用户名: 密码: 验证码:
硅片超精密磨削减薄工艺基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子产品对高性能、多功能、小型化和低成本的需求推动了集成电路(IC)制造技术的高速发展,特别是便携式电子产品的飞速发展对IC封装技术提出了越来越高的要求,其中,叠层三维立体封装技术由于其空间占用小,电性能稳定、成本低等优点成为未来的主要发展趋势。在封装整体厚度不变甚至减小的趋势下,要增加堆叠层数,必须对各层硅片进行背面减薄,且要求减薄硅片具有高面型精度、无表面/亚表面损伤。目前,采用金刚石砂轮的超精密磨削技术在硅片的背面减薄加工中得到广泛应用,但是,随着硅片尺寸和原始厚度的增大以及减薄厚度的减小,超精密磨削减薄技术面临着表面层损伤、弯曲/翘曲变形、加工效率等问题。因此,面向IC封装技术对超薄硅片的需求,以提高硅片表面层质量、面型精度和减薄效率为目的,本文深入研究了金刚石砂轮磨削减薄硅片的亚表面损伤特性、变形机理和崩边规律以及采用软磨料砂轮的机械化学磨削技术,对于实现硅片的高效率、低损伤、超薄化磨削加工具有重要的指导意义。论文的主要研究内容和结论如下:
     (1)建立了硅片旋转磨削的磨粒切削深度数学模型,推导出磨粒切削深度与磨削参数、砂轮尺寸及硅片表面径向位置的数学关系,指出磨粒切削深度随着砂轮粒径、砂轮进给速度、硅片转速和硅片表面径向距离的增大而增大,随着砂轮周长、砂轮齿宽和砂轮转速的增大而减小。采用角度截面显微观测法研究了金刚石砂轮磨削硅片的亚表面损伤深度沿硅片径向和周向的分布及光磨对磨削硅片亚表面损伤分布的影响,在此基础上,研究了磨削参数对亚表面损伤深度的影响,并基于建立的磨粒切削深度数学模型分析了相应规律的产生原因。研究表明,无光磨条件下磨削硅片的亚表面损伤深度沿周向在<110>晶向处大于<100>晶向,沿径向从中心到边缘逐渐增大;光磨条件下磨削硅片的亚表面损伤深度沿整个硅片表面几乎是均匀的,且光磨后的硅片亚表面损伤深度小于无光磨条件下磨削硅片;随着砂轮粒度的减小、转速的增大及进给速度的减小,亚表面深度明显地减小,但硅片转速对亚表面损伤深度的影响较小。
     (2)基于Ansys有限元软件研究了金刚石砂轮磨削减薄硅片过程中砂轮、真空吸盘与硅片间的作用力情况,揭示了硅片磨削减薄后发生变形的机理。基于圆形薄板弯曲变形理论建立了弹性小变形范围下的硅片超精密磨削减薄变形的数学模型,推导出硅片磨削减薄的变形量与亚表面损伤层深度、表面层加工应力、减薄厚度及单晶硅自身力学特性之间的数学关系,并通过试验对数学模型进行了验证。研究表明,随着硅片亚表面损伤深度的增大、减薄厚度的减小及表面层加工应力的增大,磨削减薄硅片的变形相应的增大,硅片变形的理论值与实测值基本相同。
     (3)通过硅片磨削减薄试验研究了崩边形状和尺寸沿硅片圆周的变化规律,在此基础上,研究了砂轮粒度、减薄厚度、磨削方式和砂轮进给速度等磨削参数等崩边尺寸的影响,并基于单晶硅的各向异性力学特性和工件旋转法磨削硅片的磨削力特征揭示了崩边规律的产生机理。结果表明,沿硅片圆周位于<100>晶向的崩边形状为等腰直角三角形,位于<110>晶向的崩边形状为矩形,但崩边尺寸沿硅片圆周不同晶向处没有明显的变化;随着砂轮粒度的减小、减薄厚度的增大及砂轮进给速度的减小,减薄硅片的崩边尺寸相应的减小,且顺磨方式减薄硅片的崩边尺寸小于逆磨方式减薄硅片。
     (4)针对金刚石砂轮磨削硅片的表面层损伤问题,提出采用软磨料砂轮的机械化学磨削技术。根据单晶硅的材料特性,研制了用于硅片磨削的CeO2、Fe2O3和MgO三种软磨料砂轮,并研究了软磨料砂轮的修整方法。通过检测硅片表面粗糙度、表面/亚表面损伤、砂轮修整间隔、主轴电机电流、磨削比及材料去除率等参数,研究了软磨料砂轮的磨削性能,并与同粒度金刚石砂轮的磨削性能以及化学机械抛光(CMP)的加工效果进行了对比分析。通过检测软磨料砂轮磨削硅片表面的化学成分分析了磨料、单晶硅和添加剂之间在磨削过程中发生的化学反应,建立了软磨料砂轮磨削硅片的材料去除机理模型。研究表明,软磨料砂轮磨削的硅片表面层质量远好于金刚石砂轮磨削硅片,接近于CMP的加工效果,且材料去除率高于CMP。
     (5)在上述研究的基础上,根据不同粒度金刚石砂轮磨削减薄硅片的材料去除率、亚表面损伤深度、崩边和变形以及软磨料砂轮机械化学磨削的特点,提出硅片一次装夹定位条件下,依次采用#600金刚石砂轮粗磨、#3000金刚石砂轮精磨和#3000MgO软磨料砂轮机械化学磨削的硅片高效低损伤磨削减薄工艺,利用该工艺获得了磨削减薄厚度为401μm的超薄硅片。
The demands of high-performance, multi-function, miniaturization and low-cost for electronic products promote the rapid development of integrated circuit(IC) manufacturing technology. Especially the high-speed evolution of portable electronic products puts forward higher and higher requirements for IC packaging technology.3D stacked package technology becomes the main development direction of IC packaging technology for its advantages in lowering space occupation, elevating electrical stability, reducing costs, etc. To raise layer number of3D stacked package without enlarging the overall package thickness, the silicon wafer in each layer needs back thinning. Furthermore, the back thinned wafers are required to have high surface accuracy and free surface/subsurface damage. Although being widely used in back thinning of silicon wafers, ultra-precision grinding technology with diamond grinding wheel is facing the problems of subsurface damage, wafer warpage/bow, machining efficiency, etc with an increase in diameter and thickness of prime wafers,but a decrease in finical thinning thickness. To meet IC packaging demand for ultra-thin wafers and improve surface layer quality, surface accuracy and machining efficiency, this dissertation aims to investigate the subsurface damage characteristics, warping mechanism and edge chipping of silicon wafers in diamond grinding and the mechanical-chemical grinding(MCG) technology with soft abrasive grinding wheel. The research results provide practical guidance for realizing high-efficiency and low-damage silicon wafer thinning by ultra-precision grinding. The main research works and conclusions are as follows:
