用户名: 密码: 验证码:
基于数据挖掘的药物靶标发现方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物研发过程漫长,投入大,风险高。新药研发的平均时间长达15年,平均耗费超过8亿美元。然而,药物的疗效和毒副作用问题使得药物的研发常在临床阶段失败,造成了巨大的损失。作为药物研发的源头,药物靶标的发现和识别对药物的研发成功率具有决定性的作用。随着生物信息学技术手段的日益丰富,以及蛋白质组学数据、化学基因组学数据的日益增长,计算化学生物学方法与传统实验技术结合,可为药物新靶标发现提供信息技术支撑,并为靶标识别预测提供新的思路。本文以药物靶标发现为目的,利用计算机技术对现有的药物靶标数据进行挖掘整合,构建药物靶标数据库和农药靶标数据库,同时发展几种药物靶标发现相关的方法和工具。
     本文主要包括以下五部分内容:
     1.根据现有药物以及在研药物的适应症,通过文本挖掘手段,并加以人工验证,构建了药物靶标数据库TargetBank。该数据库收录了4357条药物靶标蛋白记录,涵盖了23种治疗领域以及600多个临床适应症。同时该数据库还提供了对每条靶标蛋白记录作了详细的功能注释,为药物研发人员提供了参考。
     2.建立了世界上首个农药分子与靶标相互作用网络数据库PTID。该数据库通过数据整合收录了1342条农药记录,按照功能分为22个大类,并提供了环境毒性,生态环境影响等方面的注释信息。然后通过文本挖掘手段,收集了4245条与农药活性成分相互作用的蛋白靶标记录,构建了农药与其靶标间的相互作用网络,并对蛋白的序列,功能等方面做了详细注释。同时提供相似性搜索和序列比对等计算工具,为农药的研发提供了良好的数据支持。
     3.设计实现了基于等值面原理的分子溶剂可及表面生成程序。该方法采用了一种一维递归快速高斯滤波计算方法,在三维离散空间中快速构造等值面,然后利用等值面提取技术Marching Cubes获取分子溶剂可及表面的三角而片表示,并使用中心差分法计算三角面片的法向量,以获得更好的显示效果。实际测试结果表明,该算法速度较快,并准确性良好,可为基于结构的靶标识别方法提供药物靶标的分子表面表征。目前该程序已经整合入了国产大型药物设计图形软件包D3Pharma中。
     4.结合分子相似性方法和网络药理学的概念,发展了基于随机游走的多向药理学方法。该方法利用分子相似性将目标化合物引入已有的药物-靶标网络中,并使用基于二分图的随机游走网络推理算法来发现其多向药理效应,预测其新的靶标或毒副作用。通过对近期文献报道的药物脱靶事件进行预测,该方法被证明能够有效预测药物的多向药理特性。
     5.在课题组现有的分子相似性程序SHAFTS的基础上,建立了基于分子相似性的靶标发现及虚拟筛选平台ChemMapper。该平台收集了350万个化合物结构信息,其中40万个化合物包含了靶标注释信息。该平台利用三维分子相似性方法可对提问化合物分子结构进行靶标及毒副作用预测;也可针对商业化合物库进行虚拟筛选以及骨架跃迁研究。通过对现有药物阿司咪唑的毒副作用准确预测,以及对EGFR先导化合物的发现以及骨架跃迁的验证,ChemMapper可为化学基因组学,靶标发现,多向药理学及虚拟筛选等研究提供服务。
The process of new drug discovery and development is time-consuming, costly and risky. The average cycle for new drugs development generally reaches15years, which consumes more than800million US dollars. However, due to the low efficiency and side effects, the drug development often fails in the clinical trial phase, causing huge lost. As the origin of drug development, drug target discovery and identification is critical to the success rate of drug development. With the development of bioinformatics technology as well as fast growing of proteomics and chemical genomics data, the combination of computational chemical biology and traditional experimental techniques provides information support to drug target discovery and novel methods for drug target prediction. Aiming at drug target discovery, this thesis will construct drug target database and pesticide target database by using computational methods to perform data mining and integration on the existing drug target database, and developed several methods and tools on drug target discovery. This thesis includes the following five parts:
     1. Based on the existing drugs and indication for drugs under development, we constructed a drug target database called TargetBank by means of text mining and manual validation. This database included4,357records of target proteins, covering23therapy domains and more than600clinical indications. This database also included detailed function annotation for each protein record, providing useful reference for drug development researchers.
     2. We constructed the first database of the interaction network for pesticides and targets, named PTID. This database contained1,342records of pesticides by means of data integration, which was divided into22categories by function, and provided with annotation on environmental fate and ecotoxicology. By means of text mining,4,245records of protein targets interacted with the pesticide are collected, and an interaction network between pesticides and targets was constructed with detailed annotation on protein sequence and function. This database also provided computational tools such as similarity search and sequence alignment, offering data support on pesticide research.
     3. We designed and implemented a molecular solvent-accessible surface generation program based on iso-surface theory. This method adopted a rapid one dimensional recursive Gaussian filter calculation, constructed iso-surface in the discrete three dimensional spaces and obtained the triangle representation of molecular solvent-accessible surface by using iso-surface extraction technique "Marching Cubes". Central difference method was applied to calculating the normal vector of triangles for better render effect. The test result indicated that this method was both fast and accurate, and could provide drug target surface representation for structure-based target identification. This program has been integrated into the D3Pharma software package.
     4. We developed a random-walk-based polypharmacology method, combining the molecular similarity methods and network pharmacology concepts. This method introduced the target compound into an existing drug-target network using molecular similarity, then discovered its polypharmacology effect and predicted its new targets or side effects by bipartite and random walk based network inference algorithm. Through prediction of recent reported off-targets events, this method was proved to be capable of predicting polypharmacology effect.
