用户名: 密码: 验证码:
采动破碎岩体渗流特性及渗流耦合模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采矿活动必然造成地下岩体应力的重新分布和岩体的破裂损伤,这种损伤极大地改变了围岩的渗透性,从而导致了矿井突水和瓦斯突出等安全事故。采动破碎岩体是岩土工程中一种较为常见的多孔介质,具有较高的压实性和渗透性,其渗透系数比完整岩体增加一至数个量级,煤矿开采中常会遇到破碎岩体中的渗流问题,因而采动破碎岩体渗流行为的研究对于促进煤矿安全生产、实现煤炭资源的绿色开采和煤炭工业的可持续发展有着重要的理论意义和工程实际价值。同时,如何及时有效地对突水和瓦斯突出进行预测及防治,需要进一步研究渗流破坏机制,所以建立相应的渗流耦合模型,是进行机制分析的理论基础,对预测及防治具有重大的科学指导意义。
     针对低渗透性煤层瓦斯赋存和运移的特点,根据瓦斯渗流与煤体变形的基本理论,引入煤体孔隙变形与透气性演化的耦合作用方程,建立了考虑煤层吸附、解吸作用的含瓦斯煤岩固气耦合作用模型。应用该模型模拟研究了不同压力影响下瓦斯抽放过程中煤层透气性的演化和抽放孔周围瓦斯压力的变化规律。
     采空冒落区破碎岩体,属于高孔隙特征,瓦斯渗流为非线性非Darcy渗流特性,本文提出基于Fick扩散定律和Brinkman方程的瓦斯扩散-通风对流运移模型,比较适合采空冒落区的风流运动和瓦斯对流扩散规律。通过数值求解,研究采煤工作面采空冒落区内瓦斯运移的作用机理。计算结果表明,本文提出的模型兼顾流体压力梯度和风流动能作用的特点,科学合理,符合实际。
     针对矿井突水问题,考虑采动破碎岩体的非达西渗流特性,本文认为Brinkman方程比较适合描述从含水层中的Darcy层流向巷道中的Navier-Stokes紊流过渡的流体流动过程,基于质量守恒和压力平衡,建立了突水流体流动数值模型。据此,以采动诱发陷落柱、断层突水为例,应用COMSOL Multiphysics系统数值分析工具,通过在模型中耦合了Brinkman方程、Navier-Stokes方程和Darcy方程,把含水层、岩体破碎带和巷道整个突水水流路径连接在一起,模拟突水流动全过程。计算结果表明,陷落柱、断层作为含水层渗流和巷道突水自由流动的过渡区域,在采掘扰动下,其渗透性变化对于突水压力和流速演变十分敏感,陷落柱或断层导水破碎带沟通了含水层和巷道之间的水力联系,而含水层充足的补给水量是保持恒定的高水压并沿陷落柱或断层形成突水的根源。
Mining activities inevitably leads to redistribution of stress of underground rock and fracture and damage of rock mass, which has greatly change the permeability of surrounding rock, thus caused water inrush in coal mine and gas outburst accidents. Mining broken rock mass, which has high compactibility and permeability, is a porous media as widely encountered in geotechnical engineering. Compared with intact rock mass, the order of magnitude of permeability coefficient was many times increased Seepage problem of overbroken rock mass is very common in coal mining. Therefore, this study is an important significance and conspicuous practical value which can promote coal mine safety production, trealize the green that carries out the coal resources to mine and sustainable development of coal industry. Meanwhile, how to predict and control water inrush in coal mine and gas outburst timely and effectively, the mechanism of seepage failure should be studied further. Setting up a seepage coupling model is theoretical basis of mechanism analysis, it has great scientific guidance meanings to predict and control water inrush in coal mine and gas outburst.
     In accordance with the characteristics of gas hosting and migration of low permeability coal seam, on the basis of seepage theory of gas flow in coal seams, elastic theory of coal deformation, together with the coupling relationship between gas permeability and porosity, a mathematical model for coupled gas flow in coal collieries is established. By using the gas flow model, the mining induced pressure relief, the gas pressure changes, gas drainage and the associated characteristics of gas permeability and gas pressure in coal seam during mining were numerically simulated.