     (1) A mathematical model of the grain depth-of-cut in wafer rotation grinding was established and the formula of the grain depth-of-cut was derived, which correlated grain depth-of-cut with grinding parameters, dimensions of the diamond cup wheel and distance from wafer center to the sample location. As the increase in grain size, wheel feedrate, wafer speed and distance from wafer center to the sample location, the grain depth-of-cut increased, while the increase in circumference and teeth width of the diamond cup wheel, wheel speed would decrease the grain depth-of-cut. Using the angle cross-section microscopy, the subsurface damage distributions along radial and circumferential direction of silicon wafers ground by diamond grinding wheels were investigated, and the effect of spark-out process on the subsurface damage distribution was analyzed. On that basis, the effects of grinding parameters on subsurface damage depth were also studied and the reasons were analyzed based on the established mathematical model of the grain depth-of-cut. The experiment results showed that in the ground wafer without spark-out process, the subsurface damage depth in<110> crystal orientation was larger than that in<100> crystal orientation and the subsurface damage depth increased along the radical direction from the centre to the edge; but in the ground wafer with spark-out process, the subsurface damage depths in different circumferential and radial locations were almost the same. And the subsurface damage depth in ground silicon wafers with spark-out process was significantly smaller than that without spark-out process. The subsurface damage depth decreased with a decrease in grain size and wheel feedrate, and an increase in the wheel speed, but the effect of wafer speed on subsurface damage depth was less.
     (2) Wafer holding mechanics on a vacuum chuck and grinding-induced stress distribution during a wafer thinning process were investigated using Ansys simulation software, and the warping mechanism of silicon wafers after grinding thinning was revealed. Based on the deflection theory of the circular thin plate, a mathematical model was established for predicting the wafer warp in the wafer grinding thinning when wafer deflection was small in the elastic range. The model correlated wafer warping with subsurface damage depth, machining stresses, wafer thinning thickness and the mechanical properties of the monocrystalline silicon, and the model was verified through thinning experiments of silicon wafers.The results indicated that as the increase in subsurface damage depth and machining stresses, the wafer warping increased; while the increase in wafer thinning thickness would decrease the wafer warping. And the model also showed a good agreement with the experimental results.
     (3) Edge chipping profile and size distributions along circumferential direction of thinned silicon wafers in diamond grinding thinning were experimentally investigated, on that basis, the effects of grinding parameters such as grain size, wafer thinning thickness, grinding mode and wheel feedrate on edge chipping size were also studied. The study also discussed the edge chipping mechanisms based on crystal orientation and machining mechanics of a wafer in thinning. The experiment results indicated that the edge chipping profile in the <100> crystal orientation of a ground silicon wafer was almost a isosceles right triangle and that in the<110> crystal orientation similar to a rectangle, but the edge chipping size was independent on the crystal orientation and thus wafer edge location. The edge chipping size decreased with a decrease in grain size and down-feedrate, but an increase in the wafer thickness. And the edge chipping size was larger in the down-grinding mode than in the up-grinding mode.
