用户名: 密码: 验证码:
黏土心墙水力劈裂机理试验及数值分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黏土心墙高土坝的水力劈裂是国内外工程界普遍关注又亟待解决的关键性问题之一,同时也是最具有争议的问题之一。迄今为止,人们对水力劈裂的发生机理、发生条件、影响因素及判别方法等尚存在不同的看法。近年来,随着世界范围内高土石坝建设的迅速发展,关于水力劈裂发生的可能性及发生条件研究在土石坝设计和建设中的重要性越来越突出。
     在系统总结了以往研究成果的基础上,本文对几种简化的黏土心墙模型进行了水力劈裂离心模型试验,对黏土心墙水力劈裂的发生机理和发生条件进行了分析研究。首次通过试验手段在试验室再现了均质黏土心墙的水力劈裂现象。试验结果表明,当心墙上游侧的水压力大于心墙土体压力时,心墙土体将会产生水力劈裂裂缝,最终在水压力作用下发展为土体的渗透破坏。
     在进行了水力劈裂离心模型试验的同时,本文还采用有限元数值分析方法对心墙水力劈裂进行了进一步分析,验证了有限元方法在水力劈裂分析中的有效性和可靠性。首先对ABAQUS软件进行了用户材料子程序的二次开发,添加了Duncan-Chang非线性弹性模型的E-B模式及沈珠江弹塑性模型,并通过算例和工程实例进行了验证。其次,在简化心墙离心模型试验和ABAQUS二次开发的基础上,对心墙水力劈裂的机理进行了进一步的分析、论证。计算分析结果表明,在水荷载的作用下,当上游侧的水荷载大于心墙土体压力时,均质心墙上游侧表面相应于离心模型试验中发生水力劈裂裂缝的位置出现了有效小主应力的拉应力区,从而具备了产生水力劈裂现象的条件。心墙两侧的应力方向由于边界约束作用而发生了偏转,蓄水后,水压力作用导致应力方向偏转更为明显,由于偏转后的有效大主应力方向接近水平,有效小主应力小于零,因此可以推断心墙上游侧土体发生水力劈裂破坏的劈裂缝将沿着水平方向发展,这与实际工程的水力劈裂破坏裂缝方向是一致的。水力劈裂是否发生取决于心墙上游的水体进入心墙裂缝后的裂缝发展过程,裂缝贯穿,形成透水通道后的渗透冲蚀破坏是水力劈裂破坏的最终表现形式。在对试验结果的数值分析中采用了有效应力法和总应力法两种方法进行水力劈裂的判断,从判断水力劈裂的发生条件看,采用有效应力方法更为直接,但总应力方法本质上与有效应力判别方法并无矛盾。
     在系统分析了水力劈裂发生机理和发生条件的基础上,本文还针对实际工程,采用二维和三维有限元数值分析方法,对坝体在施工期和满蓄期的应力变形特性进行了分析,同时,采用极端参数的处理办法分析了心墙坡度、心墙与堆石模量差、水库蓄水速度等因素对心墙发生水力劈裂的影响。通过计算分析可以发现,坝壳堆石对心墙的“拱作用”是导致心墙发生水力劈裂的重要原因,而拱作用大小与心墙的厚度(坡度)、心墙与堆石的模量差有着直接的相关关系,同时,水库的蓄水速度也对心墙的有效应力值有一定的影响。从二维和三维计算分析还可以看出,心墙上游侧在蓄水期的高剪应力区也会对心墙的水力劈裂有一定的影响,同时,岸坡对坝体的约束作用也会在心墙与岸坡的接触部位产生水力劈裂的可能性。此外,黏土心墙坝的坝坡稳定是大坝安全的一个重要因素,本文对此进行了数值分析,评价坝体的整体稳定性。
Hydraulic fracturing of earth core rockfill dam is one of the most concerned problems in dam engineering and also the most disputed issue in geotechnical engineering. Although a lot of research works had been done, there are still different opinions on the mechanism, conditions, impact factors and judgement criteria of hydraulic fracturing. In recent years, the construction of high rockfill dam has been developed rapidly. The research on the occurring possibility of hrdraulic fracturing and the method for determining the conditions of hydraulic fracturing become more and more important.
