以阶梯轴套为弹性元件的应变式磨削测力装置,并对磨削力进行正交实验研究,建立了磨削力预测模型,其预测精度与实际测量值的平均误差小于5%。实验数据的极差分析和方差分析表明:砂轮线速度vc、进给速度vf和倒角大小c等磨削工艺参数对磨削力影响的主次关系为:c最大、vf次之、vc最小;切向磨削力和径向磨削力均随c和vf的增加而增加,切向磨削力随vc的增加而减小,vc对径向磨削力没有显著影响。动态磨削力信号的平稳性、周期性及频谱分析表明:玻璃磨边磨削力信号是一种具有宽平稳性的周期振动信号,其特征频率为砂轮的旋转频率。研究结果为玻璃磨边磨削控制方案设计和磨削工艺参数优化奠定了理论基础,解决了砂轮堵转问题。
     砂轮与砂轮架的振动直接影响磨边质量。论文针对砂轮架的结构特点,建立了1DOF和2DOF两种动力学模型,对周期激振力作用下砂轮架和砂轮的振动特性和规律进行理论分析。1DOF模型分析结果表明:砂轮架的振动响应过程包括瞬态响应和稳态响应两部分,增大系统的轴向刚度,可提高系统的固有频率,从而缩短瞬态响应过程、减小稳态振动的振幅;增加阻尼比ξ,可减小稳态振动振幅。2DOF模型分析结果表明:砂轮架与砂轮的振动与系统的质量比μ、固有频率比α和阻尼比ξ等参数有关,导出了合理μ、α、ξ值的算式,使砂轮与砂轮架在共振时具有相同且较小的动力放大因子,成功地解决了立式玻璃磨边机的动力学设计问题。
     固有频率和主振型是系统的固有属性,由系统的结构本身所决定,与外载荷无关。本文采用基于ANSYS的参数化设计语言APDL,建立了考虑运动结合面动态特性的砂轮架参数化有限元分析模型,分析了砂轮架的前四阶固有频率和振型,与实验模态分析结果相比,该模型的平均计算误差小于23%。通过APDL程序批量计算,分析了丝杠直径、滑块安装板厚度、丝杠轴承及丝杠螺母结合面刚度、砂轮架位置等参数对系统固有频率的影响规律,为结构动态特性改进及设备的合理使用提供了科学依据。改进设计后,砂轮架的各阶固有频率提高10%以上,改善了其动态特性,提高了抗振能力。
     为满足砂轮架的快速响应特性要求,本文以砂轮架的启动加速度最大为目标,建立了基于惯量匹配、速度匹配、转矩匹配等约束条件的砂轮架升降传动系统传动比优化设计数学模型,采用内点惩罚函数法求传动比的最优解,并将优化结果用于第二代立式磨边机,测试数据表明启动加速度提高了22.95%,额定进给速度提高了77.78%。
     根据上述研究成果开发的第2代立式磨边机,已有2家国内用户正式投产使用,一年多的生产实践证明设备使用情况良好。
At present, the building energy consumption of unit area in China is two or threetimes as much as one of developed country, energy consumption of building is about27.45percent of the national one. Glass window and door is called heat cavitybecause the heat loss via it is high to50percent of total building energy consumption.Insulating glass is a building energy saving material with high performance to priceratio because of its heat and noise insulation effect, it has wide market foreground.
     Grinding glass edge is an important process of insulating glass manufacture, itcan eliminate disfigurements like micro-crack and stress centralization of glass edgeproduced by cutting process, avoid damage to operator or machine of next processesand improve finished product rate of glass tempering procedure. Vertical glass edgegrinding machine has many excellent performances such as small floor area, easyadjustment and automatic identifying the length and width of glass, which is suitablefor batch machining of multi-variety and multi-specification glass.