     (4) Aiming at the surface layer damage of silicon wafers in diamond grinding, a mechanical-chemical grinding(MCG) technology with soft abrasive grinding wheel was proposed. Based on the material properties of single crystal silicon, the soft abrasive grinding wheels using CeO2, Fe2O23and MgO as abrasives for grinding silicon wafer were developed. The dressing method of soft abrasive grinding wheel was studied. Through measuring wafer surface roughness, surface/subsurface damage, dressing interval, spindle motor current, grinding ratio and material removal rate, and comparing with the machining effects of diamond wheel grinding and chemical mechanical polishing(CMP), the grinding performances of the soft abrasive grinding wheels were investigated. The surface component of silicon wafer ground with soft abrasive grinding wheel was inspected and the chemical reaction between abrasives, additives and single crystal silicon was analyzed. The material removal model in silicon wafer grinding with soft abrasive grinding wheel was established. The results demonstrated that the surface layer quality of silicon wafers ground by the soft abrasive grinding wheels were all much better than the diamond grinding wheel and comparable to CMP, but the material removal rate in wafer grinding with soft abrasive grinding wheels was higher than about CMP.
     (5) Building upon the above research on material removal rate, subsurface damage, edge chipping and wafer warping of diamond grinding and characteristics of MCG with soft abrasive grinding wheel, a novel high-efficiency and low-damage ultra precision grinding thinning process of silicon wafers by stages using#600diamond grinding wheel,#3000diamond grinding wheel and#3000MgO soft abrasive grinding wheel in one single clamping step was proposed. Using the proposed thinning process, the minimum thinning thickness of silicon wafer reached40μm.
引文
[1]工业和信息化部.集成电路产业“十二五”发展规划[N].中国电子报,2012-03-02(2).
    [2]刘静,潘开林,朱玮涛,等.叠层封装技术[J].半导体技术,2011(02):161-164.
    [3]杜峰.全球智能手机市场井喷移动互联开启普及之门[N].通信信息报,2012-03-21(B04).
    [4]陈菲.平板出货量有望破亿行业应用或成新突破口[N].通信信息报,2012-06-13(B11).
    [5]钟顺钦.智能上网设备出货量冲11亿PC+时代移动终端唱主角[N].通信信息报,2012-04-04(B04).
    [6]晓明.今年全球平板电脑销量或达1.2亿台增长98%[J].网友世界,2012(07):3.
    [7]袁远. 便携式医疗市场回顾与展望[EB/OL]. (2011-08-12)[2012-9-9].http://www.c114.net/topic/2991/a635387.html.
    [8]Quirk M, Serda J. Semiconductor manufacturing technology[M]. London:Prentice Hall,2001.
    [9]朱秉晨.IC的40年回顾与展望——纪念IC诞生40周年[J].微处理机,1998(01):1-6.
    [10]王阳元.21世纪硅微电子技术三个重要发展方向——缩小器件尺寸、系统集成芯片(SOC)、产业增长点[J].华东科技,2007(Z1):86-88.
    [11]ITRS Committee. International technology roadmap for semiconductors[EB/OL]. (2012-01-20)[2012-9-21]. http://www.itrs.net/home.html.
    [12]张厥宗.硅片加工技术[M].北京:化学工业出版社,2009.
    [13]代淑芬.半导体硅材料的发展现状及趋势[J].无锡南洋学院学报,2008(03):30-32.
    [14]LaPedus M. Industry agrees on first 450-mm wafer standard[J]. EE Times,2008,10:22.
    [15]余炳晨.消费电子产品发展趋势及封装技术的应用[J].电子与封装,2009(06):37-41.
    [16]龙乐.电子封装技术发展现状及趋势[J].电子与封装,2012(01):39-43.
    [17]李桂云.几种电子封装技术在便携式电子产品中的应用[J].电子工业专用设备,2004(12):32-36.
    [18]张亚军,郭大琪.便携式电子产品电路的封装趋势[J].电子与封装,2004(06):4-8.
    [19]Takyu S, Sagara J, Kurosawa T. A study on chip thinning process for ultra thin memory devices[C]. 58th Electronic Components and Technology Conference, Florida,2008:1511-1516.
    [20]Chen K Y, Zenner R L D, Ameson M, et al. Ultra-thin electronic device package[J]. IEEE Transactions on Advanced Packaging,2000,23(1):22-26.
    [21]李丙旺,徐春叶,欧阳径桥.芯片叠层封装工艺技术研究[J].电子与封装,2012(01):7-10.
    [22]邓仕阳,刘俐,杨珊,等.堆叠封装技术进展[J].半导体技术,2012(05):335-340.
    [23]龙乐.多芯片封装技术及其应用[J].电子与封装,2006(01):12-15.