     5. Based on a molecular similarity evaluation program SHAFTS developed by our research group, this thesis implemented a molecular similarity based target discovery and virtual screening platform ChemMapper. This platform collected the structure information for more than3.5million compounds, with400thousands of them possessing target annotation. This platform can perform target or side effect prediction against a query structure based on three dimensional molecular similarity methods; it can also perform virtual screening or scaffold hopping research on commercial compound databases. Through the precise prediction of toxicity for the existing drug Astemizole, the lead compound discovery and scaffold hopping validation for EGFR, ChemMapper could facilitate the research on genomics, target discovery, polypharmacology and virtual screening.
引文
[1]DiMasi, J. A.; Hansen, R. W.; Grabowski, H. G., The price of innovation:new estimates of drug development costs, J Health Econ,2003,22 (2):151-185.
    [2]Otto, S.; Furlan, R. L.; Sanders, J. K., Dynamic combinatorial chemistry, Drug Discov Today,2002,7 (2):117-125.
    [3]Bajorath, J., Integration of virtual and high-throughput screening, Nat Rev Drug Discov, 2002,1(11):882-894.
    [4]Jorgensen, W. L., The many roles of computation in drug discovery, Science,2004,303 (5665):1813-1818.
    [5]Song, C. M.; Lim, S. J.; Tong, J. C., Recent advances in computer-aided drug design, Briefings in Bioinformatics,2009,10 (5):579-591.
    [6]Harris, S. L.; Levine, A. J., The p53 pathway:positive and negative feedback loops, Oncogene,2005,24 (17):2899-2908.
    [7]Mason, J. M.; Morrison, D. J.; Albert Basson, M., et al., Sprouty proteins:multifaceted negative-feedback regulators of receptor tyrosine kinase signaling, Trends in cell biology,2006,16(1):45-54.
    [8]Kitano, H., Systems biology:a brief overview, Science,2002,295 (5560):1662-1664.
    [9]Krantz, A., Protein-site targeting. Diversification of the drug discovery process, Nat Biotechnol,1998,16(13):1294.
    [10]Boguski, M. S.; Mandl, K. D.; Sukhatme, V. P., Drug discovery. Repurposing with a difference, Science,2009,324(5933):1394-1395.
    [11]Ashburn, T. T.; Thor, K. B., Drug repositioning:identifying and developing new uses for existing drugs, Nat Rev Drug Discov,2004,3 (8):673-683.
    [12]Sardana, D.; Zhu, C.; Zhang, M., et al., Drug repositioning for orphan diseases, Briefings in Bioinformatics,2011,12 (4):346-356.
    [13]Hamosh, A.; Scott, A. F.; Amberger, J. S., et al., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders, Nucleic Acids Res, 2005,33 (Database issue):D514-D517.
    [14]Stenson, P. D.; Ball, E. V.; Mort, M., et al., Human Gene Mutation Database (HGMD): 2003 update, Hum Mutat,2003,21 (6):577-581.
    [15]Pruitt, K. D.; Maglott, D. R., RefSeq and LocusLink:NCBI gene-centered resources, Nucleic Acids Res,2001,29(1):137-140.
    [16]Bamford, S.; Dawson, E.; Forbes, S., et al., The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website, Br J Cancer,2004,91 (2):355-358.
    [17]Forbes, S. A.; Tang, G.; Bindal, N., et al., COSMIC (the Catalogue of Somatic Mutations in Cancer):a resource to investigate acquired mutations in human cancer, Nucleic Acids Res,2010,38 (Database issue):D652-D627.
    [18]Lu, Z.; Cohen, K. B.; Hunter, L., GeneRIF quality assurance as summary revision, Pac Symp Biocomput,2007:269-280.
    [19]Edgar, R.; Domrachev, M.; Lash, A. E., Gene Expression Omnibus:NCBI gene expression and hybridization array data repository, Nucleic Acids Res,2002,30 (1): 207-210.
    [20]Rhodes, D. R.; Yu, J.; Shanker, K., et al., ONCOMINE:a cancer microarray database and integrated data-mining platform, Neoplasia,2004,6 (1):1-6.
    [21]Rhodes, D. R.; Kalyana-Sundaram, S.; Mahavisno, V.. et al., Oncomine 3.0:genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles, Neoplasia,2007,9 (2):166-180.
    [22]Sherlock, G.; Hernandez-Boussard, T.; Kasarskis, A., et al., The Stanford Microarray Database, Nucleic Acids Res,2001,29 (1):152-155.
    [23]Brazma, A.; Parkinson, H.; Sarkans, U., et al., ArrayExpress--a public repository for microarray gene expression data at the EBI, Nucleic Acids Res,2003,31 (1):68-71.
    [24]Greulich, H., Probing the cancer genome, Genome Biol,2008,9 (5):309.
    [25]Chen, X.; Ji, Z. L.; Chen, Y. Z., TTD:Therapeutic Target Database, Nucleic Acids Res, 2002,30(1):412-415.
    [26]Wishart, D. S.; Knox, C.; Guo, A. C., et al., DrugBank:a comprehensive resource for in silico drug discovery and exploration, Nucleic Acids Res,2006,34 (Database issue): D668-D672.
    [27]Wishart, D. S.; Knox, C.; Guo, A. C., et al., DrugBank:a knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Res,2008,36 (Database issue):D901-D906.
    [28]Knox, C.; Law, V.; Jewison, T., et al., DrugBank 3.0:a comprehensive resource for 'omics'research on drugs, Nucleic Acids Res,2011,39 (Database issue):D1035-D1041.
    [29]Gao, Z. T.; Li, H. L.; Zhang, H. L., et al., PDTD:a web-accessible protein database for drug target identification, BMC Bioinformatics,2008,9:104.
    [30]Futamura, Y.; Kawatani, M.; Kazami, S., et al., Morphobase, an encyclopedic cell morphology database, and its use for drug target identification, Chem Biol,2012,19 (12):1620-1630.
