用户名: 密码: 验证码:
磨粒切厚可控的脆性材料延性域磨削基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制约脆性材料高效精密磨削技术进一步发展的主要瓶颈是脆性材料不能以完全延性的方式进行加工,材料加工后会出现一定数量的表面和亚表面缺陷,从而影响了脆性材料产品的使用性能和可靠性。以往的解决办法是采用超细粒度的砂轮、或者采用高速磨削工艺等措施,这些虽然为脆性材料的加工提供了解决方案,但并未从根本上解决脆性材料如何实现既高效又延性加工的问题。
     常用砂轮的磨粒是随机分布的,每颗磨粒的切厚是无法控制的,所以总有很多磨粒处于脆性加工的状态,导致加工后的材料表面亚表面出现很多缺陷。由此本文构想采用粗粒度的单层钎焊金刚石砂轮,通过磨粒的有序排布控制磨粒间距,通过对磨粒的精密修整控制磨粒的等高性,再通过磨削工艺参数的调整来实现磨粒切厚及其一致性的控制,如果所有的磨粒切厚都能控制在脆性材料延脆域转变的临界切厚值以下,那么脆性材料的延性加工就可以实现。这样即使普通的磨床设备和磨削工艺也能实现较大去除率的脆性材料延性加工,因此可以实现脆性材料的高效精密加工。围绕此构想,本文主要完成了以下研究工作:
     (1)采用树脂金刚石砂轮对铁氧体材料进行了磨削实验,考察了铁氧体材料表面粗糙度随磨削工艺参数的变化规律以及磨削铁氧体的表面特征,观察了树脂金刚石砂轮的表面形貌在磨损过程中的变化,最后加工铁氧体零件成品。通过磨削实验证明,由于砂轮磨粒是无序排布、磨粒把持强度低、磨粒等高性差且没有微刃性,难以准确控制磨粒切厚及其一致性,所以磨削的表面粗糙度难以改善。据此可推断较高磨粒把持强度的砂轮如果磨粒满足有序排布、等高性和微刃性,则可以准确控制磨粒切厚及其一致性,实现脆性材料的延性域磨削。
     (2)理论分析了粗粒度砂轮难以实现延性域磨削的原因,考察了普通砂轮磨粒切厚的特征及其统计分布形态,提出了磨粒切厚的控制措施,最后制作出了能控制磨粒切厚及其一致性和砂轮基体高温变形的磨粒有序排布钎焊金刚石砂轮。
     (3)提出了采用杯形树脂金刚石砂轮修整钎焊金刚石砂轮的方法,搭建了修整装置。提出了改进的软钢修整方法。对两种修整工艺进行了研究,考察了砂轮形貌和磨粒等高性在修整过程中的变化。待钎焊金刚石砂轮修整好后对各种脆性材料的磨削工艺进行了研究。实验证明,两项修整工艺技术改善了钎焊金刚石砂轮磨粒的等高性。脆性材料的磨削表面质量有所提高。
     (4)通过改进的钎焊工艺和修整工艺实现了氧化锆陶瓷的延性域磨削。改进的钎焊工艺抑制了砂轮侧壁表面钎料的过度流淌和金刚石磨粒的包埋,使得磨粒高度在砂轮宽度方向上更加均匀,磨粒有较大的出露,改进修整工艺使得砂轮磨粒在修整的过程中实现有限的破碎,既保证了磨粒的等高性又保证了磨粒的微刃性,最终磨削氧化锆陶瓷的表面粗糙度可以达到Ra0.1μm以下,该表面磨削纹理连续细密,材料去除基本上属于延性域的模式。
The bottleneck of the further development of high efficiency precision grinding of brittle materialsis the difficulty of achieving the complete ductile machining of them, which will induce some surfaceand subsurface defects and influence the service performance and reliability of the brittle materialproducts. The traditional method to solve is to use superfine grinding wheel, or to introduce highspeed grinding. These methods are some kinds of solvent. But they can not solve the problem of notonly high efficiency but also ductile machining.