     The market of vertical glass edge grinding machine in China has been occupiedby foreign corporations such as Rising Star Glass Machinery Corporation of Koreaand Bystronic Group of Switzerland. The vertical glass edge grinding machinedeveloped by China has some problems such as locked rotation of grinding wheel,significant vibration and lower starting acceleration of grinding wheel carriage etc.,due to the lack of research on key mechanics problems like grinding force, dynamicanalysis of grinding wheel carriage and its rapid response characteristic of drivingsystem. Hence, the study and breakthrough on above key problems of mechanics hasimportant theoretical and practical values for the domestic manufacture, importsubstitution and appropriate use of large vertical glass edge grinding machine.
     Grinding force is an important parameter during grinding process. According tothe structural characteristics of vertical glass edge grinding machine like grindingwheel cantilever installation, narrow space and wretched environment etc., the paperinnovatively designed a strain type grinding dynamometer which adopted ladder shaftsleeve as elastic component, finished orthogonal test of grinding force and establishedgrinding force forecast model. The average error is less than5percent between valuescalculated by grinding force forecast model and actual measuring values. The extremedifference and variance analysis of orthogonal test data indicates that grindingparameters have important influence on grinding force, the primary factor is chamfersize c, the secondary one is feed rate vfand the tertiary one is grinding wheel velocityvc, tangential and radial grinding forces increase with the accretion of c and vf,tangential grinding force decreases with the increase of vcwhich has little effect onradial grinding force. According to the analysis results about stationarity, periodicity and spectrum of dynamic grinding force signals, the grinding force signals of edgingglass are periodic vibration signals with stationarity, its characteristic frequency isequal to the rotating frequency of grinding wheel. The research results establish thetheoretical base for the design of grinding process control strategy and theoptimization of grinding parameters about vertical glass edge grinding machine, theproblem about locked rotation of grinding wheel is solved.
     The grinding quality of glass edge was influenced directly by the vibration ofgrinding wheel and grinding wheel carriage. Two dynamic models called1DOF and2DOF system were founded according to the structure of grinding wheel carriage, thevibration characteristics and rules of grinding wheel and grinding wheel carriageeffected by periodic force were analyzed. The analyzing result of1DOF model showsthat the vibration response of grinding wheel carriage includes transient response andsteady response. The system natural frequency will be improved, transient responseprocess will be shortened and steady vibration amplitude will be reduced byenhancing the axial rigidity of system, steady vibration amplitude decreases with theincrease of damping ratio ξ. The analyzing result of2DOF model indicates thatvibrations of grinding wheel carriage and grinding wheel are related with mass ratio μ,natural frequency ratio α and damping ratio ξ of system, the expressions of reasonableμ, α and ξ were educed in order to get small and equal dynamic amplification factor ofgrinding wheel and grinding wheel carriage at resonance, which successfully resolvesthe problem on dynamic design of vertical glass edge grinding machine.
     Natural frequency and modal shape are inherent attribute of system, they aredetermined by system structure instead of outside force. The finite element model(FEM) of grinding wheel carriage was established based on ANSYS parametricdesign language (APDL) which considering dynamic characteristics of moving joints,frontal four modal shapes and natural frequencies were analyzed, the average errorcalculated by FEM is less than23percent compared with the result of experimentalmodal analysis. The influences on natural frequency of system by the diameter of ballscrew, the fixing board thickness of slide block, the contact rigidity of ball screw andbearings and the working position of grinding wheel carriage were investigated. Theresearch results offer a scientific basis for the improvement of dynamic characteristicand reasonable use of vertical glass edge grinding machine. After improvement,natural frequencies of grinding wheel carriage are increased more than10percent, soits dynamic characteristic and anti-vibration ability are improved.
     In order to improve the rapid response ability of grinding wheel carriage, theoptimization design model on the transmission ratio of lifting drive system based onmaximum starting acceleration of grinding wheel carriage was established, whichconsiders restriction conditions such as inertia match, speed match and torque match.The optimal transmission ratio was calculated by in-point method of SUMT (Sequential Unconstrained Minimization Technique) and was applied to the design ofsecond generation glass edge grinding machine. The maximum starting accelerationof grinding wheel carriage was improved22.95percent and its feed rate wasimproved77.78percent based on actual test data after optimization.
     The second generation glass edge grinding machine based on above researchresult was used by two corporations in China, its actual application for more than oneyear shows the machine is in good condition.