     Gas seepage in high porous broken rocks has obvious characteristics of non darcy flow in the large area roof caving in goaf, a diffusion-ventilation model for gas mitigation in goaf, which considers the comprehensive contribution of flow pressure gradient and kinetic energy during the gas flow, is proposed based Fick's law of diffusion and Brinkman equation. This model is capable of describing the gas mitigation under the ventilation conditions during the large area roof caving in goaf. Based on numerical solution of the proposed model, the mechanism controlling the gas flow in goaf is clarified. The simulation results indicate that the model proposed in this study, which incorporates the contribution of gas pressure gradient and kinetic energy of gas flow, is scientifically reasonable for describe the real in-situ gas mitigation in goaf.
     Considering the characteristics of non-darcy of mining broken rock mass in water inrush problem, in this study, a water-inrush model, in which the Brinkman equation is thought to be suitable for describing the non-darcy's law's characteristics in fault fractured zone and flow during the transition from darcy laws in aquifer to Navier-Stokes laws in tunnel, is proposed based on conservation of mass and pressure balance, in order to predict the hydraulic process during the water inrush. This model is considered to be promising and practical for characterizing the whole fluid flow and water-inrush process. Then, as a typical example, the water-inrush due to karstic collapse columns and faults, which is considered to be a coupled process that can be characterized with Darcy equation in confined aquifer, Brinkman equation in fractured zone and Navier-Stokes's equation in tunnel, is simulated when the above-proposed model is implemented into Comsol Multiphysics. The complete fluid flow process in confined aquifer, fractured zone and tunnel are all numerically predicted. The numerical results indicate that, the karstic collapse column and faults, being a fractured zone in rock mass, is the transition zone between linear darcy flow in confined acquirer and water-inrush in tunnel, and its permeability is very sensitive to the water pressure and the flow velocity. The karstic collapse columns or fractured zone is the channel that connects the confined aquifer and tunnel, and the recharge of confined aquifer is the main cause that leads to the high water pressure and the water in-rush through the karstic collapse columns or faults under the disturbance of mining.
引文
[1]. 魏久传,李白英.承压水上采煤安全性评价[J],煤田地质与勘探,2000,28(4):57-59.
    [2]. 彭苏萍,王金安.承压水体上安全采煤[M],北京:煤炭工业出版社,2001.
    [3]. 张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M],北京:地质出版社,1997.
    [4]. 仵彦卿,张倬元.岩体水力学导论[M],成都:西南交通大学出版社,1995.
    [5]. 宋振琪,蒋宇静,杨增夫等.煤矿重大事故预测和控制的动力信息基础研究[M],煤炭工业出版社,2003.
    [6]. 王永红,沈文.中国煤矿水害防治及治理[M],煤炭工业出版社,1996.
    [7]. 王作宇,刘鸿泉.承压水上采煤[M],煤炭工业出版社,1992.
    [8]. 钱鸣高,缪协兴,徐家林等.岩层控制的关键层理论[M],中国矿业大学出版社,2000.
    [9]. 许延春,耿德庸,官云章等.深厚含水层松散层的工程特性及其在矿区的应用[M],煤炭工业出版社,2003.
    [10].赵阳升,胡耀青.承压水上采煤理论与技术[M],煤炭工业出版社,2004.
    [11].高延法,施龙青,娄华君.底板突水规律与突水优势面[M],中国矿业大学出版社,1999.
    [12].李元辉,南世卿,赵兴东,杨天鸿.露天转地下境界矿柱稳定性研究[J],岩石力学与工程学报,2005,24(2):278-283.
    [13].黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J],岩石力学与工程学报,2000(9):573-576.
    [14].白明洲,许兆义,王勐.长大隧道施工过程中突水突泥灾害预测预报技术研究[J],2005,22(6):124-126.
    [15].何满潮,谢和平,彭书萍,姜耀东.深部开采岩体力学研究,岩石力学与工程学报[J]. 2005,24(16):2804-2813.
    [16].梁冰,孙可明.低渗透煤层气开采理论及其应用[M],科学出版社,2006年.
    [17].马丕梁,陈东科.煤矿瓦斯灾害防治技术手册[M],化学工业出版社,2007年.
    [18].刘卫群.破碎岩体的渗流理论及其应用研究[D],徐州:中国矿业大学,2002.4.