     The position of grains in the traditional grinding wheel surface is stochastic, which can not controlthe depth of cut of individual grain. Accordingly, many grains are in the mode of brittle machining,which can induce many defects in the surface and subsurface of the ground material.The dissertationconceives to use monolayer brazed diamond grinding wheel of large grit size, controlling theinter-grain space by means of orderly distributed grains, controlling the height uniformity of grains bymeans of precision dressing of the grains, and basically controlling the single grain cutting depth bymeans of regulating the process parameters, If single grain cutting depth is controlled under thecritical depth of cut which determines the transition from brittle mode to ductile mode for brittlematerial machining, then the ductile machining of brittle material is realized. The ductile machiningof brittle material with large removal rate can be achieved although traditional grinder and process areused. Consequently, the high efficiency precision process of brittle material is realized. For the sake ofthis, the paper has completed some following research work:
     (1)The experiment of ferrite material grinding with resin bonded diamond grinding wheel wascarried out. The surface roughness variation and the surface microscopic feature of ferrite withgrinding process parameter has been observed. The grinding wheel topography variation with wear isobserved. At last complicated shaped ferrite part has been manufactured. The grinding experimentproves that because of the random distribution of grains, lower grain retention, no grain heightuniformity and no grain micro-edges with respect to normal grinding wheel, the undeformed chipthickness and its uniformity can not be controlled accurately, which determines the ground surfacequality cannot be improved easily. Accordingly, it is speculated that grinding wheel with higer grainretention, orderly distributed grains, grain height uniformity and grain micro-edges will controlundeformed chip thickness accurately and realize ductile regime grinding.
     (2)The difficulty of ductile regime grinding with large grit size grinding wheel is analyzedtheoretically. The feature and statistical distribution of undeformed chip thickness are observed. Themethods of controlling undeformed chip thickness are proposed. At last the grinding wheel withorderly distributed grains has been developed, which address the problem of high temperaturedeformation of wheel matrix and controlling of undeformed chip thickness and its uniformity.
     (3)The dressing method of brazed diamond grinding wheel with cup shaped resin bonded grindingwheel is proposed. The experiment rig is equipped. The improved mild steel dressing method isproposed. The two dressing processes are studied. The grinding wheel topography and grain heightuniformity during dressing process are observed. After that various brittle material grinding process isstudied. The results show that the two dressing process improved the diamond grain height uniformity greatly and the ground surface quality of brittle materials has been increased greatly.
     (4)With the improved brazing process and the improved dressing process, the ductile regimegrinding is realized. The improved brazing process controls the overflow of brazing alloy fluid on alateral surface and the over-embedment of diamond grains, which makes grain height uniformity inthe direction of grinding wheel width more even and makes grain protrusion larger. With theimproved dressing process, the grinding wheel grains can achieve limited fracture, which not untilensure the grit height uniformity but also ensure the micro edges of grains. At last the ground surfaceroughness of zirconia achieves Ra0.1μm, of which the surface grinding texture is very consecutiveand dense, and the material removal is generally in the ductile regime.
引文
[1] J.C.Aurich, M.Carrella, M.Steffes. Evaluation of abrasive processes and machines with respect toenergy efficiency. Berkeley:19th CIRP International Conference on Life Cycle Engineering.2012:329-333
    [2]张绶庆.新型无机材料概论.上海:上海科技出版社.1985:5-9
    [3]邱关明.新型陶瓷.北京:兵器工业出版社.1993:24-40
    [4]周志朝.无机材料显微结构分析.杭州:浙江大学出版社.1993:195-207
    [5] W.福格尔.玻璃化学(谢子深,姜中宏).北京:轻工业出版社.1988:46-66
    [6]赵品,谢辅洲,孙文山.材料科学基础.哈尔滨:哈尔滨工业大学出版社.1999:120-131
    [7]张玉军,张伟儒.结构陶瓷材料及其应用.北京:化学工业出版社.2005:113-153
    [8] T.W.Liao. Creep feed grinding of alumina.[Ph.D dissertation]. Bethlehem, PA, USA: LehighUniversity,.1990.
    [9] J.Kaiornchaiyakul. Abrasive machining of ceramics: assessment of near-surface characteristics inhigh speed grinding.[Ph.D dissertation]. State of Connecticut: University of Connecticut.2000.
    [10] M.Miyashita, Annual Precision Engineering conference, North Carolina State Univ., Raleigh, NC,November,1985.