引文
[1]罗宏杰.智能无机温控材料的关键基础问题[R].128期东方科技论坛.上海,2009
    [2] H. Tommerup, S. Svendsen. Energy Saving in Danish Residential Building Stock[J]. Energyand Buildings.2006,(38):618-626.
    [3] M. K. Urbikain, S. M. Sala. Analysis of Different Models to Estimate Energy SavingsRelated to Windows in Residential Buildings[J]. Energy and Buildings.2009,(41):687-695.
    [4]魏波,陈洪钢.门窗节能工程的最佳选择——中空玻璃[J].广东建材.2009,(3):128-129.
    [5] J. S. Wei, J. N. Zhao, Q. Y. Chen. Optimal Design for a Dual-airflow for Different ClimateRegions in China[J]. Energy and Buildings.2010,(42):2200-2205.
    [6]国务院办公厅关于严格执行公共建筑温度控制标准的通知.国办发[2007]42号
    [7]闫雷光.建筑外门窗节能技术[J].住宅产业.2009,(8):62-64.
    [8]邱永忠.中空玻璃在建筑节能中的应用[J].上海建材.2009,(2):15-17.
    [9] H. Manz. On Minimizing Heat Transport in Architectural Glazing[J]. Renewable Energy.2008,(33):119-128.
    [10]邵凤丽.中空玻璃的发展与应用[J].科技信息(学术版).2006,(6):259-260.
    [11] T. D. Stetson. Improvement in Window Glass. United States,49.167[P].1865-08
    [12]白晓峰.中空玻璃生产线与中空玻璃寿命[J].中国玻璃.2007,(4):1-3.
    [13]中国建筑业协会工程建设质量管理分会.中空玻璃发展大趋势[J].工程质量.2007,(11):63.
    [14]卢文辉.推广使用环保节能的中空玻璃[J].广东建材.2000,(9):26-28.
    [15] S. M. Komskii, O. V. Smirnov, Yu. N. Kimissarov. Improving the Reliability of CementedDouble Glazing Units[J]. Steklo i Keramika.1984,(8):11-12.
    [16]王斌,段立业.北美中空玻璃技术发展[J].玻璃.2008,(1):45-47.
    [17] S. M. Komskii. Monitoring the Hermetic Sealing of Double Glazing Units[J]. Steklo iKeramika.1981,(11):12-14.
    [18]郑立新.中空玻璃在我国的应用和发展[J].科技创新导报.2008,(13):7.
    [19] M. Arici, H. Karabay. Determination of Optimum Thickness of Double Glazing Windowsfor the Climatic of Turkey[J]. Energy and Buildings.2010,(42):1773-1778.
    [20] S. Y. Song, J. H. Jo, M. S. Yeo. Evaluation of Inside Surface Condensation in DoubleGlazing Window System with Insulation Spacer: A Case Study of Residential Complex[J].Building and Environment.2007,(42):940-950.
    [21] K. Swimm, H. Weinlader, H. P. Ebert. Influence of Spacer System on Heat Transfer inEvacuated Glazing[J]. Int. J. Thermophys.2009,(30):934-948.
    [22] D. L. Orlov, A. G. Chesnokov, A. E. Gorin. Problems of Energy Efficient Glazing[J].Steklo i Keramika.1998,(1):3-7.
    [23] Y. P. Fang, T. J. Hyde, N. Hewitt. Simulated Thermal Performance of Triple VacuumGlazing[C]. Proceedings of the ASME2009Heat Transfer Summer Conference.2009, SanFrancisco:1-7.
    [24] O. Aydin. Conjugate Heat Transfer Analysis of Double Pane Windows[J]. Building andEnvironment.2006,(41):109-116.
    [25] S. Chaiyapinunt, B. Phueakphongsuriya. Performance Rating of Glass Windows and GlassWindows with Films in Aspect of Thermal Comfort and Heat Transmission[J]. Energy andBuildings.2005,(37):725-738.