     Based on the systematic summarization of the previous research works, the centrifugal modeling tests on the simplified clay core models were conducted to study the mechanism and occurring conditions of hydraulic fracturing. The process of hydraulic fracturing of the homogeneous clay core was firstly observed in the laboratory by centrifugal model test. The tests results show that: when upstream water pressure of the model is larger than the earth pressure of the clay core, hydraulic fracturing will be happened. The ultimate failure mode of hydraulic fracture will be seepage failure of the soil.
     For studying the mechanism of hydraulic fracturing by numerical analysis method, further development of the ABAQUS software system was conducted. Supplementary material models such as Duncan's E-B model and Shen Zhujiang's elasto-plastic model were added in the original system. The reliability of the added models was verfied by testing sample and real engineering project.
     Based on the centrifugal modeling test and the secondary development of the ABAQUS software, further analysis on the mechanism of hydraulic fracturing were conducted by numerical analysis method. From the analysis, it can be found that: during water impoundment, when upstream water load is larger than the earth pressure of the core, tensile stress zone of the minor effective principle stress was developed at the upstream surface of the core, where is the position of the cracks of hydraulic fracture in centrifuge model test. The direction of principal stress of the soil elements of upstream and downstream sides will be deflexed due to the constraint of the boundary. After water impoundment, the deflexion of the direction of the principle stress of upstream elements become more significant. As the direction of the effective major principle stress is almost in horizontal direction and the effective minor principle stress less than zero, it can be sure that the cracks caused by hydraulic fracture will be developend in horizontal direction. This is agreed with the real situation. Whether the hydraulic fracture could finally lead to the failure of the earth core will depend on the crack development after upstream water enters into the crack of the core. The final failure caused by hydraulic fracture is the pass through of the crack from upstream to downstream and the soil erosion by water flow. The numerical analysis was conducted by effective stress method and total stress method. For the judgement of the condition of hydraulic fracturing, the effective stress method is more directly. But in nature, there is no conflict between the method of effective stress and total stress.
     On the bases of the analysis of the mechanism of hydraulic fracturing, the stress and deformation properties of a real high earth core rockfill dam were analyzed by 2D and 3D numerical analysis method. Besides, the impacts of several factors such as the earth core slope, modulus difference of rockfill and soil, the reservoir impoundment speed, etc. on the hydraulic fracturing of earth core were studied. From the analysis, it can be found that the arching effect of rockfill to the earth core is the most important cause of hydraulic fracturing. The extent of arching effect is directly related to the width of the core and the material properties of rockfill and soil. Besides, the speed of reservoir impoundment will also have a certain impact on the hydraulic fracturing of the core. From the 2D and 3D analysis, it could also be noticed that the high shear stress zone at the upstream side of the core may has certain impact on the occurring of hydraulic fracture. At the same time, the constraint of abutment on dam body may lead to the possibility of hydraulic fracturing at the contacting area of the earth core and the abutment.
     As the stability of dam slope is one of the most important factors on dam safety, the numerical analyis based on the secondary development of ABAQUS was conducted to assess the 3D slope stability of the dam.
引文
[1]李正琼,汪小刚.土石坝水力劈裂研究综述及工作展望.首届”西部之光”访问学者科研报告汇编,北京,2003,131-156.
    [2]Seed H B.The Teton Dam failure-a retrospective review.Proc.Xth.ICSMFE.Stockholm,1981.
    [3]Vaughan P R etal.crocking and erosion of the rolled clay core at the balderhead dam.Proceeding 10~(th) ICOLD Congress,Montreal,Canada,1970,3:73-93.
    [4]Wood D M,Kjaemsli B,Hoeg K.Thoughts concerning the unusual behavior of hyttejuvet dam.Proceeding 12~(th) ICOLD Congress,Mexico,1976,2:391-414.
    [5]Vestad H.Viddalsvatn dam:A history of leakage and investigations.Trans.12~(th) int.Congr.Large Dams,Mexico,1976,2:369-390.
    [6]Sherard J L,Decker R S,Reker N L.Hydraulic fracturing in low dams of dispersive clay.Proceedings of the Specialty Conference on Performance of Earth and Earth-Supported Structures,ASCE,1972,1(Part Ⅰ):563-590.
    [7]Sherard J L.Lessons from the Teton dam failure.Proceedings International Workshop on Dam Failure Purdue University,West Lafayette.1985:239-259.
    [8]Lo K Y,Kiny Kaniaru.Hydraulic fracture in earth and rock-fill dams.Can.Geotech.1990:496-506.