    [24]傅岳鹏,谭凯,田民波.电子封装技术的最新进展[J].半导体技术,2009(02):113-118.
    [25]翁寿松.3D封装的发展动态与前景[J].电子与封装,2006(01):8-11.
    [26]田民波.高密度封装进展之一元件全部埋入基板内部的系统集成封装(上)[J].印制电路信息,2003(09):3-7.
    [27]田民波.高密度封装进展之一元件全部埋入基板内部的系统集成封装(下)[J].印制电路信息,2003(10):3-6.
    [28]Partridge R.3D Chip Stacking-How Hot Is It? (IDEAS Insights)[EB/OL]. (2011-09-27)[2012-9-9]. http://ideasint.blogs.com/ideasinsights/2011/09/3d-chip-stacking-how-hot-is-it-.html.
    [29]康仁科,郭东明,霍风伟,等.大尺寸硅片背面磨削技术的应用与发展[J].半导体技术,2003(09):33-38.
    [30]王仲康.超薄化芯片[J].电子工业专用设备,2006(11):13-18.
    [31]Burghartz J N, Appel W, Harendt C, et al. Ultra-thin chip technology and applications, a new paradigm in silicon technology [J]. Solid-State Electronics,2010,54(9):818-829.
    [32]Burghartz J N, Harendt C, Tu H, et al. Ultra-thin chip fabrication for next-generation silicon processes[C]. Bipolar/BiCMOS Circuits and Technology Meeting, Capri,2009:131-137.
    [33]Reiche M, Wagner G. Wafer thinning techniques for ultra-thin wafers.[J]. Advanced Packaging, 2003,12(3):29-30.
    [34]Feil M, Alder C, Klink G, et al. Ultra thin ICs and MEMS elements:techniques for wafer thinning, stress-free separation, assembly and interconnection [J]. Microsystem Technologies, 2003,9(3):176-182.
    [35]康仁科,田业冰,郭东明,等.大直径硅片超精密磨削技术的研究与应用现状[J].金刚石与磨料磨具工程,2003(04):13-18.
    [36]Pinel S, Tasselli J, Bailbe J P, et al. Mechanical lapping of ultra-thin wafers for 3D integration[C]. 22nd International Conference on Microelectronics, Serbia,2000:443-446.
    [37]Siniaguine O. Atmospheric downstream plasma etching of Si wafers[C]. Twenty Third IEEE/CPMT International Electronics Manufacturing Technology Symposium, Austin,1998:139-145.
    [38]Sandireddy S, Jiang T. Advanced wafer thinning technologies to enable multichip packages[C]. Workshop on Microelectronics and Electron Devices, Boise,2005:24-27.
    [39]Watanabe N, Miyazaki T, Aoyagi M, et al. Damage evaluation of wet-chemical silicon-wafer thinning process[C].2011 IEEE International 3D Systems Integration Conference, Osaka,2012:1-4.
    [40]袁巨龙,王志伟,文东辉,等.超精密加工现状综述[J].机械工程学报,2007(01):35-48.
    [41]Chen C A, Shu L, Lee S. Mechano-chemical polishing of silicon wafers[J]. Journal of Materials Processing Technology,2003,140(1-3):373-378.
    [42]Geng H. Semiconductor manufacturing handbook[M]. New York:McGraw-Hill,2005.
    [43]Wu L, Chan J, Hsiao C S. Cost-performance wafer thinning technology[C].53rd Electronic Components and Technology Conference,2003:1463-1467.
    [44]Pei Z J, Billingsley S R, Miura S. Grinding induced subsurface cracks in silicon wafers[J]. International Journal of Machine Tools and Manufacture,1999,39(7):1103-1116.
    [45]张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].博士.大连理工大学,2006.
    [46]Jian C, De Wolf I. Study of damage and stress induced by backgrinding in Si wafers[J]. Semiconductor Science and Technology,2003,18(4):261-268.
    [47]Tonshoff H K, V. Schmieden W, Inasaki I, et al. Abrasive machining of silicon[J]. CIRP Annals-Manufacturing Technology,1990,39(2):621-635.
    [48]董志刚,田业冰,康仁科,等.硅片超精密磨床的发展现状[J].电子工业专用设备,2004(06):54-59.
    [49]朱祥龙,康仁科,董志刚,等.单晶硅片超精密磨削技术与设备[J].中国机械工程,2010,21(18):2156-2164.
    [50]任敬心,康仁科,王西彬.难加工材料磨削技术[M].电子工业出版社,2011.
    [51]Pei Z J, Fisher G R, Liu J. Grinding of silicon wafers:a review from historical perspectives[J]. International Journal of Machine Tools and Manufacture,2008,48(12-13):1297-1307.
    [52]Pei Z J, Strasbaugh A. Fine grinding of silicon wafers:grinding marks[C]. ASME International Mechanical Engineering Congress & Exposition, New Orleans,2002:311-320.