    [26] J. Han, L. Lu, H. X. Yang. Numerical Evaluation of the Mixed Convective Heat Transferin a Double Pane Window Integrated with See-through a-Si PV Cells with Low-eCoatings[J]. Applied Energy.2010,(87):3431-3437.
    [27]晓青.我国的玻璃加工及其市场发展趋势[J].上海建材.2008,(2):19-21.
    [28]张佰恒,徐桂芝.中国中空玻璃40年[J].建设科技.2004,(11):44-45.
    [29]硅女.中空玻璃产业呼唤品牌[J].中国玻璃.2009,(5):1.
    [30]张雪婵.中空玻璃发展空间巨大[J].建材工业信息.2004,(6):4.
    [31]徐美君.国内外中空玻璃市场发展势态[J].玻璃与搪瓷.2000,28(5):61-62.
    [32]徐美君.国际中空玻璃市场动态[J].建材工业信息.2003,(2):46.
    [33]王霄京.中空玻璃市场前景广阔[J].中国建材.2001,(10):40-41.
    [34] Z. Yang, X. H. Li, Y. F. Hu. Study on Solar Radiation and Energy Efficiency of BuildingGlass System[J]. Applied Thermal Engineering.2006,(26):956-961.
    [35]张彦铮,徐桂芝.我国中空玻璃加工业面临的机遇与挑战[N].中国建材报.2005-4-11(6).
    [36] I. Demirci, S. Mezghani, M. E. Mansori. On Material Removal Regimes for the Shaping ofGlass Edges: Force Analysis, Surface Topography and Damage Mechanisms[J]. TribolLett.2008,(30):141-150.
    [37] V. I. Kondrashov, L. A. Shitova, V. A. Litvinov. Characteristics of Cutting Parameters andTheir Effect on the Glass Edge Quality[J]. Steklo i Keramika.2001,(9):10-12.
    [38] V. A. Litvinov, V. V. Surkov, L. A. Shitova. Development of Glass Cutting Equipment[J].Steklo i Keramika.1999,(9):13-14.
    [39] L. A. Shitova, N. V. Lalykin. Glass Edge Quality and Strength[J]. Steklo i Keramika.1991,(8):2-3.
    [40] P. V. Popov. Calculation of Contact Pressure in Cutting Sheet Glass with a Hard AlloyMetal Roller[J]. Steklo i Keramika.2001,(7):6-7.
    [41] A. M. Memari, P. A. Kremer. Employing Glass Panels with Rounded Corners to MitigateSeismic Damage in Architectural Glass Wall Systems[J]. Advances in EarthquakeEngineering.2001,(8):231-241.
    [42]中国建筑玻璃协会. HB/T001-2007中空玻璃生产规程[S].北京:2007.
    [43]陈圣贤.中空玻璃的自动化加工工艺及比较[N].中国建材报,2006-04-21(19).
    [44]高文生,崔建志,贺献宝.平板玻璃磨边工艺探讨[C].第十一届中国科协年会会议论文集.重庆,2009:1-6.
    [45]宋德平,成跃乐,王欢成.中空玻璃成套加工设备的研制开发[J].农业装备与车辆工程.2006,(10):37-38.
    [46] A. V. Popov. Increasing the Efficiency of Diamond Edging of Flat Glass[J]. Steklo IKeramika.2009,(6):16-17.
    [47]魏海波,张君薇,陈立新.基于PLC变频调速系统的镀膜玻璃双边直线磨边机开合位置控制[J].真空.2008,45(3):62-64.
    [48]贺献宝.金刚石砂轮磨削直线斜边玻璃时要素的分析[J].金刚石与磨料磨具工程.2007,(6):69-72.
    [49] A. V. Popov. Increasing the Quality of Diamond Wheels for Edge Grinding Flat Glass[J].Glass and Ceramics.2010,67(7-8):252-254.
    [50]刘明耀.国外平板玻璃的磨边加工技术[J].金刚石与磨料磨具工程.1995,(6):28-32.
    [51]陈章燕.磨削力的试验研究[J].北京工业大学学报.1990,16(4):98-106.
    [52]刘德.磨削力的动态测试[J].磨床与磨削.1991,(3):34-36.