    [19].谢和平.岩土介质渗流物理的现代研究方法[J],世界采矿快报,1997,13(19):3-4.
    [20]. Christian Wolkersdorfer and Rob Bowell. Contemporary Reviews of Mine Water Studies in Europe[J], Mine Water and the Environment, (2004) 23:161.
    [21]. Marco Salis and Lucien Duckstein. Mining under a limestone aquifer in southern Sardinia:a multiobjective approach[J], Geotechnical and Geological Engineering,1983,1(4):357-374.
    [22]. R.N. Singh and M.Jakeman. Strata Monitoring Investigations A round Longwall Panels Beneath the Cataract Reservoir[J], Mine Water and the Environment,2001,20:55-64.
    [23]. N.V.Nevolin, B.P.Shilkov, V.M.Potepko.Sudden rock failures in mining coal seams of the kizel basin[J], Journal of mining science,2003,39(1):21-28.
    [24]. S.V.Kuznetsov and V.A.Trofimov. Hydrodynamic effect of coal seam compression[J], Journal of mining science,2002,39(3):205-212.
    [25].杨栋,赵阳升.裂隙底板采场流固耦合作用的数值模拟[J],煤炭学报,1998,23(1):37-41.
    [26]. J.A. Wang, H.D. Park. Coal mining above a confined aquifer[J], Int. J. Rock Mech. Min. Sci.,2003, 40(4):537-551.
    [27].郑少河,朱维申,王书法.承压水上采煤的流固耦合问题研究[J],岩石力学与工程学报,2000(7):421-424.
    [28].白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型.煤炭学报[J],1997,22(2):149-154.
    [29].王连国,宋扬.煤层底板突水突变模型.工程地质学报[J],2002,8(2):160-163.
    [30].李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J],山东矿业学院学报,1999,8(4): 11-18.
    [31]. Wu Q, Wang M, Wu X. Investigations of groundwater bursting into coal mine seam floors from fault zones[J], International Journal of Rock Mechanics & Mining Sciences,2004,41:557-571.
    [32]. Zhang Jincai, Shen Baohong. A Coal mining under aquifers in China:a case study[J], International Journal of Rock Mechanics & Mining Sciences,2004,41:629-639.
    [33]. Wang J A, Park H D. Fluid permeability of sedimentary rocks in a complete stress-strain process[J], Engineering Geology,2002,63:291-300.
    [34]. Zhang J C. Stress-dependent permeability variation and mine subsidence, Pacific Rocks 2000. Girard J, Liebman M, Breeds C & Doe T (eds). Belkema, Rotterdam; 2000:811-816
    [35]. Ma Li-qiang, Zhang Dong-sheng. Numerical Simulation of Water Inrush Channel with UDEC Under Coal Mining Conditions, http://www.paper.edu.cn/process/searchbyfield_ok.jsp?field=矿山工程技术
    [36].黎良杰,钱鸣高,殷有泉.采场底板突水相似材料模拟研究.煤田地质与勘探[J],1997,25(1):37-40.
    [37]. ARMENTA M, WOJTANOWICZ A K. Rediscovering non-Darcy flow effect in gas reservoir[C]// Proceedings of SPE Annual Technical Conference and Exhibition. Denver, USA:Society of Petroleum Engineers,2003:399-406.
    [38].黄伟,四旭飞,厉彦菊.气体渗流系统的失稳及其概率应用[J],山东科技大学学报(自然科学版),2005,24(4):81-83.
    [39].孙明贵,李天珍,黄先伍等.破碎岩石非达西渗流的渗透特性试验研究[J],安徽理工大学学报,2003,23(2):11-13.
    [40].缪协兴,陈占清,茅献彪等.‘峰后岩石非达西渗流的分岔行为研究[J],力学学报,2003,35(6):660-667.
    [41].余为.破碎岩体中的气体流动规律研究[D],徐州:中国矿业大学,2005.
    [42].刘卫群,缪协兴,余为等.破碎岩石气体渗透性的试验测定方法[J],实验力学,2006,21(3):399-401.
    [43].刘卫群,缪协兴.破碎岩石渗透性的试验测定方法[J],实验力学,2003,18(1):57-61.