    [31]Ji, Z. L.; Han, L. Y.; Yap, C. W., et al., Drug Adverse Reaction Target Database (DART): proteins related to adverse drug reactions, Drug Saf,2003,26 (10):685-690.
    [32]Harris, M. A.; Clark, J.; Ireland, A., et al., The Gene Ontology (GO) database and informatics resource, Nucleic Acids Res,2004,32 (Database issue):D258-D261.
    [33]Kanehisa, M.; Goto, S.; Kawashima, S., et al., The KEGG resource for deciphering the genome, Nucleic Acids Res,2004,32 (Database issue):D277-D280.
    [34]Le Novere, N.; Bornstein, B.; Broicher, A., et al., BioModels Database:a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems, Nucleic Acids Res,2006,34 (Database issue):D689-D691.
    [35]Olivier, B. G.; Snoep, J. L., Web-based kinetic modelling using JWS Online, Bioinformatics,2004,20 (13):2143-2144.
    [36]Kellenberger, E.; Muller, P.; Schalon, C., et al., sc-PDB:an annotated database of druggable binding sites from the Protein Data Bank, J Chem Inf Model,2006,46 (2): 717-727.
    [37]Gold, N. D.; Jackson, R. M., SitesBase:a database for structure-based protein-ligand binding site comparisons, Nucleic Acids Res,2006,34 (Database issue):D231-D234.
    [38]Wassermann, A. M.; Bajorath, J., BindingDB and ChEMBL:online compound databases for drug discovery, Expert Opin Drug, Discov,2011,6 (7):683-687.
    [39]Gaulton, A.; Bellis, L. J.; Bento, A. P., et al., ChEMBL:a large-scale bioactivity database for drug discovery, Nucleic Acids Res,2012,40 (Database issue): D1100-D1107.
    [40]Liu, T.; Lin, Y.; Wen, X., et al., BindingDB:a web-accessible database of experimentally determined protein-ligand binding affinities, Nucleic Acids Res,2007, 35 (Database issue):D198-D201.
    [41]Crews, C. M.; Splittgerber, U., Chemical genetics:exploring and controlling cellular processes with chemical probes, Trends Biochem Sci,1999,24 (8):317-320.
    [42]Schreiber, S. L., Chemical genetics resulting from a passion for synthetic organic chemistry, Bioorg Med Chem,1998,6 (8):1127-1152.
    [43]Burdine, L.; Kodadek, T., Target identification in chemical genetics:the (often) missing link, Chem Biol,2004,11 (5):593-597.
    [44]Cuatrecasas, P.; Wilchek, M.; Anfinsen, C. B., Selective enzyme purification by affinity chromatography, Proc Natl Acad Sci USA,1968,61 (2):636-643.
    [45]Taunton, J.; Hassig, C. A.; Schreiber, S. L., A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p, Science,1996,272 (5260):408-411.
    [46]Hirota, T.; Lee, J. W.; St John, P. C., et al., Identification of small molecule activators of cryptochrome, Science,2012,337 (6098):1094-1097.
    [47]Ito, T.; Ando, H.; Suzuki, T., et al., Identification of a primary target of thalidomide teratogenicity, Science,2010,327(5971):1345-1350.
    [48]Cisar, J. S.; Cravatt, B. F., Fully functionalized small-molecule probes for integrated phenotypic screening and target identification, J Am Chem Soc,2012,134 (25): 10385-10388.
    [49]Evans, M. J.; Saghatelian, A.; Sorensen, E. J., et al., Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling, Nat Biotechnol,2005,23 (10):1303-1307.
    [50]Park, J.; Oh, S.; Park, S. B., Discovery and Target Identification of an Antiproliferative Agent in Live Cells Using Fluorescence Difference in Two-Dimensional Gel Electrophoresis, Angewandte Chemie,2012,124 (22):5543-5547.
    [51]Kawatani, M.; Okumura, H.; Honda, K., et al., The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I, Proc Natl Acad Sci U SA,2008,105(33):11691-11696.
    [52]Saxena, C.; Bonacci, T. M.; Huss, K. L., et al., Capture of Drug Targets from Live Cells Using a Multipurpose Immuno-Chemo-Proteomics Tool, J Proteome Res,2009,8 (8): 3951-3957.
    [53]Lomenick, B.; Olsen, R. W.; Huang, J., Identification of direct protein targets of small molecules, ACS Chem Biol,2011,6 (1):34-46.
    [54]Chan, J. N.; Vuckovic, D.; Sleno, L., et al., Target identification by chromatographic co-elution:monitoring of drug-protein interactions without immobilization or chemical derivatization, Mol Cell Proteomics,2012,11 (7):M111 016642.
    [55]Aebersold, R.; Mann, M., Mass spectrometry-based proteomics, Nature,2003,422 (6928):198-207.
    [56]Blagoev, B.; Kratchmarova, I.; Ong, S. E., et al., A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling, Nat Biotechnol,2003, 21 (3):315-318.
    [57]Rix, U.; Superti-Furga, G., Target profiling of small molecules by chemical proteomics, Nat Chem Biol,2009,5 (9):616-624.
    [58]Ong, S. E.; Blagoev, B.; Kratchmarova, I., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol Cell Proteomics,2002,1(5):376-386.
    [59]Daub, H.; Olsen, J. V.; Bairlein, M., et al., Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle, Mol Cell,2008,31 (3):438-448.
    [60]Gygi, S. P.; Rist, B.; Gerber, S. A., et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat Biolechnol,1999,17 (10):994-999.
    [61]Oda, Y.; Owa, T.; Sato, T., et al., Quantitative chemical proteomics for identifying candidate drug targets, Analytical Chemistry,2003,75 (9):2159-2165.
    [62]Ross, P. L.; Huang, Y. L. N.; Marchese, J. N., et al., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents, Molecular & Cellular Proteomics,2004,3(12):1154-1169.