    [11]余娟.磁流变效应微砂轮超精密研抛加工机理研究.[工学硕士学位论文].广州:广东工业大学,2007
    [12] Y.Tani, T.Seeki, Y.Samissu, K.Kobayash, Y.Sato. Infeed grinding of silicon wafers applyingelectrophoretic deposition of ultrafine abrasives. Annals of the CIRP,1998, Vol.47/1:245-248
    [13]高尚.超精密磨削硅片的软磨料砂轮的研制.[硕士学位论文].大连:大连理工大学,2009
    [14] B.Zhang, H.H.Su, H.J.Xu, Y.C.Fu. The experiment research of precision grinding of Li-Ti ferritewith graphite grinding wheel. Key Engineering materials2010, Vol.431-432:322-325
    [15] S.Malkin, T.W.Hwang. Grinding mechanisms for ceramics. Annals of the CIRP,1996, Vol.45(2):569-580
    [16] T.G.Bifano. Ductile-regime grinding of brittle materials.[Ph.D dissertation]. State of NorthCarolina: North Carolina State University,1988
    [17] S.Shimada, N.Ikawa. Brittle-Ductile Transition Phenomena in Microindentation andMicromachining. Annals of the CIRP,1995, Vol.44:523-526
    [18] B.Zhang, T.D.Howes, Material-Removal Mechanisms in grinding Ceramics, Annals of the CIRP,1994,Vol.43(1):305-308
    [19] I.Inasaki, Yokohama. High-Efficiency Grinding of Advanced Ceramics. CIRPAnnals-Manufacturing Technology,1987,211-214
    [20] J.Gabler, S.Pleger. Precision and micro CVD diamond-coated grinding tools. Internationaljournal of machine tools&manufacture.2010, Vol.50:420-424
    [21] Z.Y.Zhang, F.W.Huo, Y.Q.Wu, H.Huang. Grinding of silicon wafers using an ultrafine diamondwheel of a hybrid bond material. International journal of machine tools and manufacture, October2010, available online21:1-7
    [22] S.Y.Luo, T.H.Yu, C.Y.Liu, M.H.Chen. Grinding characteristics of micro-abrasive pellet toolsfabricated by a LIGA-like process. International journal of machine tools&manufacture.2009,Vol.49:212-219
    [23] H.Ohmori, I.Takahashi, B.P.Bandyopadhyay. Ultra-precision grinding of structural ceramics byelectrolytic in-process dressing (ELID) grinding. Journal of material processing technology.1996,Vol.57:272-277
    [24] H.Huang, Y.C.Liu. Experimental investigations of machining characteristics and removalmechanisms of advanced ceramics in high speed deep grinding. International journal of machinetools&manufacture.2003, Vol.43:811-823
    [25] K.Ramesh, Experimental evaluation of super high-speed grinding advanced ceramics, advancedmanufacturing technology.2001, Vol.17:87-92
    [26] K.Inoue, Y.Sakai, K.Ono, et al. Super High Speed Grinding for Ceramics with Vitrified DiamondWheel[J]. Int J Japan Soc Pre Eng,1994, Vol.28(4):45-48
    [27] J.A.Kovch, P.J.Blau, S.Malkin, et al. A Feasibility Investigation of High Speed, Low DamageGrinding Process for Advanced Ceramics[J].5th International Grinding Conference,1993,(1):113-117
    [28] F.Klocke, E.Verlemann, C.Schippers, High-speed grinding of ceramics, in: S.Jahanmir, M.Ramulu, P. Koshy (Eds.), Machining of Ceramics and Composites, Marcel Dekker, New York,1999,119–138
    [29] F.Klocke, E.Brinksmeier, C.Evans, T.Howes, I.Inasaki, E.Minke, et al. High speedgrinding—fundamental and state of art in Europe, Japan and USA, Annals of CIRP,1997, Vol.46(2):715–724
    [30] J.A.Kovach, M.A.Laurich, S.Malkin, S.Srinivasan, B.Bandyopadhyay, K.R.Ziegler. A feasibilityinvestigation of high-speed, low-damage grinding for advanced ceramics, in: SME FifthInternational Grinding Conference,1993, Vol.1, SME