    [44].马占国.采空区破碎岩体中水渗流特性研究[D],徐州:中国矿业大学,2003.
    [45].缪协兴,茅献彪,胡光伟等.岩石(煤)的碎胀与压实特性研究[J],实验力学,1997,12(3):394-400.
    [46].刘玉庆,李玉寿,孙明贵.岩石散体渗透试验新方法[J],矿山压力与顶板管理,2002(4):108-110.
    [47].杨天鸿,徐涛,刘建新等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J],岩石力学与工程学报,2006,24(16):2900-2905.
    [48].杨天鸿,唐春安,谭志宏等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J],岩石力学与工程学报,2007,26(2):268-274.
    [49].杨天鸿,唐春安,梁正召等.脆性岩石破裂过程损伤与渗流耦合数值模型研究[J],力学学报,2003,35(5):533-540.
    [50].徐涛,唐春安,宋立等.含瓦斯煤岩破裂过程流固耦合数值模拟[J],岩石力学与工程学报,2005,24(10):1667-1673.
    [51]. S.C.Yuan, J.P.Harrison. Development of a hydro-mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks[J], International Journal of Rock Mechanics & Mining Sciences 42 (2005):961~984.
    [52].王媛,徐志英等.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J],岩石力学与工程学报,2000(3):177-181.
    [53].盛金昌,速宝玉,王媛.裂隙岩体渗流-弹塑性应力耦合分析[J],岩石力学与工程学报,1999,19(3):177-181.
    [54].陈平,张有天.裂隙岩体渗流与应力耦合分析[J],岩石力学与工程学报,1994,13(4):299-308.
    [55].周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J],岩石力学与工程学报,1996,(12):338-344.
    [56].王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究[J],岩石力学与工程学报,1998,17(4):400406.
    [57].梁冰,章梦涛.考虑时间效应煤和瓦斯突出的失稳破坏机理研究[J],阜新矿业学报,1997,16(2):129-133.
    [58].柴军瑞,仵彦卿.岩体渗流与应力相互作用关系综述,第六届岩石力学与工程会议论文集,武汉,2000,11:366-368.
    [59]. Xing Zhang, David J. Sanderson and Andrew J. Barker. Numerical study of fluid flow of deforming fractured rocks using dual permeability model[J], Geophys. J. Int. (2002) 151:452-468.
    [60]. Valko P, Economides M J. Propagation of hydraulically induced fractures-a continuum damage mechanics approach[J], International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1994; 31(3):221-229.
    [61].杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J],水力学报,1991,5:19-27.
    [62].杨太华,曾德顺.三峡船闸高边坡裂隙岩体的渗流损伤特征[J],中国地质灾害预防治学报,1997,8(2):13-18.
    [63].朱珍德,孙钧.裂隙岩体非稳定渗流场与损伤场耦合分析模型[J],水文地质工程地质,1999,26(2):3542.
    [64].郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J],岩石力学与工程学报,2001,20(2):156-159.
    [65]. Tang, C A, Tham L G, Lee P K K, Yang T H, Li L C. Coupled analysis of?ow, stress and damage (FSD) in rock failure[J], Int. J. Rock Mech. Min. Sci.2002,39:477-489.
    [66]. Yang T H, Tham L G, Tang C A, Liang Z Z. Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks[J], Rock Mech. Rock Eng.,2004,37(4):251-275.
    [67].杨天鸿,唐春安,刘红元等.承压水底板突水失稳过程的数值模型初探[J],地质力学学报,2003,9(3):281-288.
    [68]. T. H. Yang, S.H.Wang, L.C.Li, C.A.Tang. Numerical Simulation on Instable Failure Process of Floor in Confined Aquifer. Beijing:Science Press (Proceedings in Mining Science and Safety Technology),2001:37-43.
    [69]. T. H. Yang, J.S.Liu, C.A.Tang. A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations[J], Int. J. Rock Mech.& Min. Sci., accepted
    [70]. Patersori S. Experimental deformation of rocks:the brittle field. Berlin:Springer,1978.
    [71]. Li S P, Wu D X. Effect of Confining Pressure, Pore Pressure and Specimen Dimension on Permeability of Yinzhuang sandstone[J], Int. J. Rock Mech. Min. Sci.1997,34(3/4):435-441.