    [63]Bantscheff, M.; Eberhard, D.; Abraham, Y, et al., Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors, Nat Biotechnol,2007, 25(9):1035-1044.
    [64]Mortensen, P.; Gouw, J. W.; Olsen, J. V., et al., MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics, J Proleome Res,2010,9 (1): 393-403.
    [65]Cox, J.; Neuhauser, N.; Michalski, A., et al., Andromeda:A Peptide Search Engine Integrated into the MaxQuant Environment, J Proteome Res,2011,10 (4):1794-1805.
    [66]Margolin, A. A.; Ong, S. E.; Schenone, M., et al., Empirical Bayes Analysis of Quantitative Proteomics Experiments, PLoS One,2009,4 (10):e7454.
    [67]Schneider, M., A rational approach to maximize success rate in target discovery, Archiv Der Pharmazie,2004,337 (12):625-633.
    [68]Betz, U. A. K., How many genomics targets can a portfolio afford?, Drug Discov Today, 2005,10(15):1057-1063.
    [69]Hopkins, A. L.; Groom, C. R., The druggable genome, Nat Rev Drug Discov,2002,1 (9):727-730.
    [70]Mulder, N. J.; Apweiler, R.; Attwood, T. K., et al., InterPro, progress and status in 2005, Nucleic Acids Res,2005,33:D201-D205.
    [71]Laskowski, R. A., SURFNET:a program for visualizing molecular surfaces, cavities, and intermolecular interactions, J Mol Graph,1995,13 (5):323-330.
    [72]Hendlich, M.; Rippmann, F.; Barnickel, G., LIGSITE:automatic and efficient detection of potential small molecule-binding sites in proteins, Journal of Molecular Graphics and Modelling,1997,15 (6):359-363,389.
    [73]Peters, K. P.; Fauck, J.; Frommel, C., The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria,J Mol Biol, 1996,256 (1):201-213.
    [74]Liang, J.; Edelsbrunner, H.; Woodward, C., Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design, Protein Sci, 1998,7(9):1884-1897.
    [75]Brady, G. P., Jr.; Stouten, P. F., Fast prediction and visualization of protein binding pockets with PASS, J Comput Aided Mol Des,2000,14 (4):383-401.
    [76]Goodford, P. J., A computational procedure for determining energetically favorable binding sites on biologically important macromolecules, Journal of Medicinal Chemistry,1985,28 (7):849-857.
    [77]Laurie, A. T.; Jackson, R. M., Q-SiteFinder:an energy-based method for the prediction of protein-ligand binding sites, Bioinformatics,2005,21 (9):1908-1916.
    [78]An, J.; Totrov, M.; Abagyan, R., Comprehensive identification of "druggable" protein ligand binding sites, Genome Inform,2004,15 (2):31-41.
    [79]Dennis, S.; Kortvelyesi, T.; Vajda, S., Computational mapping identifies the binding sites of organic solvents on proteins, Proc Natl Acad Sci U S A,2002,99 (7): 4290-4295.
    [80]Hajduk, P. J.; Huth, J. R.; Fesik, S. W., Druggability indices for protein targets derived from NMR-based screening data, Journal of Medicinal Chemistry,2005,48 (7): 2518-2525.
    [81]Keiser, M. J.; Setola, V.; Irwin, J. J., et al., Predicting new molecular targets for known drugs, Nature,2009,462 (7270):175-181.
    [82]Garcia-Serna, R.; Ursu, O.; Oprea, T. I., et al., iPHACE:integrative navigation in pharmacological space, Bioinformatics,2010,26 (7):985-986.
    [83]Cheng, T.; Li, Q.; Wang, Y., et al., Identifying compound-target associations by combining bioactivity profile similarity search and public databases mining, J Chem Inf Model,2011,51(9):2440-2448.
    [84]Li, Q.; Lai, L., Prediction of potential drug targets based on simple sequence properties, BMC Bioinformatics,2007,8:353.
    [85]Joubert, Y.; Joubert, F., A structural annotation resource for the selection of putative target proteins in the malaria parasite, Malar J,2008,7:90.
    [86]Plewczynski, D.; Rychlewski, L., Meta-basic estimates the size of druggable human genome, J Mol Model,2009,15 (6):695-699.
    [87]Hopkins, A. L., Network pharmacology:the next paradigm in drug discovery, Nat Chem Biol,2008,4 (11):682-690.
    [88]Paul, S. M.; Mytelka, D. S.; Dunwiddie, C. T., et al., How to improve R&D productivity: the pharmaceutical industry's grand challenge, Nature Reviews Drug Discovery,2010,9 (3):203-214.
    [89]Swinney, D. C.; Anthony, J., How were new medicines discovered?, Nature Reviews Drug Discovery,2011,10 (7):507-519.
    [90]Yildirim, M. A.; Goh, K. I.; Cusick, M. E., et al., Drug-target network, Nat Biotechnol, 2007,25(10):1119-1126.
    [91]Kholodenko, B. N., Cell-signalling dynamics in time and space, Nature Reviews Molecular Cell Biology,2006,7 (3):165-176.
    [92]Yang, K.; Bai, H. J.; Qi, O. Y., et al., Finding multiple target optimal intervention in disease-related molecular network, Mol Syst Biol,2008,4:228.
    [93]Campillos, M.; Kuhn, M.; Gavin, A. C., et al., Drug target identification using side-effect similarity, Science,2008,321(5886):263-266.
    [94]Sanseau, P.; Agarwal, P.; Barnes, M. R., et al., Use of genome-wide association studies for drug repositioning, Nat Biotechnol,2012,30 (4):317-320.
    [95]Cheng, F. X.; Liu, C.; Jiang, J., et al., Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference, PLoS Comput Biol,2012,8 (5):e1002503.