    [53]Chidambaram S, Pei Z J, Kassir S. Fine grinding of silicon wafers:a mathematical model for grinding marks[J]. International Journal of Machine Tools and Manufacture,2003,43(15):1595-1602.
    [54]Sun W, Pei Z J, Fisher G R. Fine grinding of silicon wafers:effects of chuck shape on grinding marks[J]. International Journal of Machine Tools and Manufacture,2005,45(6):673-686.
    [55]Zhou L, Shimizu J, Shinohara K, et al. Three-dimensional kinematical analyses for surface grinding of large scale substrate[J]. Precision Engineering,2003,27(2):175-184.
    [56]Zhou L B, Eda H, Shimizu J. State-of-the-art technologies and kinematical analysis for one-stop finishing of Φ300 mm Si wafer[J]. Journal of Materials Processing Technology,2002,129(1-3):34-40.
    [57]Huo F W, Kang R K, Li Z, et al. Origin, modeling and suppression of grinding marks in ultra precision grinding of silicon wafers[J]. International Journal of Machine Tools and Manufacture, 2013,66:54-65.
    [58]田业冰.大尺寸硅片磨削平整化理论与工艺技术的研究[D].博士学位论文.大连:大连理工大学,2007.
    [59]郭东明,康仁科,金洙吉,等.大尺寸硅片超精密磨削平整化加工机理与技术[J].数字制造科学,2007,5(4):1-32.
    [60]Tonshoff H K, Karpuschewski B, Hartmann M, et al. Grinding and slicing technique as an advance technology for silicon wafer slicing[J]. Machining Science and Technology,1997,1(1):33-47.
    [61]Sun W, Pei Z J, Fisher G R. Fine grinding of silicon wafers:a mathematical model for the wafer shape[J]. International Journal of Machine Tools and Manufacture,2004,44(7-8):707-716.
    [62]Chidambaram S, Pei Z J, Kassir S. Fine grinding of silicon wafers:a mathematical model for the chuck shape[J]. International Journal of Machine Tools and Manufacture,2003,43(7):739-746.
    [63]Sun W, Pei Z J, Fisher G R. Fine grinding of silicon wafers:machine configurations for spindle angle adjustments[J]. International Journal of Machine Tools and Manufacture,2005,45(1):51-61.
    [64]Chen C C, Hsu L S. A process model of wafer thinning by diamond grinding[J]. Journal of Materials Processing Technology,2008,201(1-3):606-611.
    [65]Tang K, Kang R. Simulation on the ground wafer shape in wafer rotational grinding[J]. Journal of Advanced Manufacturing Systems,2011,10(01):175-182.
    [66]Tang K, Kang R, Guo D, et al. Modeling and investigation on wafer shape in wafer rotational grinding method[J].2012:1-8.
    [67]Pei Z J, Strasbaugh A. Fine grinding of silicon wafers:designed experiments[J]. International Journal of Machine Tools and Manufacture,2002,42(3):395-404.
    [68]Pei Z J, Strasbaugh A. Fine grinding of silicon wafers[J]. International Journal of Machine Tools and Manufacture,2001,41(5):659-672.
    [69]Zhou L, Tian Y B, Huang H, et al. A study on the diamond grinding of ultra-thin silicon wafers [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2012,226(1):66-75.
    [70]Abdur-Rasheed A, Konneh M. Optimization of precision grinding parameters of silicon for surface roughness based on taguchi method[J]. Advanced Materials Research,2011,264:997-1002.
    [71]田业冰,郭东明,康仁科,等.大尺寸硅片自旋转磨削的试验研究[J].金刚石与磨料磨具工程,2004(04):1-4.
    [72]Tian Y B, Kang R K, Guo D M, et al. Investigation on material removal rate in rotation grinding for large-scale silicon wafer[J]. Materials Science Forum,2004,471-472:362-368.
    [73]张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].博士学位论文.大连:大连理工大学,2006.
    [74]Zhang L, Zarudi I. Towards a deeper understanding of plastic deformation in mono-crystalline silicon[J]. International Journal of Mechanical Sciences,2001,43(9):1985-1996.
    [75]Zarudi I, Zhang L. Subsurface damage in single-crystal silicon due to grinding and polishing[J]. Journal of Materials Science Letters,1996,15(7):586-587.
    [76]Zarudi I, Zhang L C. Effect of ultraprecision grinding on the microstructural change in silicon monocrystals[J]. Journal of Materials Processing Technology,1998,84(1-3):149-158.
    [77]Yinxia Z, Renke K, Dongming G, et al. Microstructure studies of the grinding damage in monocrystalline silicon wafers[J]. Rare Metals,2007,26(1):13-18.
    [78]Zhang Y X, Su J X, Gao W, et al. Study on subsurface damage model of the ground monocrystallinge silicon wafers[J]. Key Engineering Materials,2009,416:66-70.