    [9]杜汝新,蒋剑.天生桥一级水电站大坝施工期及蓄水期监测.水利水电技术,2000,31(6):29-33.
    [10]Sherard J L.Embankment dam cracking.Geotechnical Special Publication,1973:131-215.
    [11]Sherard J L.Hydraulic fracturing in embankment dams.Journal of Geotechnical Engineering.1986,112:905-927.
    [12]黄文熙.对土石坝科研工作的几点看法.水利水电技术,1982,(4):23-27.
    [13]Wilson C.Hydraulic fracturing in embankment dams and available defensive measures.Proceedings of 8~(th) Regional Conference for Africa on SMFE,Harare,1984:491-500.
    [14]李娜.土石坝心墙水力劈裂试验研究及数值模拟:(博士学位论文).北京:清华大学,2005.
    [15]Clark J B.A hydraulic process for Increasing the productivity of well.Transaction,AIME,1949,186(1).
    [16]胡中雄.土力学与环境土王学.上海:同济大学出版社,1997.
    [17]张丙印,于玉贞,张建民.高土石坝的若干关键技术问题.中国土木工程学会第九届土力学及岩土工程学术会议,北京、2003:163-186.
    [18]Hubbert M K and Willis.Mechanic of hydraulic fracturing.Transactions of American Institute of Mining Engineer.1957,210:153-168.
    [19]Morgenstern N R,Vaughan P R.Some observations on allowable grout pressures.Proc.Confer.on Grouts and Drilling Muds,Institute of Civil Engineers,London,England.1963.
    [20]Nobari E S,Lee K L,Dunean J M.Hydraulic fracturing in zoned earth and rockfill dam.Institute of Transportation and Traffic Engineering.College of Engineering Office of Research Services,University of Caiifomia,Berkeeley,1973,Report No.TE73-1:17-23.
    [21]Vaughan P R.The uses of hydraulic fracturing test to detect crock formation in embankment dam cores.Report,Department of Civil Engineering,Imperial College,London,England.1971.
    [22]Vaughan P R.Cracking of embankment dam cores and the design of filters for their protection, Bull.Soc.Esp.Mech.Suelo Cim.,1976:23-34.
    [23]Haimson B.Hydraulic fracturing in porous and non-porous rock and its potential for determining in-situ stresses at great depth,Technial Report No.4-68,Unite States Army Crops of Engineer,Missouri Division,Omaha,Nebraska.1968.
    [24]Kulhaway F H,Gurtowski T M.Load transfer and hydraulic fracturing in zoned dam.Journal of GED ASCE,1976,102:No.GT9.
    [25]Massarsch K R.Mew Aspects of soil fracturing in clay.Journal Geotechnical Division,ASCE,1978,46(4):1109-1123.
    [26]Jaworski G W.An experimental study of hydraulic fracturing(Ph.D).Department of Civil Engineering,University of California,Berkeley,1979.
    [27]Jaworski G W,Duncan J M,Seed H B.An experimental study of hydraulic fracturing.Report No.UCB/GT/79-02.Department of Civil Engineering,University of California,Berkeley,California,1979,.
    [28]Jaworski G W,Duncan J M,Seed H B.laboratory study of hydraulic fracturing.Journal of Geotechnical Engineering Division,ASCE,1981,107(6):713-732.
    [29]孙亚平.水力劈裂机理研究:(博士学位论文).北京:清华大学,1985.
    [30]成都科技大学.瀑布沟深覆盖层土石坝的坝形、应力应变分析、坝基与坝体防渗体连接的细部结构形式的研究总报告.土质防渗墙高土石坝研究总报告,1990.
    [31]Lofquist B.Discussion on hydraulic fracturing in embankment dams.Geotechnical Engineering,ASCE,1988,(6):740-742.
    [32]Lofquist B.Hydraulic penetration in embankment.Ground Engineering,1992,(6):40-43.
    [33]Lo K Y,Kaniaru K.Hydraulic fracture in earth and rock-fill dams.Canada Geotechnical journal,1990,27(4):496-506.
    [34]Ogawa T,Lo K Y.Effects of dilataney and yield criteria on displacements around tunnels.Canada Geotechnical journal,1987,24(4):100-113.
    [35]Atkinson H K,Charles J A,Mhach H K.Undrained hydraulic fracture in cavity expansion tests.Proc.of the 13~(th) ICSMFE,1994:1009-1012.