    [96]Yang, Y.; Adelstein. S. J.; Kassis, A. I., Target discovery from data mining approaches, Drug Discov Today,2009,14(3-4):147-154.
    [97]Sakharkar, M. K.; Sakharkar, K. R., Targetability of human disease genes, Curr Drug Discov Technol,2007,4 (1):48-58.
    [98]Yang, Y.; Adelstein, S. J.; Kassis, A. I., Target discovery from data mining approaches, Drug Discov Today,2012,17 Suppl:S16-23.
    [99]Hirschman, L.; Park, J. C.; Tsujii, J., et al., Accomplishments and challenges in literature data mining for biology, Bioinformalics,2002,18 (12):1553-1561.
    [100]Rebholz-Schuhmann, D.; Kirsch, H.; Couto, F., Facts from text-Is text mining ready to deliver?, Plos Biology,2005,3 (2):188-191.
    [101]Ananiadou, S.; Kell, D. B.; Tsujii, J., Text mining and its potential applications in systems biology, Trends Biotechnol,2006,24 (12):571-579.
    [102]Uzgur, A.; Vu, T.; Erkan, G., et al., Identifying gene-disease associations using centrality on a literature mined gene-interaction network, Bioinformatics,2008,24 (13): 1277-1285.
    [103]Krauthammer, M.; Kaufmann, C. A.; Gilliam, T. C., et al., Molecular triangulation: Bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease, Proc Natl Acad Sci USA,2004,101 (42):15148-15153.
    [104]Desany, B.; Zhang, Z. M., Bioinformatics and cancer target discovery, Drug Discov Today,2004,9 (18):795-802.
    [105]Butte, A., The use and analysis of microarray data, Nature Reviews Drug Discovery, 2002,1 (12):951-960.
    [106]Ricke, D. O.; Wang, S. W.; Cai, R., et al., Genomic approaches to drug discovery, Curr Opin Chem Biol,2006,10 (4):303-308.
    [107]Mount, D. W.; Pandey, R., Using bioinformatics and genome analysis for new therapeutic interventions, Molecular Cancer Therapeutics,2005,4 (10):1636-1643.
    [108]Perry, A. S.; Loftus, B.; Moroose, R., et al., In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer, British Journal of Cancer,2007,96 (10): 1587-1594.
    [109]Ryu, B.; Kim, D. S.; DeLuca, A. M., et al., Comprehensive Expression Profiling of Tumor Cell Lines Identifies Molecular Signatures of Melanoma Progression, PLoS One, 2007,2 (7):e594.
    [110]Rhodes, D. R.; Chinnaiyan, A. M., Bioinformatics strategies for translating genome-wide expression analyses into clinically useful cancer markers. Applications of Bioinformatics in Cancer Detection,2004,1020:32-40.
    [111]Siepen, J. A.; Selley, J. N.; Hubbard. S. J., PepSeeker. mining information from proteomic data, Methods Mol Biol,2008,484:319-332.
    [112]Hanash, S. M.; Pitteri, S. J.; Faca, V. M, Mining the plasma proteome for cancer biomarkers, Nature,2008,452 (7187):571-579.
    [113]Gerling, I. C.; Singh, S.; Lenchik, N. I., et al., New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes, Mol Cell Proteomics,2006,5 (2):293-305.
    [114]Bredel, M.; Jacoby, E., Chemogenomics:an emerging strategy for rapid target and drug discovery, Nat Rev Genet,2004,5 (4):262-275.
    [115]Wuster, A.; Madan Babu, M., Chemogenomics and biotechnology, Trends Biotechnol, 2008,26 (5):252-258.
    [116]Lindsay, M. A., Target discovery, Nat Rev Drug Discov,2003,2 (10):831-838.
    [117]Chen, Y. P. P.; Chen, F., Identifying targets for drug discovery using bioinformatics, Expert Opinion on Therapeutic Targets,2008,12 (4):383-389.
    [118]Kim, B.; Lee, H. J.; Choi, H. Y., et al., Clinical validity of the lung cancer biomarkers identified by bioinformatics analysis of public expression data, Cancer Res,2007,67 (15):7431-7438.
    [119]Li, S.; Wu, L. J.; Zhang, Z. Q., Constructing biological networks through combined literature mining and microarray analysis:a LMMA approach, Bioinformatics,2006,22 (17):2143-2150.
    [120]Hopkins, A. L.; Groom, C. R., The druggable genome, Nature Reviews Drug Discovery, 2002,1(9):727-730.
    [121]Russ, A. P.; Lampel, S., The druggable genome:an update, Drug Discov Today,2005, 10(23-24):1607-1610.
    [122]Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L., Opinion-How many drug targets are there?, Nature Reviews Drug Discovery,2006,5 (12):993-996.
    [123]Hewett, M.; Oliver, D. E.; Rubin, D. L., et al., PharmGKB:The Pharmacogenetics Knowledge Base, Nucleic Acids Res,2002,30 (1):163-165.
    [124]Hodge, A. E.; Altman, R. B.; Klein, T. E., The PharmGKB:integration, aggregation, and annotation of pharmacogenomic data and knowledge, Clinical Pharmacology & Therapeutics,2007,81 (1):21-24.
    [125]Whirl-Carrillo, M.; McDonagh, E. M.; Hebert, J. M., et al., Pharmacogenomics knowledge for personalized medicine, Clin Pharmacol Ther,2012,92 (4):414-417.
    [126]Gunther, S.; Kuhn, M.; Dunkel, M., et al., SuperTarget and Matador:resources for exploring drug-target relationships, Nucleic Acids Res,2008,36:919-922.
    [127]Bairoch, A.; Consortium, U.; Bougueleret, L., et al., The Universal Protein Resource (UniProt) 2009, Nucleic Acids Res,2009,37 (Database issue):D169-D174.
    [128]Federhen, S., The NCBI taxonomy database, Nucleic Acids Res,2012,40 (D1): D136-D143.