    [79]张银霞,郜伟,康仁科,等.单晶硅片磨削损伤的透射电子显微分析[J].半导体学报,2008(08):1552-1556.
    [80]张银霞,郜伟,康仁科,等.单晶硅片磨削的表面相变[J].光学精密工程,2008(08):1440-1445.
    [81]Yang Y, De Munck K, Teixeira R C, et al. Process induced sub-surface damage in mechanically ground silicon wafers[J]. Semiconductor Science and Technology,2008,23(7):75038-75047.
    [82]Young H T, Liao H T, Huang H Y. Surface integrity of silicon wafers in ultra precision machining[J]. The International Journal of Advanced Manufacturing Technology,2006,29(3):372-378.
    [83]张银霞,李延民,郜伟,等.硅片自旋转磨削损伤深度的试验研究[J].金刚石与磨料磨具工程,2008(04):47-51.
    [84]郜伟,张银霞,康仁科.大尺寸Si片自旋转磨削表面的损伤分布研究[J].半导体技术,2008,33(10):876-926.
    [85]Zhou L, Hosseini B S, Tsuruga T, et al. Fabrication and evaluation for extremely thin Si wafer[J]. International Journal of Abrasive Technology,2007,1 (1):94-105.
    [86]Kimura F, Horio K, Hosseini B, et al. Study on subsurface damage generated in ground Si wafer[J]. Towards Synthesis of Micro-/Nano-Systems,2007,Part 2(B7):309-313.
    [87]Draney N R, Jun J L, Jiang T. Experimental investigation of bare silicon wafer warp[C].2004 IEEE Workshop on Microelectronics and Electron Devices, USA,2004:120-123.
    [88]Young H T, Lin C C, Liao H T, et al. Precision wafer thinning and its surface conditioning technique[J]. International Journal of Materials and Product Technology,2008,31(1):36-45.
    [89]张明灿.硅晶圆超精密轮磨之工程分析[D].硕士学位论文.台北:台湾大学,2005.
    [90]廖锡田.硅晶圆薄化技术之研究[D].博士学位论文.台北:台湾大学,2005.
    [91]Grief M K, Steele J A. Warpage and mechanical strength studies of ultra thin 150 mm wafers [C]. 19th IEEE/CPMT Electronics Manufacturing Technology Symposium, USA,1996:190-194.
    [92]Corporation D D. Wafer edge chipping countermeasure-[EB/OL]. (2007-03-26)[2012-11-7]. http://is01.disco.co.jp/psc/aphp.nsf/0/8B4B3DAED82634C54925729D003FB48C.
    [93]Okamoto 公司. Measures to reduce the outer chipping[EB/OL]. (2008-12-30)[2012-11-8]. http://www.okamoto.co.jp/eng_products/wafer.html.
    [94]Pargfrieder S, Kim B, Lamb J. Temporary bonding/debonding for ultrathin-substrates[J]. Solid State Technology,2008,51(7):60-65.
    [95]Pargfrieder S, Kettner P, Privett M, et al. Temporary bonding and debonding enabling TSV formation and 3D integration for ultra-thin wafers[C].10th Electronics Packaging Technology Conference, Singapore,2008:1301-1305.
    [96]Bai D, Zhong X F, Puligadda R, et al. Edge protection of temporarily bonded wafers during backgrinding[J]. ECS Transactions,2009,18(1):757-762.
    [97]Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing[J]. CIRP Annals-Manufacturing Technology,1990,39(1):329-332.
    [98]Ohmori H, Nakagawa T. Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels[J]. CIRP Annals-Manufacturing Technology,1995,44(1):287-290.
    [99]Itoh N, Ohmori H, Moriyasu S, et al. Finishing characteristics of brittle materials by ELID-lap grinding using metal-resin bonded wheels[J]. International Journal of Machine Tools and Manufacture,1998,38(7):747-762.
    [100]Liu J H, Pei Z J, Fisher G R. ELID grinding of silicon wafers:a literature review[J]. International Journal of Machine Tools and Manufacture,2007,47(3-4):529-536.
    [101]DISCO公司.UltraPoligrind-DISCO Corporation[EB/OL]. (2009-01-14)[2012-11-14]. http://www.disco.co.jp/eg/products/grinding_wheel/ultrapoligrind.html.
    [102]DISCO公司. Dry polishing wheels-DISCO Corporation[EB/OL]. (2010-09-14)[2012-11-14]. http://www.disco.co.jp/eg/products/dry_wheel/dp08.html.
    [103]Yamamoto Y, Maeda H, Shibutani H, et al. A study on constant-pressure grinding with EPD pellets[J]. Key Engineering Materials,2004,257:135-140.
    [104]Shibutani H, Yamamoto Y, Maeda H, et al. Mirror grinding of silicon with EPD pellets:applying a constant pressure machining[C]. International Society for Optical Engineering, USA,2003:44-47.