    [31] T.W.Hwang, C.J.Evans, S.Malkin. An investigation of high speed grinding with electroplateddiamond wheels, Annals of CIRP,2000, Vol.49(1):245–248
    [32] T.W.Hwang, C.J.Evans, E.P.Whitenton, S.Malkin. High speed grinding of silicon nitride withelectroplated diamond wheels. I. Wear and wheel life, in: Manufacturing Science and Engineering,1999, MED-Vol.10ASME:431–441
    [33] T.W.Hwang, C.J.Evans, S.Malkin. High speed grinding of silicon nitride with electroplateddiamond wheels. II: wheel topography and grinding mechanisms, in: Manufacturing Science andEngineering,1999, MED-Vol.10ASME:443–452
    [34] H.Huang, L.Yin. High speed grinding performance and material removal mechanism of siliconnitride, in: Yokohama, Japan,18–20July, Proceedings of10th International Conference onPrecision Engineering,2001,416–420
    [35] Y.Ling. High speed versus conventional grinding in high removal rate machining of alumina andalumina–titania,International Journal of Machine Tools&Manufacture.2005, Vol.45:897–907
    [36] D.Grimme, K,Rickens, Q.Zhao, C.Heinzel. Dressing of coarse-grained diamond wheels forductile machining of brittle materials. Towards synthesis of Micro-/Nano-systems.2007,305-307
    [37]赵清亮,于光.应用超硬大磨粒金刚石砂轮实现BK7光学玻璃的超精密磨削.机械工程学报. Oct.2006, Vol.42(10):95-101
    [38] C.Heinzel, K.Rickens. Engineered wheels for grinding of optical glass. CIRP Annals-Manufacturing Technology2009, Vol.58:315-318
    [39] J.Xie, Y.X.Lu. Study on axial-feed mirror finish grinding of hard and brittle materials in relationto micron-scale grain protrusion parameters. International journal of machine tools&manufacture.2011, Vol.51:84-93
    [40] J.Kopac, P.Krajnik. High-performance grinding-A review. Journal of materials processingtechnology.2006, Vol.175:278-284
    [41]肖冰,徐鸿钧,武志斌,等. Ni-Cr合金真空单层钎焊金刚石砂轮.焊接学报.2001, Vol.22(2):23-26
    [42]武志斌,徐鸿钧,姚正军,等. NiCr合金钎焊单层金刚石砂轮界面结构的研究.应用科学学报.2002, Vol.20(1):10-13
    [43]卢金斌,徐九华,徐鸿钧,等. Ni-Cr合金真空钎焊金刚石界面微结构分析.机械科学与技术.2004, Vol.23(7):832-833
    [44]武志斌,徐鸿钧,姚正军,等.钎焊单层金刚石砂轮的现存问题及其对策.焊接学报.2001,Vol.22(3):36-38
    [45]李曙生.新型单层钎焊金刚石砂轮磨削工程陶瓷的基础研究.[博士学位论文].南京:南京航空航天大学.2008
    [46]姚正军,徐鸿钧,肖冰,等. Ni-Cr合金Ar气保护炉中钎焊金刚石砂轮的研究.中国机械工程.2001, Vol.12(8):956-958
    [47]马伯江,徐鸿钧,傅玉灿,等.高频感应钎焊金刚石界面特征.焊接学报.2005, Vol.26(3):50-54
    [48]马伯江,徐鸿钧,傅玉灿,等.两种钎焊金刚石工具微观结构的对比分析.机械工程材料.2005, Vol.29(7):10-13
    [49]杨志波.金刚石磨粒激光钎焊工艺与机理研究.[博士学位论文].南京:南京航空航天大学,2007
    [50] S.Malkin.磨削技术理论与应用(蔡光起,刘亚东,宋贵亮).沈阳:东北大学出版社.2002:33-60
    [51] S.Y.Luo. Effect of fillers of resin-bonded composites on diamond retention and wear behavior.Wear.1999, Vol.236:339-349
    [52]孙毓超,刘一波,王秦生.金刚石工具与金属学基础.北京:中国建材工业出版社.1999:75-104
    [53]李大佛.电镀金刚石钻头技术.北京:地质出版社.1995:47
    [54] S.Tong, S.M.Gracewski, P.D.Funkenbusch. Measurement of the preston coefficient of resin andbronze bond tools for deterministic microgrinding of glass. Precision Engineering.2006, Vol.30:115-122
    [55]范超幸.碳化硅的金刚石高效精密磨削机理和实验研究.[硕士学位论文].哈尔滨:哈尔滨工业大学,2006
    [56] Y.Namba, Y.Yamada, A.Tsuboi, K.Unno, H.Nakao. Surface structure of Mn-Zn ferrite singleCrystals ground by an ultra-precision surface grinder with various diamond wheels. Annals of theCIRP,1992, Vol.41(1):347-352.