    [129]Kanehisa, M.; Goto, S., KEGG:Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res,2000,28 (1):27-30.
    [130]Uhlen, M.; Oksvold, P.; Fagerberg, L., et al., Towards a knowledge-based Human Protein Atlas, Nat Biotechnol,2010,28 (12):1248-1250.
    [131]Berman, H. M.; Westbrook, J.; Feng, Z., et al., The Protein Data Bank, Nucleic Acids Res,2000,28(1):235-242.
    [132]Dittrich, M. T.; Klau, G. W.; Rosenwald, A., et al., Identifying functional modules in protein-protein interaction networks:an integrated exact approach, Bioinformatics,2008, 24(13):1223-1231.
    [133]Xenarios, I.; Rice, D. W.; Salwinski, L., et al., DIP:the database of interacting proteins, Nucleic Acids Res,2000,28 (1):289-291.
    [134]Xenarios, I.; Fernandez, E.; Salwinski, L., et al., DIP:The Database of Interacting Proteins:2001 update, Nucleic Acids Res,2001,29 (1):239-241.
    [135]Xenarios, I.; Salwinski, L.; Duan, X. J., et al., DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions, Nucleic Acids Res, 2002,30(1):303-305.
    [136]Kerrien, S.; Aranda, B.; Breuza, L., et al., The IntAct molecular interaction database in 2012, Nucleic Acids Res,2012,40 (Database issue):D841-D846.
    [137]Joshi-Tope, G.; Gillespie, M.; Vastrik, I., et al., Reactome:a knowledgebase of biological pathways, Nucleic Acids Res,2005,33 (Database issue):D428-D432.
    [138]Zanzoni, A.; Montecchi-Palazzi, L.; Quondam, M., et al., MINT:a Molecular INTeraction database, FEBS letters,2002,513 (1):135-140.
    [139]Bader, G. D.; Betel, D.; Hogue, C. W., BIND:the Biomolecular Interaction Network Database, Nucleic Acids Res,2003,31 (1):248-250.
    [140]Maglott, D.; Ostell, J.; Pruitt, K. D., et al., Entrez Gene:gene-centered information at NCBI, Nucleic Acids Res,2005,33 (Database issue):D54-D58.
    [141]Maglott, D.; Ostell, J.; Pruitt, K. D., et al., Entrez Gene:gene-centered information at NCBI, Nucleic Acids Res,2011,39 (Database issue):D52-D57.
    [142]Hubbard, T.; Barker, D.; Birney, E., et al., The Ensembl genome database project, Nucleic Acids Res,2002,30 (1):38-41.
    [143]Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J., et al., GeneCards:a novel functional genomics compendium with automated data mining and query reformulation support, Bioinformatics,1998,14 (8):656-664.
    [144]Safran, M.; Solomon, I.; Shmueli, O., et al., GeneCardsTM 2002:towards a complete, object-oriented, human gene compendium, Bioinformatics,2002,18 (11):1542-1543.
    [145]Pontius, J. U.; Wagner, L.; Schuler, G. D., UniGene:A Unified View of the Transcriplome.2003; Vol. Chaper 21.
    [146]Schomburg, I.; Chang, A.; Schomburg, D., BRENDA, enzyme data and metabolic information, Nucleic Acids Res,2002,30 (1):47-49.
    [147]Schomburg, I.; Chang, A.; Ebeling, C., et al., BRENDA, the enzyme database:updates and major new developments, Nucleic Acids Res,2004,32 (Database issue): D431-D433.
    [148]Pruitt, K. D.; Tatusova, T.; Maglott, D. R., NCBI reference sequences (RefSeq):a curated non-redundant sequence database of genomes, transcripts and proteins, Nucleic Acids Res,2007,35 (suppl 1):D61-D65.
    [149]Drews, J., Genomic sciences and the medicine of tomorrow, Nat Biotechnol,1996,14 (11):1516-1518.
    [150]Drews, J.; Ryser, S., The role of innovation in drug development, Nat Biolechnol,1997, 15(13):1318-1319.
    [151]Hunter, T., Protein kinases and phosphatases:the yin and yang of protein phosphorylation and signaling, Cell,1995,80 (2):225-236.
    [152]Tietjen, K.; Drewes, M.; Stenzel, K., High throughput screening in agrochemical research, Combinatorial Chemistry & High Throughput Screening,2005,8 (7): 589-594.
    [153]Casida, J. E., Pest toxicology:the primary mechanisms of pesticide action, Chem Res Toxicol,2009,22 (4):609-619.
    [154]Walter, M. W., Structure-based design of agrochemicals, Nat Prod Rep,2002,19 (3): 278-291.
    [155]Speck-Planche, A.; Kleandrova, V. V.; Luan, F., et al., Predicting multiple ecotoxicological profiles in agrochemical fungicides:a multi-species chemoinformatic approach, Ecotoxicol Environ Saf,2012,80:308-313.
    [156]Speck-Planche, A.; Kleandrova, V. V.; Scotti, M. T., Fragment-based approach for the in silico discovery of multi-target insecticides, Chemometrics and Intelligent Laboratory Systems,2012,111 (1):39-45.
    [157]EPA/OPP. http://www.eap.gov/pesticide.
    [158]EU Pesticides Database. http://ec.europa.eu/sanco_pesticides/public/index.cfm.
    [159]Pesticide Action Network (PAN). http://www.pesticideinfo.org.
    [160]EXTOXNET. http://extoxnet.orst.edu/ghindex.html.
    [161]Lewis, K.; Green, A.; Tzilivakis, J. Development of an improved pesticide properties database for risk assessment applications, In European Federation for Information Technology in Agriculture Conference, Glasgow, United Kingdom, Glasgow, United Kingdom,2007.