    [105]Fukazawa T, Fuwa N, Ikeno J, et al. Mirror grinding of silicon wafer with silica EPD Pellets[C].10th International Conference on Precision Engineering, Japan,2002:366-370.
    [106]DISCO公司.TAIKO process-DISCO Corporation[EB/OL]. (2008-11-25)[2012-11-19]. http://www.disco.co.jp/eg/solution/library/taiko.html.
    [107]DISCO公司.The applications of a TAIKO wafer-DISCO Corporation[EB/OL]. (2010-05-31)[2012-11-19]. http://www.disco.co.jp/eg/solution/apexp/grinder/taiko.html.
    [108]DISCO公司.Dicing before grinding (DBG) process-DISCO Corporation[EB/OL]. (2005-06-10)[2012-11-20]. http://www.disco.co.jp/eg/solution/library/dbg.html.
    [109]DISCO公司.DBG and Reduced Wafer Breakage-DISCO CORPORATION[EB/OL]. (2005-08-10)[2012-11-20]. http://is01.disco.co.jp/psc/aphp.nsf/0/2ECD3A719DE61E4E49256FDD0036F9E7.
    [110]刘定斌,胡超先,张燕.晶圆切割崩裂的成因和预防措施探讨[J].中国集成电路,2013,22(6):56-60.
    [111]朱祥龙.300mm硅片超精密磨床设计与开发[D].博士学位论文.大连:大连理工大学,2011.
    [112]DISCO公司.Fully automatic grinder 8000 series-DISCO Corporation[EB/OL]. (2008-06-13)[2012-11-20]. http://www.disco.co.jp/eg/products/grinder/8000_g.html.
    [113]GN公司.Nanogrinder/4 fully automatic wafer grinding machine[EB/OL]. (2008-06-15)[2012-11-30]. http://www.grinders.de/cms/NANOGRINDER-4.90.0.html.
    [114]Strasbaugh公司.7AF 200mm wafer grinder[EB/OL]. (2010-12-30)[2012-11-27]. http://strasbaugh.com/cm/Products/Wafer%20Grinding/7AF%20200MM%20WAFER%20GRINDE R.html.
    [115]朱祥龙.300mm硅片超精密磨床设计与开发[J].机械工程学报,2011,49(4):192.
    [116]Zhu X L, Dong Z G, Kang R K, et al. Development of Ultra-Precision Grinder for 300mm Wafers[J]. Advanced Materials Research,2012,565:609-614.
    [117]Malkin S, Guo C. Grinding technology:theory and application of machining with abrasives[M]. Industrial Press Inc.,2008.
    [118]庄司克雄著,郭隐彪,王振忠译.磨削加工技术[M].北京:机械工业出版社,2007.
    [119]Sharp K W, Miller M H, Scattergood R O. Analysis of the grain depth-of-cut in plunge grinding[J]. Precision engineering,2000,24(3):220-230.
    [120]Inasaki I. Grinding of hard and brittle materials[J]. CIRP Annals-Manufacturing Technology, 1987,36(2):463-471.
    [121]Robbins H E. On the measure of a random set. II[J]. The Annals of Mathematical Statistics, 1945,16(4):342-347.
    [122]Sharp K W. Development of grinding models for brittle materials[D]. Doctor dissertation. Raleigh: North Carolina State University,1998.
    [123]徐东亮,李湘.弓形几何尺寸计量的实用公式[J].山西科技,2001(4):47-48.
    [124]张二艳.利用Taylor级数计算弓形面积的近似公式[J].北京印刷学院学报,2009,17(2):72-74.
    [125]张银霞,李大磊,郜伟,等.硅片加工表面层损伤检测技术的试验研究[J].人工晶体学报,2011(02):359-364.
    [126]霍凤伟,康仁科,郭东明,等.一种改进的测量硅片亚表面损伤的角度抛光方法(英文)[J].半导体学报,2006,27(3):506-510.
    [127]沈剑云.结构陶瓷磨削机理与热特性分析[D].博士学位论文.天津:天津大学,2004.
    [128]Hwang T W, Malkin S. Grinding mechanisms and energy balance for ceramics[J]. Journal of manufacturing science and engineering,1999,121(4):623-631.
    [129]Sparks R G, Paesler M A. Micro-Raman analysis of stress in machined silicon and germanium[J]. Precision Engineering,1988,10(4):191-198.
    [130]阿加雷,范钦珊译.板壳应力[M].中国建筑工业出版社,1986.
    [131]陈琨曜.薄膜应力与基板弯曲问题之研究[D].硕士学位论文.台南:台湾成功大学,2006.
    [132]Nie M, Huang Q, Li W. Measurement of residual stress in multilayered thin films by a full-field optical method[J]. Sensors and Actuators A:Physical,2006,126(1):93-97.
    [133]Freund L B, Suresh S. Thin film materials:stress, defect formation and surface evolution[M].Cambridge University Press,2003.