    [53]周会娜.工程陶瓷磨削力建模的研究[J].天津职业院校联合学报.2008,10(5):10-15.
    [54]安磊,胡中伟.聚晶金刚石复合片磨削力研究[J].精密制造与自动化.2008,(3):24-25.
    [55]周明,李英杰,李丹.电镀金刚石砂轮磨削加工SipC颗粒增强铝基复合材料的研究[J].金刚石与磨料磨具工程.2008,(5):39-43.
    [56] S. H. Yin, H. Ohmori, Y. T. Dai. ELID Grinding Characteristics of Glass-ceramicMaterials[J]. International Journal of Machine Tools&Manufacture.2009,(49):333-338.
    [57] S. Y. Luo, Y. Y. Tsai, C. H. Chen. Studies on Cut-off Grinding of BK7Optical Glass UsingThin Diamond Wheels[J]. Journal of Materials Processing Technology.2006,(173):321-329.
    [58] T. Matsumura, T. Ono. Cutting Process of Glass with Inclined Ball End Mill[J]. Journal ofMaterials Processing Technology.2008,(200):356-363.
    [59] C. Heinzel, K. Rickens. Engineered Wheel for Grinding of Optical Glass[J]. CIRPManufacturing Technology.2009,(58):315-318.
    [60]林思煌,黄辉,徐西鹏.单颗金刚石划擦玻璃的实验研究[J].金刚石与磨料磨具工程.2008,(5):21-24.
    [61] R. L. Hecker, S. Y. Liang, X. J. Wu. Grinding Force and Power Modeling Based on ChipThickness Analysis[J]. Int. J Adv. Manuf. Technol.2007,(33):449-459.
    [62] H. C. Chang, J. J. Junz Wang. A Stochastic Grinding Force Model Considering RandomGrit Distribution[J]. International Journal of Machine Tools&Manufacture.2008,(48):1335-1344.
    [63] L. M. Xu, B. Shen, A. J. Shih. Vitreous Bond Silicon Carbide Wheel for Grinding ofSilicon Nitride[J]. International Journal of Machine Tools&Manufacture.2006,(46):631-639.
    [64] H. Huang, L. Yin, L. B. Zhou. High Speed Grinding of Silicon Nitride With Resin BondDiamond Wheels[J]. Journal of Materials Processing Technology.2003,(141):329-336.
    [65]孙健利.直线滚动导轨机构承受垂直载荷时的刚度计算[J].华中理工大学学报.1988,16(5):35-40.
    [66]姜大志,应强,孙俊兰.滚动直线导轨的受力分析与载荷计算[J].机床与液压.2008,36(4):270-275.
    [67]吴文喜,姜大志.滚动直线导轨副静刚度模型的研究[J].机械设计与制造.2009,(5):135-137.
    [68]姜大志,高飞,孙俊兰.滚动直线导轨预加载荷与精度均匀化关系的研究[J].机床与液压.2009,37(9):59-61.
    [69]张学良,徐格宁,温淑花.机械结合面静动态特性研究回顾及展望[J].太原重型机械学院学报.2002,23(3):276-281.
    [70]毛宽民,李斌,谢波.滚动直线导轨副可动结合部动力学建模[J].华中科技大学学报(自然科学版).2008,36(8):85-88.
    [71]张耀满,刘春时,谢志坤.数控机床直线滚动导轨结合面有限元分析[J].制造技术与机床.2007,(7):75-78.
    [72]张耀满,刘春时,谢志坤.考虑直线导轨影响的数控机床动态特性分析[J].东北大学学报(自然科学版).2007,28(11):1628-1631.
    [73]蒋书运,祝书龙.带滚珠丝杠副的直线导轨结合部动态刚度特性[J].机械工程学报.2010,46(1):92-99.
    [74]安琦瑜,冯平法,郁鼎文.基于FEM的滚珠丝杠进给系统动态性能分析[J].制造技术与机床.2005,(10):85-88.
    [75]周传宏,孙健利.滚动直线导轨副动态特性的试验研究[J].机械设计与制造工程.2001,30(2):14-15.