    [57] Z.D.Shi. Grinding with electroplated cubic boron nitride wheels.[Ph.D dissertation]. Amherst:University of Massachussetts,2004
    [58] O.Yoshifumi, M.Tetsuo. Chipping in high-precision slot grinding of Mn-Zn ferrite. Annals of theCIRP,1995, Vol.44(1)
    [59] P.Koshy, V.K.Jain, G.K.Lal. Stochastic simulation approach to modeling diamond wheeltopography. International journal of Machine tools&manufacture.1997, Vol.37(6):751-761
    [60] P.Koshy, A.Iwasaki, M.A.Elbestawi. Surface generation with engineered grnding wheels:Insights from simulation. Annals of the CIRP,2003, Vol.52:275-280
    [61] F.W.Pinto, G.E.Vargas, K.Wegener. Simulation for optimizing grain pattern on engineeredgrinding tools. CIRP Annals-manufacturing technology.2008, Vol.57(3):53-356
    [62] J.C.Aurich, O.Braun, G.Warnecke, L.Cronjager. Development of a superabrasive grinding wheelwith defined grain structure using kinematic simulation. Annals of the CIRP,2003, Vol.52:275-280
    [63]何梦佳.有序排布钎焊单层金刚石工具研究.[硕士学位论文].广州:广东工业大学,2007
    [64] C.Ronald, Wiand. Abrasive sheet and metnod. US. Patent No.5,208,881,1993
    [65]徐鸿钧,傅玉灿,肖冰,徐九华,苏宏华.具有优化地貌的单层钎焊金刚石固结磨料工具的工艺方法.中国专利CN1528565A,2004,9
    [66]陈燕.高温钎焊金刚石磨料热损伤分析及其控制对策的基础研究.[博士学位论文].南京:南京航空航天大学,2008
    [67]庄司克雄.陶瓷结合剂金刚石砂轮修整的研究(III)——杯形砂轮修整器的修整机理.磨料磨具与磨削.1993, Vol.73:7-13
    [68] T.Uematsu, M.Iwai, T.Funazawa, K.Takeuchi, K.Suzuki. On machine fluid-free electro dischargetrueing/dressing method for superabrasive wheels. Abrasive Technology, Current Developmentand Application.1999:258-266
    [69] K.Suzuku, T.Uematsu, T.Nakagawa. On-machine trueing/dressing of metal bond grinding wheelsby electro-discharge machining. Annals of the CIRP.1987, Vol.36(1):115-118
    [70] J.Tamaki, T.Kitagawa. Electro contact discharge dressing of metal-bonded wheel--truingefficiency and grinding performance. International Journal of the Japan Society for PrecisionEngineering.1992, Vol.26(4):284-289
    [71] H.Ohmori, T.Nakagawa. Mirror surface grinding of silicon wafers with electrolytic in-processdressing. Annals of CIRP.1990, Vol.39(1):329-332
    [72] Y.Ikuse, T.Nonokawa, N.Kawabata, T.Kamo, Y.Yuzawa, K.Unno. Development of new ultrasonicdressing equipment. International Journal of the Japan Society for Precision Engineering.1996,Vol.30(3):217-222
    [73] L.R.Cai, Y.Jia. D.J.Hu. Dressing of metal-bonded superabrasive grinding wheels by means ofmist-jetting electrical discharge technology. Journal of materials processing technology2009,Vol.209:779-784.