    [72]. Li S P, Li Y S, Wu Z Y. Permeability-strain equations corresponding to the complete stress-strain path of Yinzhuang sandstone[J], Int. J. Rock Mech. Min. Sci. Geomech. Abstr,1994,31 (4):383-391.
    [73]. Zoback M D, Byerlee J D. The effect of microcracks dilatancy on the permeability of Westerly granite[J], Journal of Geophysical Research,1975,80:752-755.
    [74]. Schulze, O., Popp, T., and Kern, H. Development of damage and permeability in deforming rock salt[J], Engineering Geology,2001,61:163-180.
    [75]. Oda M T, Takemura A, Aoki T. Damage growth and permeability change in triaxial compression tests of Inada granite[J], Mechanics of Materials,2002,34:313-331.
    [76]. Otto Schulze, Till Popp, Hartmut Kern. Development of damage and permeability in deforming rock salt[J], Engineering Geology,2001,61:163-180.
    [77]. Rutqvist, J., Tsang, C.-F.. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain[J], Journal of Contaminant Hydrology.2003;62-63:637-652.
    [78]. Mahnken, R., Kohlmeier, M. Finite element simulation for rock salt with dilatancy boundary coupled to fluid permeation. Computer methods Appl. Eng,2001,190:4259-4278.
    [79].韩宝平,冯启言等.全应力应变过程中碳酸盐岩渗透性研究[J],工程地质学报,2000,8(2):127-128.
    [80].李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J],岩土工程学报,2001,23(1):68-70.
    [81].姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J],岩土工程学报,2001,23(2):153-156.
    [82]. Zhu W, Wong T F. The transition from brittle faulting to cataclastic flow:permeability evolution. J. Geophysics. Res.1997,102 (B2):3027-3041.
    [83]. Cristescu N, Hunsche U. Time effects in rock mechnics. Seriea, Materials[J], Modelling and Computation, Wiley, Chichester,1998:342-438.
    [84]. Brace W F, A note on permeability change in geologic materials due to stress[J], Pure Appl. Geophys. 1978,116:627-633.
    [85]. Holcomb,D.J., Olsson, W.A.,2003, Compaction localization and fluid flow, J. Geophys. Res.108, art no.2290.
    [86]. Olsson, W.A., Holcomb, D.J.,2000, Compaction localization in porous rock. Geophys. Res. Lett.27, 3537-3540.
    [87]. Wong, T.F. David, C., Zhu, W.L.,1997, The transition from brittle faulting to cataclastic flow in porous sandstones:Mechanical deformation, J. Geophys. Res.102:3009-3025.
    [88]. Wong, T.F. Baud, P., Klein, E.2001, Localized failure modes in a compactant porous rock, Geophys. Res. Lett.28:2521-2524.
    [89]. Yuan, S.C., Harrison, J.P.,2004, Numerical modeling of progressive damage and associated fluid flow using a hydro-mechanical local degradation approach[J], Int. J. Rock Mech. Min. Sci.41: 417-418.
    [90].Stephenson D.堆石工程水力计算,北京:海洋出版社,1984.
    [91]. Hansen D, Garga, VK and Townsend DR. Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments[J], Canadian Geotechnical Journal,1995,32:22-232.
    [92]. Martins R. Turbulent seepage flow through rockfill structures [J], International Water Power and Dam Construction,1990,42:41-45.
    [93]. Pradip KGN and Venkataraman P. Non-Darcy converging flow through coarse granular media[J], Journal of the Institution of Engineers(India), Civil Engineering Division,1995,76:6-11.
    [94]. Panthulu TV, Krishnaiah C and Shirke JM. Detection of seepage paths in earth dams using self-potential and electrical resistivity methods[J], Engineering Geology,2001,59:281-295.
    [95]. Kell JA. Spatially varied flow over rockfill embankments[J], Canadian journal of civil Engineering, 1993,20:820-827.
    [96].孔祥言.高等渗流力学[N],合肥:中国科学技术大学出版社,1999.
    [97]. Brinkman H C. A calculation of the viscous force exerted by flowing fluid on a dense swam of particles[J], Applied Science Research,1947,A1:27-34.