    [134]曲庆璋,章权,季求知,等.弹性板理论[M].人民交通出版社,2000.
    [135]郭毅,王桂芳.圆形弹性薄板非轴对称大挠度问题的一个解法[J].应用数学和力学,1998,19(9):837-845.
    [136]袁志发,周静芋.试验设计与分析[M].高等教育出版社,2000.
    [137]罗渝然.化学键能数据手册[M].科学出版社,2005.
    [138]Steigerwald J M, Murarka S P, Gutmann R J. Chemical mechanical planarization of microelectronic materials[M].Wiley,2008.
    [139]Zantye P B, Kumar A, Sikder A K. Chemical mechanical planarization for microelectronics applications[J]. Materials Science and Engineering:R:Reports,2004,45(3):89-220.
    [140]Wang Y, Liu S, Peng G, et al. Effects of surface treatment on sapphire substrates[J].Journal of crystal growth,2005,274(1):241-245.
    [141]Yuan Z, Jin Z, Kang R, et al. Tribochemical polishing CVD diamond film with FeNiCr alloy polishing plate prepared by MA-HPS technique[J]. Diamond and Related Materials,2012,21:50-57.
    [142]Hah S R, Burk C B, Fischer T E. Surface quality of tribochemically polished silicon nitride[J]. Journal of the Electrochemical Society,1999,146(4):1505-1509.
    [143]Hah S R, Fischer T E. Tribochemical polishing of silicon nitride[J]. Journal of the Electrochemical Society,1998,145(5):1708-1714.
    [144]曹忠良,王珍云.无机化学反应方程式手册[M].湖南科学技术出版社,1982.
    [145]Rajendran A, Takahashi Y, Koyama M, et al. Tight-binding quantum chemical molecular dynamics simulation of mechano-chemical reactions during chemical-mechanical polishing process of SiO2 surface by CeO2 particle[J]. Applied surface science,2005,244(1):34-38.
    [146]Zhang Z, Huo F, Wu Y, et al. Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material[J]. International Journal of Machine Tools and Manufacture,2011,51(1):18-24.
    [147]Liu J H, Pei Z J, Fisher G R. Grinding wheels for manufacturing of silicon wafers:a literature review[J]. International Journal of Machine Tools and Manufacture,2007,47(1):1-13.
    [148]Brinksmeier E, Mutlugiines Y, Klocke F, et al. Ultra-precision grinding[J]. CIRP Annals-Manufacturing Technology,2010,59(2):652-671.
    [149]邹文俊.有机磨具制造[M].中国标准出版社,2001.
    [150]Young H T, Liao H, Huang H. Novel method to investigate the critical depth of cut of ground silicon wafer[J]. Journal of materials processing technology,2007,182(1):157-162.
    [151]刘世宏.X射线光电子能谱分析[M].科学出版社,1988.
    [152]Ingason A S, Eriksson A K, Lewin E, et al. Growth and structural properties of Mg:C thin films prepared by magnetron sputtering[J]. Thin Solid Films,2010,518(15):4225-4230.
    [153]Moulder J F, Chastain J, King R C. Handbook of X-ray photoelectron spectroscopy:a reference book of standard spectra for identification and interpretation of XPS data[M].Physical Electronics Eden Prairie,1995.
    [154]Ardizzone S, Bianchi C L, Fadoni M, et al. Magnesium salts and oxide:an XPS overview[J]. Applied Surface Science,1997,119(3):253-259.
    [155]Grunthaner F J, Lewis B F, Zamini N, et al. XPS studies of structure-induced radiation effects at the Si/SiO2 interface[J]. IEEE Transactions on Nuclear Science,1980,27(6):1640-1646.
    [156]Seah M P, White R. Ultrathin SiO2 on Si:Ⅲ mapping the layer thickness efficiently by XPS[J]. Surface and interface analysis,2002,33(12):960-963.
    [157]张晓勇,郝团伟,吴宝国,等.南钢转炉厂硅钙线的XPS分析[J].安徽工业大学学报(自然科学版),2010,27(004):349-351.
    [158]Shinoda K, Hatakeda H, Maruoka N, et al. Chemical state of chromium in CaO-SiO2 base oxides annealed under different conditions[J]. ISIJ international,2008,48(10):1404-1408.
    [159]Bebensee F, Voigts F, Maus-Friedrichs W. The adsorption of oxygen and water on Ca and CaO films studied with MIES, UPS and XPS[J]. Surface Science,2008,602(9):1622-1630.
    [160]Boudeville Y, Figueras F, Forissier M, et al. Correlations between X-ray photoelectron spectroscopy data and catalytic properties in selective oxidation on Sb-Sn-O catalysts[J]. Journal of Catalysis, 1979,58(1):52-60.
    [161]Scofield J H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV[J]. Journal of Electron Spectroscopy and Related Phenomena,1976,8(2):129-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700