    [74] X.P.Li. A free-abrasive machining approach to dressing of resin-bonded CBN grinding wheels.Journal of Materials Processing Technology1995, Vol.48:223-230
    [75] J.Y.Shen, X.P.Xu, B.Lin, Y.S.Xu. Lap-grinding of Al2O3ceramics assisted by water-jet dressingmetal bond diamond wheel. Key Engineering materials.2001, Vol.171-176:202-203
    [76] B.Brinksmeier, M.Cinar. Characterization of dressing processes by determination of the collisionnumber of the abrasive grits. Annals of the CIRP,1995, Vol.44:299-304
    [77]任敬心,华定安.磨削原理.西安:西北工业大学出版社.1988:148-154
    [78] H.Huang. Effects of truing/dressing intensity on truing/dressing efficiency and grindingperformance of vitrified diamond wheels. Journal of materials processing technology2001,Vol.117:9-14
    [79] J.T.Andrew, A.B.Christopher. A Comparison of Topographic Characterization Parameters inGrinding. Topographic Research and Analysis Laboratory. Manufacturing Engineering Program.January9,1997
    [80] L.Blunt. S.Ebdon. The application of three-dimensional surface measurement techniques tocharacterizing grinding. Int.J.Mach. Tools Manufact,1996, Vol.36(11):1207-1226,
    [81] D.A.Doman, A.Warkentin, R.Bauer. A survey of recent grinding wheel topography models.International Journal of Machine Tools&Manufacture,2006, Vol.46:343-352
    [82] N.H.Chiu, Y.Y.Guao. State classification of CBN grinding with support vector machine. Journalof materials processing technology,2008, Vol.201:601-605
    [83] A.T.Nguyen, D.L.Butler. Correlation of grinding wheel topography and grinding performance: Astudy from a viewpoint of three-dimensional surface characterization. Journal of materialsprocessing technology PROTEC-11808No:10.
    [84]袁宇正.激光及其在测绘中的应用.北京:测绘出版社,1978:50-92
    [85]田中敬一,朴大直.激光与测量.北京:中国计量出版社,1987:18-162
    [86]高林奎,宋玮.激光测距.北京:人民铁道出版社,1977:206-226
    [87]张琢.激光干涉测试技术及应用.北京:机械工业出版社,1998:42-58
    [88] Z.F.Zhang, Q.B.Feng, Z.Gao, C.F.Kuang, C.Fei, Z.Li, J.Y.Ding. A new laser displacement sensorbased on triangulation for gauge real-time measurement. Optics&Laser Technology,2008, Vol.40:252-255
    [89] J.Xie, J.Xu, Y.Tang, J.Tamaki.3D graphical evaluation of micron-scale protrusion topography ofdiamond grinding wheel. International Journal of Machine Tool&Manufacturing.2008,Vol.48(11):1254-1260
    [90] J.Xie, F.Wei, J.H.Zheng, J.Tamaki, A.Kubo.3D laser investigation on micron-scale grainprotrusion topography of truncated diamond grinding wheel for procision grinding performance.International Journal of Machine Tool&Manufacture.2011, Vol.51(5):411-419
    [91] A.Ghosh, A.K.Chattopadhyay. Experimental investigation on performance of touch-dressedsingle-layer brazed cBN wheels. International journal of machine tools&manufacture.2007,Vol.47:1206-1213
    [92] G.Wamecke. Kinematic simulation for analyzing and predicting high-performance grindingprocesses. Annals of the CIRP.1998, Vol.47(1):265-270
    [93] E.S.Lee, S.O.Ahn. Precision surface grinding of Mn-Zn ferrite with in-process electro-dischargedressing (IEDD). International Journal of Machine Tool&Manufacture.1999, Vol.39:1655-1671
    [94] X.Sun, D.J.Stephenson, O.Ohnishi, A.Baldwin. An investigation into parallel and cross grindingof BK7glass. Precision Engineering.2006, Vol.30:145-153
    [95] S.S.Li, J.H.Xu, B.Xiao, Y.C.Fu, H.J.Xu. Key Engineering Materials.2008, Vol.359-360:38-42
    [96] L.Yin, H.Huang, K.Ramesh, T.Huang. High speed versus conventional grinding in high removalrate machining of alumina and alumina-titania.2005, Vol.45:897-907
    [97]任升峰.烧结Nd-Fe-B永磁材料加工新技术及机理研究.[博士学位论文].大连:大连理工大学,2008
    [98] B.Zhang, X.L.Zhang, H.Tokura, M.Yoshikawa. Grinding induced damage in ceramics. Journal ofMaterials Processing Technology.2003, Vol.132:353-364