    [36]徐立波.土石坝水力劈裂破坏的防范.华北水利水电学院学报,1994,(2):90-91。
    [37]Reed A.C.and Dusseault M.B.Hydraulic fracturing of soil as an analogue to rock behaviour[J].Int.J.Rock Mech.&Min.Sci.,1997,34(3-4):255-268.
    [38]刘令瑶,崔亦昊,张广文。宽级配砾石土水力劈裂特性的研究.岩土工程学报,1998,20(3):10-13.
    [39]Goldstein R,Gordeev Y and Kome.Feature of deformation of poroelastic media with low structural strength.C.R.Acad.Sci.2000:645-650.
    [40]张丙印,李娜,李全明等.土石坝水力劈裂发生机理及模型试验研究.岩土工程学报,2005,27(11):1277-1281.
    [41]王俊杰,朱俊高,张辉.关于土石坝心墙水力劈裂研究的一些思考.岩石力学与工程学报,2005,24(增2):5664-5668.
    [42]朱俊高,王俊杰,张辉.土石坝心墙水力劈裂机制研究.岩土力学,2007,28(3):487-492.
    [43]王俊杰,朱俊高.堆石坝心墙抗水力劈裂性能研究.岩石力学与工程学报,2007,26(增1):2880-2886.
    [44]张辉.堆石坝心墙水力劈裂试验与数值模拟研究:(硕士学位论文).南京:河海大学,2005.
    [45]Bjerrum L,Anderson K H.In-situ measurement of lateral pressures in clay.Proc.of the 5~(th)European Regional Conference on SMFE,Madrid,Spain,1972,
    [46]Decker R A,Clemence S P.Laboratory studyof hydraulic fracturing in clay.Proc.of the 10~(th) ICSMFE,Stockholm,Sweden,1981,1:573-575.
    [47]陈愈炯,孔凡玲.压实黏性土的水力劈裂试验.科研报告,北京:中国水利水电科学研究院,1983.
    [48]朱建华.心墙压实土的水力劈裂研究:(硕士学位论文).北京:中国水利水电科学研究院,1985.
    [49]杨斌.击实黏性土空心圆柱试件水力劈裂性能研究:(硕士学位论文).北京:清华大学,1985.
    [50]Hassani A W,Singh B,Saini S S,etal.Laboratory Simulation of hydraulic fracturing.Proceedings of the 11~(th) International Conference on Soil Mechanics and Foundation Engineering,San Francisco,1985,2:1081-1084.
    [51]丁金粟,杨斌.击实黏性土水力劈裂性能研究.岩土工程学报,1987,9(3):1-15.
    [52]Mori A,Trmura M.Hydrofracturing pressure of cohesive soils.Soils and Foundations,1987,27(1):14-22.
    [53]Mori A,Trmura M,Fukui Y.Fracturing pressure of soil ground by viscous materials.Soils and Foundations,1990,30(3):129-136.
    [54]黄良辉.复杂应力状态土体水力劈裂性质研究:(博士学位论文).北京:清华大学,1989.
    [55]Pariah A K,Yanagisawa E.laboratory studies on hydraulic fracturing criteria in soil.Soils and Foundations,1989,29(4):14-22.
    [56]Yanagisawa E,Panah A K.Two dimensional studies of hydraulic fracturing criteria in cohesive soils.Soils and Foundations,1994,34(1):1-9.
    [57]DeMoor E K.Modeling of deep tunnel bwhavior in clay(Ph.D).Dissertance,City University,1989.
    [58]Atkinson J H.,Charles J A and Mhach H K.Examination of Erosion resistance of clays in embankment dams[J].Quartety Journal of Engineering Geology,1990,23:103-108.
    [59]Mhach H K.An experimental study of hydraulic fracture and erosion(Ph.D).Dissertance,City University,1991.
    [60]Atkinson J H,Charles J A and Mhach H K.Undrained hydraulicfracture in cavity Expansion tests Proc.Of the 13~(th) ICSMFE,1994,1009-1012.
    [61]丁金粟,孙亚平.土体水力劈裂机理剖析.第五届土力学及基础工程学术会议,北京:中国建筑工业出版社,1990:534-544.
    [62]Murdoch L C.Hydraulic fracturing of soil during laboratory experiments Part 1.Methods and observations[J].Geotechnique,1993,43(2):255-265.
    [63]Murdoch L C.Hydraulic fracturing of soil during laboratory experiments Part 2.Propagation[J].Geotechnique,1993,43(2):267-276.