    [98].李大鸣,张红萍,李冰绯,高永祥.多孔介质内部流动模型及其数学模拟[J],天津大学学报,2002,35(6),699-704.
    [99].蔡睿贤,张娜.多孔介质中自然对流Brinkman模型的解析解[J],中国科学(A辑),2002,32(6),566-573.
    [100]. COMSOL AB. COMSOL Multiphysics Version 3.4, User's Guide and Reference Guide.2007, Stockholm.
    [101].程远平,俞启香,袁亮.上覆远程卸压岩体移动特性与瓦斯抽采技术[J],辽宁工程技术大学学 报,2003,22(4):483-486.
    [102].柏发松,丁广骧.二维煤层瓦斯渗透率的反演[J],煤炭学报,1999,24(4):388-391.
    [103].姚金林.综放面顶板覆岩走向长钻孔卸压抽放瓦斯研究[J],煤炭科学技术,2003,31(6),14-17.
    [104]. Zhao Y S, Qing H Z, Bai Q Z. Mathematical model for solid-gas coupled problems on the methane flowing in coal scam[J], Acta Mechanica Solida Sinica,1993,6(4):459.
    [105].梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J],岩石力学与工程学报,1996,15(2):135-142.
    [106]. Otuonye F, Sheng J. A numerical simulation of gas flow during coal/gas outbursts[J], Geotechnical and Geological Engineering,1994,12:15-34.
    [107]. Valliappan S, Zhang WH. Numerical modelling of methane gas migration in dry coal seams[J], International Journal for Numerical and Analytical Methods in Geomechanics,1996,20:571-593.
    [108]. Sun PD. Numerical simulations for coupled rock deformation and gas leak flow in parallel coal seams[J], Geotechnical and Geological Engineering,2004,22:1-17.
    [109]. Zhao YS, Hu YQ, Zhao BH, Yang D. Nonlinear coupled mathematical model for solid deformation and gas seepage in fractured media[J], Transport in Porous Media,2004,55:119-136.
    [110]. Biot MA. General theory of three-dimensional consolidation[J], Journal of Applied Physics,1941, 12:155-164.
    [111]. Langmuir L. The constitution and fundamental properties of solid and liquids[J], Journal of American Chemical Society,1975,36 (2):221-295.
    [112]. Rutqvist J, Tsang C-F. A study of caprock hydromechanical changes associated with C02-injection into a brine formation[J], Environmental Geology,2002,42:296-305.
    [113]. Jing L, Tsang C-F. and Stephansson O. DECOVALEX-An international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J], International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1995,32:389-398.
    [114].王恩志,王洪涛,王慧明,“以缝代井列”—排水孔幕模拟方法探讨[J],岩石力学与工程学报,2002,21(1):98-101.
    [115].周世宁,林柏泉.煤层瓦斯赋存与流动理论[M],北京:煤炭工业出版社,1999.2.
    [116].李宗翔,纪书丽,题正义.采空区瓦斯与大气两相混溶扩散模型及其求解[J],岩石力学与工程学报,2005,24(16):2971-2976.
    [117].李宗翔,孙学强,贾进章.Y形通风采空区自燃与有害气体排放的数值模拟[J],安全与环境学 报,2005,5(6):108-112.
    [118].王凯,俞启香,杨胜强,张仁贵.脉冲通风条件下上隅角瓦斯运移数值模拟与试验研究[J],煤炭学报,2000,25(4):391-396.
    [119].林柏泉,周世宁,张仁贵.U形通风工作面采空区上隅角瓦斯治理技术[J],煤炭学报,1997,22(5):509-513.
    [120].李树刚,钱鸣高.综放采空区冒落特征及瓦斯流态[J],矿山压力与顶板管理,1997,(3/4):76-78.
    [121].刘卫群,缪协兴.综放开采J型通风采空区渗流场数值分析,岩石力学与工程学报,2006,25(6):1152-1158.
    [122].周瑞光,成彬芳,叶贵钧等.断层破碎带突水的时效特性研究[J],工程地质学报,2000,8(4):411~415.
    [123].刘志军,胡耀青.承压水上采煤断层突水地固流耦合研究[J],煤炭学报,2007,32(10):1046~1050.
    [124].施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J],矿山压力与顶板管理,2000,2:49~51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700