    [162]Wang, Y.; Xiao, J.; Suzek, T. O., et al., PubChem:a public information system for analyzing bioactivities of small molecules, Nucleic Acids Res,2009,37 (Web Server issue):W623-W633.
    [163]Cheng, D.; Knox, C.; Young, N., et al., PolySearch:a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites, Nucleic Acids Res,2008,36 (Web Server issue):W399-W405.
    [164]Johnson, M.; Zaretskaya, I.; Raytselis, Y, et al., NCBI BLAST:a better web interface, Nucleic Acids Res,2008,36 (Web Server issue):W5-W9.
    [165]Lopes, C. T.; Franz, M.; Kazi, F., et al., Cytoscape Web:an interactive web-based network browser, Bioinformatics,2010,26 (18):2347-2348.
    [166]Kellenberger, E.; Foata, N.; Rognan, D., Ranking targets in structure-based virtual screening of three-dimensional protein libraries:methods and problems, J Chem Inf Model,2008,48(5):1014-1025.
    [167]Li, H. L.; Gao, Z. T.; Kang, L., et al., TarFisDock:a web server for identifying drug targets with docking approach, Nucleic Acids Res,2006,34 (Web Server issue): W219-W224.
    [168]Li, Y. Y.; An, J.; Jones, S. J., A computational approach to finding novel targets for existing drugs, PLoS Comput Biol,2011,7 (9):e1002139.
    [169]Halgren, T. A., Identifying and Characterizing Binding Sites and Assessing Druggability, J Chem Inf Model,2009,49 (2):377-389.
    [170]Hajduk, P. J.; Huth, J. R.; Tse, C., Predicting protein druggability, Drug Discov Today, 2005,10(23-24):1675-1682.
    [171]Fauman, E. B.; Rai, B. K.; Huang, E. S., Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics, Curr Opin Chem Biol,2011,15 (4):463-468.
    [172]Schmidtke, P.; Barril, X., Understanding and predicting druggability. A high-throughput method for detection of drug binding sites, Journal of Medicinal Chemistry,2010,53 (15):5858-5867.
    [173]Lee, B.; Richards, F. M., The interpretation of protein structures:estimation of static accessibility, J Mol Biol,1971,55 (3):379-400.
    [174]Richards, F. M., Areas, Volumes, Packing, and Protein Structure, Annual Review of Biophysics and Bioengineering,1977,6(1):151-176.
    [175]Connolly, M., Analytical molecular surface calculation, Journal of Applied Crystallography,1983,16(5):548-558.
    [176]Connolly, M. L., Molecular surface triangulation, Journal of Applied Crystallography, 1985,18 (6):499-505.
    [177]Cheng, H. L.; Shi, X. W., Quality mesh generation for molecular skin surfaces using restricted union of balls, Computational Geometry-Theory and Applications,2009,42 (3):196-206.
    [178]Totrov, M.; Abagyan, R., The contour-buildup algorithm to calculate the analytical molecular surface, Journal of Structural Biology,1996,116 (1):138-143.
    [179]Im, W.; Beglov, D.; Roux, B., Continuum solvation model:computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation, Computer Physics Communications,1998,111(1):59-75.
    [180]Nina, M.; Im, W.; Roux, B. t., Optimized atomic radii for protein continuum electrostatics solvation forces, Biophysical Chemistry,1999,78 (1):89-96.
    [181]Schnieders, M. J.; Baker, N. A.; Ren, P., et al., Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum, Journal of Chemical Physics,2007,126 (12): 124114-124135.
    [182]Levitt, D. G.; Banaszak, L. J., POCKET:a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids, Journal of Molecular Graphics,1992,10 (4):229-234.
    [183]Delaney, J. S., Finding and filling protein cavities using cellular logic operations, Journal of Molecular Graphics,1992,70(3):174-177.
    [184]Lorensen, W. E.; Cline, H. E. Marching cubes:A high resolution 3D surface construction algorithm, In ACM Siggraph Computer Graphics, ACM:1987:pp 163-169.
    [185]Young, I. T.; van Vliet, L. J., Recursive implementation of the Gaussian filter, Signal processing,1995,44(2):139-151.
    [186]Young, I. T.; Van Vliet, L. J.; Van Ginkel, M., Recursive gabor filtering, Signal Processing IEEE Transactions on,2002,50 (11):2798-2805.
    [187]Weiser, J.; Shenkin, P. S.; Still, W. C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO), Journal of Computational Chemistry 1999, 20 (2):217-230.
    [188]Kola, I.; Landis, J., Can the pharmaceutical industry reduce attrition rates?, Nat Rev Drug Discov,2004,3 (8):711-715.
    [189]Scriver, C. R.; Waters, P. J., Monogenic traits are not simple:lessons from phenylketonuria, Trends Genet,1999,15 (7):267-272.
    [190]Bleakley, K.; Yamanishi, Y, Supervised prediction of drug-target interactions using bipartite local models, Bioinformatics,2009,25 (18):2397-2403.
    [191]Zhao, S.; Li, S., Network-based relating pharmacological and genomic spaces for drug target identification, PLoS One,2010,5 (7):e11764.
    [192]Cheng, F.; Zhou, Y.; Li, W., et al., Prediction of chemical-protein interactions network with weighted network-based inference method, PLoS One,2012,7 (7):e41064.
    [193]OpenEye Inc. http://www.eyesopen.com/.
    [194]Ballester, P. J.; Richards, W. G., Ultrafast shape recognition to search compound databases for similar molecular shapes, J Comput Chem,2007,28 (10):1711-1723.
    [195]Liu, X. F.; Jiang, H. L.; Li, H. L., SHAFTS:A Hybrid Approach for 3D Molecular Similarity Calculation.1. Method and Assessment of Virtual Screening, J Chem Inf Model,2011,51 (9):2372-2385.