    [64]Murdoch L C.Hydraulic fracturing of soil during laboratory experiments Part 3.Theoretical analysis[J].Geotechnique,1993,43(2):277-287.
    [65]Alfaro M C and Wong C K.Laboratory studies on fracturing of low-permeability soils[J].Canada Geotechnical,2001,38:303-315.
    [66]曾开华,殷宗泽.土质心墙坝水力劈裂影响因素的研究[J].河海大学学报,2000,28(3):1-6.
    [67]曾开华.土质心墙坝水力劈裂机理及影响因素研究:(博士学位论文).南京:河海大学,2001.
    [68]Murdoch L C.Mechanical analysis of idealized shallow hydraulic fracture[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(6):488-495.
    [69]曹建建.黏性土水力劈裂全过程数值模拟及影响因素研究:(硕士学位论文).南京:河海大学,2006.
    [70]Bjerrum L,etc.Hydraulic fracturing in field permeability testing[J].Geotechnique,1972,22(2):319-332.
    [71]Bozozuk B M.Minor principal stress measurement in marine clay with hydraulic fracturing tests.Proceedings ASCE Specialty Conference ong Exploration for Undereground Excavation and Heavey Construction,Herniker,1974,333-349.
    [72]Penman A D M.Earth pressures measured with hydraulic piezometers.Ground Engineering,London,England,Nov.,1976,17-23.
    [73]Penman A D M.On the embankment dam[J].Geotechnique,1986,36(3):303-348.
    [74]Parkin A K and Lunne T.Hydraulic fracture testing offshore.Spec.Geomech,Symp:Interpretation of Field Testing for Design Parameters Adelaide,Australian Geomech.Soc.,1986,1:123-127.
    [75]Parkin A.K.and Yu C.L,Hydraulic fracturing tests in simulate earth dams.Proc.of the 12th ICSMFE.1979,385-390.
    [76]Murdoch L C.Forms of hydraulic fractures created during a field test in overconsolidated glacial drift[J].Quarterly Journal of Engineering Geology,1995,28:23-35.
    [77]Schober W,Hammer H and HupfaufB.Load transfer in embankment dans-model testing.Proceedings of the 12~(th) International Conference on Soil Mechanics and Foundation Engineering.1989,2:973-976.
    [78]沈珠江,易进栋,左元明.土坝水力劈裂的离心模型试验及其分析[J].水利学报,1994,(9):67-77.
    [79]王俊杰,朱俊高.土体水力劈裂计算理论综述.第二届全国岩土与工程学术大会论文,武汉,2006:231-237.
    [80]Vesic A S.Expansipn of cavities in infinite soil mass[J].Journal of the soil mechanics and foundations division,ASCE,1972,98(SM3):265-290.
    [81]Yanagisawa E,panah A K.Two dimensional study of hydraulic fracturing criteria in cohesive soils [J].Soils and Foundations,1994,34(1):1-9.
    [82]Panah A K,yanagisawa E.Laboratory studies of hydraulic fracturing criteria in soil[J].Soils and Foundations,1989,29(4):14-22.
    [83]Mori A,Tamura M.Discussion on Laboratory studies of hydraulic fracturing criteria in soil[J].Soils and Foundations,1991,31(2):199-201.
    [84]Panah A K,yanagisawa E.Closure to discussion on laboratory studies on hydraulic fracturing criteria in soil[J]..Soils and Foundations,1991,31(2):201-202.
    [85]Atkinson J H,Charles J A,Mhach H K.Undrained hydraulic fracturing in cavity expansion tests.Proceedings of the 13~(th) International Conference on Soil Mechanics and Foundation Engineering,New Delhi,India,1994,2:1009-1012.
    [86]Massarsch K R.New aspects of soil fracturing in clay[J].Journal of the Geotechnical Engineering Division,ASCE,1978,104(GT8):1109-1123.
    [87]Lo K Y,Kaniaru K.hydraulic fracture in earth and rock-fill dams[J].Canada Geotechnical Journal,1990,27:496-506.
    [88]Andersen K H,Rawlings C G,lunne T A,By T H.Estimation of hydraulic fracture pressure in clay [J].Canada Geotechnical Journal,1994,31:817-828.
    [89]Carter J P,Booker J R,Yeung S K.Cavity expansion in cohesive frictional soils[J].Geotechnique,1986,36(3):349-358.