    [76]宋现春,姜洪奎,许向荣.高速滚珠丝杠副弹性变形的有限元分析[J].北京工业大学学报.2009,35(5):582-586.
    [77]吴南星,孙庆鸿.磨边机磨头整体有限元建模及分析[J].机械设计与制造工程.2002,31(3):33-34.
    [78]肖任贤,罗贤海,吴南星.磨边机整体有限元动静态分析[J].陶瓷学报.2000,21(3):135-140.
    [79]应鸿烈.基于ANSYS的平面磨床床身结构的有限元分析[J].机械工程与自动化.2010,(2):52-55.
    [80]杨光,杜计划.基于ANSYS的高速磨床砂轮架的结构分析和改进研究[J].机械研究与应用.2008,21(4):93-95.
    [81]崔中,文桂林.高速凸轮磨床砂轮架的结构分析和改进研究[J].机械设计与研究.2008,24(1):108-111.
    [82]藏会玲,蒋书运,祝书龙.大型轧辊磨床结构的动态设计[J].制造技术与机床.2009,(4):66-69.
    [83]董凯夫,翁泽宇,沈晓庆.大型数控龙门平面磨床动态特性的有限元分析[J].新技术新工艺.2008,(12):54-56.
    [84]崔中,文桂林,陈桂平.高速磨床整机动态特性研究[J].中国机械工程.2010,21(7):782-787.
    [85] M. A. Alfares, A. A. Elsharkawy. Effects of Axial Preloading of Angular Contact BallBearings on The Dynamics of a Grinding Machine Spindle System[J]. Journal ofMaterials Processing Technology.2003,(136):48-59.
    [86]罗卫平,冯建芬.滚珠丝杠进给系统的动力学仿真[J].金陵科技学院学报.2006,22(1):38-42.
    [87]罗卫平.低速进给系统的动力学仿真分析[J].电子机械工程.2008,24(6):49-52.
    [88] I. Garitaonandia, M. H. Fernandes, J. Albizuri. Dynamic Model of a Centerless GrindingMachine Based on an Updated FE Model[J]. International Journal of Machine Tools&Manufacture.2008,(48):832-840.
    [89]黄捷,季忠,段虎明.机械结构实验模态分析及典型应用[J].中国测试.2010,36(2):4-8.
    [90] B. Du, H. W. Zhang, Y. X. Jiang. Fault Diagnosis of Cylindrical Grinding Machine[J].Transactions of Tianjin University.2010,16(1):40-44.
    [91]陈桂平,文桂林,崔中.高速磨床主轴模态测试与分析研究[J].湖南大学学报(自然科学版).2010,37(4):22-26.
    [92]朱彦军,马伟,段明德.直线导轨传动的数控丝杠磨床的振动问题解决方案[J].机床与液压.2009,37(3):191-192.
    [93]赵慧丽,朱彦军.超长数控滚珠丝杠磨床砂轮振动分析及防治措施[J].机械设计与制造.2010,(3):178-179.
    [94]陈豪.基于MATLAB的滚珠丝杠动力学建模与仿真分析[J].甘肃科技.2007,23(4):130-132.
    [95]滕乐天,瞿金平,张琳.注射机注射推进系统动力学仿真及动态特性[J].现代塑料加工应用.2008,20(1):61-63.
    [96] C. C. Chen, C. P. Kuo, F. C. Wang. Vibration Analysis of Rail Grinding Using aTwin-wheel Grinder[J]. Journal of Sound and Vibration.2010, doi:10.1016.
    [97] T. N. Shiau, K. H. Huang, F. C. Wang. Dynamic Response of a Rotating Ball ScrewSubject to a Moving Regenerative Force in Grinding[J]. Applied Mathematical Modelling.2010,(34):1721-1731.
    [98]姜庆凯,赵颖.伺服进给系统动态特性改进措施[J].数控机床市场.2009,(6):69-70.
    [99]龚恒强.伺服驱动中的惯量匹配[J].制造技术与机床.1993,(10):40.