    [99] M.Nakamura, T.Sumonogi, T.Endo. Evaluation of surface and subsurface cracks on nano-scalemachined brittle materials by scanning force microscope and scanning laser microscope. Surfaceand Coatings Technology,2003, Vol.169-170:743-747
    [100] S.Agarwal, P.V.Rao. Experimental investigation of surface/subsurface damage formation andmaterial removal mechanisms in SiC grinding. International journal of machine tools&manufacture,2008, Vol.48:698-710
    [101] Z.J.Pei, S.R.Bilingsley, S.Miura. Grinding induced subsurface cracks in silicon wafers.International journal of machine tools&manufacture1999, Vol.39:1103-1116
    [102] K.Li, T.W.Liao. Surface/subsurface damage and the fracture strength of ground ceramics. Journalof materials processing Technology,1996, Vol.57:207-220
    [103] S.Y.Li, Z.Wang, Y.L.Wu. Relationship between subsurface damage and surface roughness ofoptical materials in grinding and lapping processes. Journal of material processing technology,2008, Vol.205:34-41
    [104] R.J.Caveney, N.W.Thiel. Grinding alumina with diamond abrasives. The science of ceramicmachining and surface finishing, Washington,D.C: US government printing office,1972:99-111
    [105] D.M.Busch, J.F.Prina. A Basic study of the diamond grinding of alumina. The science of ceramicmachining and surface finishing, Washington,D.C: US government printing office,1972:73-87
    [106] B.G.Koepke, R.J.Stokes. Effect of workpiece properties on grinding forces in polycrystallineceramics. The science of ceramic machining and surface finishing II:75-89
    [107] A.G.Evans. The science of ceramic machining and surface finishing II, Hockey and Rice, edu,NBS spec publ,1979, Vol.562:1-14,
    [108] D.A.Gorham, A.D.Salman. Indentation fracture of glass and mechanisms of material removal.Wear.1999, Vol.233-235:151-156
    [109] K.W.Sharp. Development of grinding models for brittle materials.[Ph.D dissertation]. Raleigh:North Carolina State University,1998,80-81
    [110] S.马尔金.磨削技术理论与应用(蔡光起).沈阳:东北大学出版社,2002:64-69
    [111] X.Chen, W.B.Rowe, R.Cai. Precision grinding using CBN wheels. International journal ofmachine tool&manufacture,2002, Vol.42:585-593
    [112] B.Zhang, H.J.Xu, Y.C.Fu, et al. Development of high performance monolayer brazed diamondgrinding tool for ceramics [J]. Advanced Materials Research,2010, Vol.135388-392
    [113]庄鸿寿,E.罗格夏特.高温钎焊.北京:国防工业出版社.1989:158-173
    [114] Z.Z.Chen, J.H.Xu, W.F.Ding, Y.C.Fu, S.X.Yan. Bonding interface and wear behavior of CBNgrains brazed using nano-TiC power modified filler. Transactions of Naning University ofAeronautics&Astronautics.2010, Vol.27:232-238
    [115]向孙祖,陈燕,丁兰英,徐九华.细颗粒金刚石钎焊表面形貌与界面微结构.金刚石与磨料磨具工程.2011, Vol.31(5):25-34
    [116]肖冰,武志斌,徐鸿钧.银基钎料钎焊单层金刚石砂轮的研究.金刚石与磨料磨具工程.2001, Vol.1(21):4-7
    [117] S.F.Huang, H.L.Tsai, S.T.Lin. Effects of brazing route and brazing alloy on the interfacialstructure between diamond and bonding matrix. Materials Chemistry and Physics.2004, Vol.84:251-258
    [118] C.A.Brookes, L.Y.Zhang. Cumulative deformation and fatigue of diamond–new developments.Diamond and Related Materials,1999, Vol.8:1515-1521
    [119]孙浩,邵浩明,吕智,王进保.钎焊金刚石微观形貌与磨粒磨损状态关系研究.超硬材料工程.2009, Vol.21(1).5-8
    [120]陈燕,徐鸿钧,苏宏华,傅玉灿,徐九华.钎焊气氛对金刚石磨耗特性的影响.中国机械工程,2008, Vol.19(22)
    [121] A.Ghosh, A.K.Chattopadhyay. On grit failure of an indigenously developed single layer brazedCBN wheel. Industral Diamond Review,2007,(1):59-64
    [122] M. Fujimoto, Y. Ichida. Micro fracture behavior of cutting edges in grinding using single crystalCBN grains. Diamond&related materials,2008, Vol.17:1759-1763.
    [123]尹衍升,李嘉.氧化锆陶瓷及其复合材料.北京:化学工业出版社,2004:7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700