    [196]Lu, W. Q.; Liu, X. P.; Cao, X. W., et al., SHAFTS:A Hybrid Approach for 3D Molecular Similarity Calculation.2. Prospective Case Study in the Discovery of Diverse p90 Ribosomal S6 Protein Kinase 2 Inhibitors To Suppress Cell Migration, Journal of Medicinal Chemistry,2011,54 (10):3564-3574.
    [197]Fouss, F.; Pirotte, A.; Renders, J. M., et al., Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation, IEEE Transactions on Knowledge and Data Engineering,2007,19 (3):355-369.
    [198]Page, L.; Brin, S.; Motwani, R., et al. The PageRank citation ranking:bringing order to the web; 1999.
    [199]Kleinberg, J. M., Authoritative sources in a hyperlinked environment, Journal of the ACM,1999,46 (5):604-632.
    [200]Ou, Q.; Jin, Y. D.; Zhou, T., et al., Power-law strength-degree correlation from resource-allocation dynamics on weighted networks, Physical Review E,2007,75 (2): 021102.
    [201]Keiser, M. J.; Setola, V.; Irwin, J. J., et al., Predicting new molecular targets for known drugs, Nature,2009,462 (7270):175-181.
    [202]Garcia-Quiroz, J.; Camacho, J., Astemizole:an Old Anti-histamine as a New Promising Anti-cancer Drug, Anti-Cancer Agents in Medicinal Chemistry,2011,11(3):307-314.
    [203]DeGraw, A. J.; Keiser, M. J.; Ochocki, J. D., et al., Prediction and Evaluation of Protein Farnesyltransferase Inhibition by Commercial Drugs, Journal of Medicinal Chemistry, 2010,53 (6):2464-2471.
    [204]Beattie, D. T; Higgins, D. L.; Ero, M. P., et al., An in vitro investigation of the cardiovascular effects of the 5-HT(4) receptor selective agonists, velusetrag and TD-8954, Vascul Pharmacol,2013,58 (1-2):150-156.
    [205]Cusack, B.; Nelson, A.; Richelson, E., Binding of antidepressants to human brain receptors:focus on newer generation compounds, Psychopharmacology (Berl),1994, 114 (4):559-565.
    [206]Lauterbach, E. C., Psychotropic drug effects on gene transcriptomics relevant to Parkinson's disease, Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2012,38 (2):107-115.
    [207]Hughes-Davies, L.; Caldas, C.; Wishart, G. C., Tamoxifen:the drug that came in from the cold, British Journal of Cancer,2009,101 (6):875-878.
    [208]Williams, M., Target validation, Curr Opin Pharmacol,2003,3 (5):571-577.
    [209]Zhou, T.; Huang, D.; Caflisch, A., Quantum mechanical methods for drug design, Curr Top Med Chem,2010,10 (1):33-45.
    [210]Wawer, M.; Lounkine, E.; Wassermann, A. M., et al., Data structures and computational tools for the extraction of SAR information from large compound sets, Drug Discov Today,2010,15 (15-16):630-639.
    [211]Liu, X.; Ouyang, S.; Yu, B., et al., PharmMapper server:a web server for potential drug target identification using pharmacophore mapping approach, Nucleic Acids Res,2010, 38 (Web Server issue):W609-W614.
    [212]Grosdidier, S.; Fernandez-Recio, J., Docking and scoring:applications to drug discovery in the interactomics era, Expert Opin Drug Discov,2009,4 (6):673-686.
    [213]Moitessier, N.; Englebienne, P.; Lee, D., et al., Towards the development of universal, fast and highly accurate docking/scoring methods:a long way to go, Br J Pharmacol, 2008,153 Suppl 1:S7-S26.
    [214]Chong, C. R.; Sullivan, D. J., Jr., New uses for old drugs, Nature,2007,448 (7154): 645-646.
    [215]Johnson, M. A.; Maggiora, G. M.; American Chemical Society. Meeting, Concepts and applications of molecular similarity. Wiley:New York,1990; p 393 p.
    [216]Dunkel, M.; Gunther, S.; Ahmed, J., et al., SuperPred:drug classification and target prediction, Nucleic Acids Res,2008,36 (Web Server issue):W55-W59.
    [217]Kim Kjaerulff, S.; Wich, L.; Kringelum, J., et al., ChemProt-2.0:visual navigation in a disease chemical biology database, Nucleic Acids Res,2013,41 (Database issue): D464-D469.
    [218]Taboureau, O.; Nielsen, S. K.; Audouze, K., et al., ChemProt:a disease chemical biology database, Nucleic Acids Res,2011,39 (Database issue):D367-D372.
    [219]Kanehisa, M.; Goto, S.; Furumichi, M., et al., KEGG for representation and analysis of molecular networks involving diseases and drugs, Nucleic Acids Res,2010,38 (Database issue):D355-D360.
    [220]Kanehisa, M.; Goto, S.; Hattori, M., et al., From genomics to chemical genomics:new developments in KEGG, Nucleic Acids Res,2006,34:D354-D357.
    [221]Irwin, J. J.; Shoichet, B. K., ZINC-a free database of commercially available compounds for virtual screening, J Chem Inf Model,2005,45 (1):177-182.
    [222]Liu, X. F.; Bai, F.; Ouyang, S. S., et al., Cyndi:a multi-objective evolution algorithm based method for bioactive molecular conformational generation, BMC Bioinformatics, 2009,10:101
    [223]Zhou, Z.; Vorperian, V. R.; Gong, Q., et al., Block of HERG potassium channels by the antihistamine astemizole and its metabolites desmethylastemizole and norastemizole, J Cardiovasc Electrophysiol,1999,10 (6):836-843.
    [224]Piquette, R. K., Torsade de pointes induced by cisapride/clarithromycin interaction, Ann Pharmacother,1999,33 (1):22-26.
    [225]Nicolas, J. M., The metabolic profile of second-generation antihistamines, Allergy,2000, 55 Suppl 60:46-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700