    [100]朱德志,刘洪亮.惯量匹配在改善数控龙门镗铣床性能中的作用[J].制造技术与机床.2007,(2):61-63.
    [101]夏龙军,王大承. JT-400高速数控雕铣机伺服进给系统的改进设计[J].机械设计与制造.2005,(11):88-90.
    [102]高超,丁庆新,穆东辉等.高精度外圆磨床磨削力测量系统研制[J].制造技术与机床,2010,(1):101-104.
    [103]刘博.超精密硅片用新型压电式三向磨削测力仪研制[D].大连:大连理工大学,2010:1-7.
    [104]李金明.压电式磨削测力仪的结构优化设计与实验研究[D].哈尔滨:哈尔滨工程大学,2008:1-6.
    [105]孔德仁,朱蕴璞,狄长安等.工程测试技术(第二版)[M].北京:科学出版社,2009:206-207.
    [106]范钦珊.材料力学[M].北京:高等教育出版社,2005:66.
    [107]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008:103-104.
    [108]林培勇,魏昕,陈卓.树脂结合剂金刚石砂轮精密磨削单晶硅片的磨削力研究[J].金刚石与磨料磨具工程,2012,32(4):19-21,26.
    [109]李亚非,赵文祥,王西彬.杯形砂轮修整碟形金刚石砂轮磨削力研究[J].金刚石与磨料磨具工程,2004,(4):37-39.
    [110]资嘉磊,黄红武,盛晓敏.超高速平面磨床振动特性研究[J].机械与电子,2006,(11):10-12.
    [111]郭洪伟.时间序列的单位根检验与伪检验[J].统计与决策,2011,(17):8-11.
    [112]赵文祥,庞思勤,李亚非.碟形金刚石砂轮变速修整的磨削力特征和系统稳定性研究[J].中国机械工程,2005,16(12):1050-1053.
    [113]贺永,马勇,董海.基于DSP的Si3N4陶瓷磨削力信号检验[J].工具技术,2002,36(4):12-14.
    [114]姜永武,周丽.砂轮不平衡量对磨削表面质量的影响[J].制造技术与机床,2000,(5):38-39.
    [115] A. Hassui, A. E. Diniz. Correlating Surface Roughness and Vibration on PlungeCylindrical Grinding of Steel[J]. International Journal of Machine Tools&Manufacture.2003,(43):855-862.
    [116] D. Barrenetxea, J. I. Marquinez, I. Bediaga. Continuous Workpiece SpeedVariation(CWSV): Model Based on Practical Application to Avoid Chatter in Grinding[J].CIRP Annals-Manufacturing Technology.2009,(58):319-322.
    [117] J. F. G. Oliveira, T. V. Franca, J. P. Wang. Experimental Analysis of Wheel/WorkpieceDynamic Interaction in Grinding[J]. CIRP Annals-Manufacturing Technology.2008,(57):329-332.
    [118] http://www.pmi-amt.com/support/download.html
    [119]尹慧博,毕海峰,姜洪权.提高滚珠丝杠传动刚度的几种方法[J].机械工程师,2009,(9):50-52.
    [120] S. Bograd, P. Reuss, T. A. Schmid, et al. Modeling the Dynamics of Mechanical Joints[J].Mechanical Systems and Signal Processing,2011,25(8):2801-2826.
    [121] Z. Y. Shen, J. F. Zhang, Z. J. Wu, et al. Modeling and Experimental Study on StaticCharacteristic of BT Tool Holder-Spindle Interface[J]. Advanced Materials Research,2011,(311-313):726-731.
    [122] C. X. Zhu, B. Li, J. M. Luo, et al. Dynamic Characteristics of Guide Way Joints for CNCMachine tool[J]. Applied Mechanics and Materials,2011,(80-81):1051-1054.
    [123]孔德帅,罗学科,徐宏海.立式磨边机磨头机构的动态性能分析[J].机电工程.2011,28(7):802-805.
    [124]徐宏海,王莉.数控机床机械结构与电气控制[M].北京:化学工业出版社,2011:49-50.
    [125]孙靖民.机械优化设计第4版[M].北京:机械工业出版社,2011:145-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700