    [90]Murdoch L C.Mechanical analysis of idealized shallow hydraulic fracture[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(6):488-495.
    [91]Vallejo L E.Shear stresses and the hydraulic fracturing of earth dam soils[J].Soils and Foundations,1993,33(3):14-27.
    [92]王俊杰.给予断裂力学的土石坝心墙水力劈裂研究:(博士学位论文).南京:河海大学,2005.
    [93]Seed H B.Hydraulic fracturing and its possible role in the Teton Dam failure[J].Appendix D of Report to U.S.Dept.of the Interior and State of Idaho on Failure of Teton Dam by Independent Panel to Review Cause of Teton Dam Failure,Dec.,1976,1-39.
    [94]Dolezalova M and Leimer F.Prediction of Dalesice Dam performance.Proceedings of the 10th International Conference of Soil Metanics and Foundation Engineering,Stockholm,1981,1:111-114.
    [95]Dolezalova M,Horeni A and Zemamova V.Experience with numerical modeling of dams.Proceedings of the 6~(th) International Conference on Numerical Methods in Geomechanics,Innsbruck,Edited by G.Swoboda.A.A.Balkma,Rotterdam,1988,2:1279-1290.
    [96]Pinto P S S E abd Neces E M D.Hydraulic fracturing in zoned earth and rockfill dams.Proceedings of the 11~(th) International Conference of Soil Metanics and Foundation Engineering,Francisco,1985,4:2025-2030.
    [97]Tam H K,Mhach H K and Woods R I.Numerical investigation of hydraulic fracturing in clays.Numerical Methods in Geomechanics,Balkema,Rotterdam,1988,1:563-570.
    [98]Dounias G T,Potts D M and Vaughan P R.Analysis of progressive failure and cracking in old British Dams[J].Geotechniaque,1996,46(4):621-640.
    [99]Dounias G T,Potts D M and Vaughan P R.Discussion on analysis of progressive failure and cracking in old British Dams[J].Geotechniaque,1998,48(2):299-300.
    [100]Papanastasiou P C.A coupled elastioplastic hydraulic fracturing model[J].Int.J.Rock Mech.&Min.Sci.,1997,34(3-4):240-254.
    [101]Ng K L A.Investigation of hydraulic fracturingin dams using the finite element method:(Ph.D),The University of Sydney,Austrailia,1997.
    [102]Ng K L A and Small J C.A case study of hydraulic fracturingin dams using the finite element methods[J].Canada Geotechnical Journal,1999,36:861-875.
    [103]Luo X.R.and Vasseur G.Natural hydraulic cracking:numerical model and sensitivity study.Earth and Planetary Science Letters 201,2002:431-446.
    [104]张坤勇,殷宗泽,朱俊高.各向异性对土质心墙坝水力劈裂的影响[J].岩土力学,2005,26(2):243-246.
    [105]殷宗泽,朱俊高,袁俊平等.心墙堆石坝的水力劈裂分析[J].水利学报,2006,37(11):1348-1353.
    [106]李全明,张丙印,于玉贞等.土石坝水力劈裂发生过程的有限元数值模拟模拟[J].岩土工程学报,2007,29(2):212-217.
    [107]Duncan J M and Chang C Y.Non-linear analysis of stresses and strain in soils[J].ASCE,JSMFD,1970,96(SM5):.
    [108]栾茂田,罗锦添,李焯芬等.不排水条件下全风化花岗岩残积土工程特性与本构模型[J].大连理工大学学报,2000,40(增刊1):83-89.
    [109]朱百里,沈珠江.计算土力学.上海:上海科技出版社,1990.
    [110]沈珠江.鲁布革心墙堆石坝变形的反馈分析[J].岩土工程学报,1994,16(3):1-13.
    [111]沈珠江.土体应力变形分析中的一种新模型.第五届土力学及基础工程学术讨论会,北京,1990.
    [112]王金昌,陈页开.ABAQUS在土木工程中的应用.杭州:浙江大学出版社,2006.
    [113]Boit M A.General theory of three-dimension consolidation[J].Appl.Phys.,1941,12.
    [114]高晖.ABAQUS在软固结过程分析中的应用研究:(硕士学位论文).武汉:武汉理工大学,2006.
    [115]陈俊生.论对称与非对称的Biot固结有限元方程组的一致性:(硕士学位论文).北京:北方交通大学,2004.
    [116]钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996.
    [117]Sherard J L.Hydraulic fracturing in embnkment dams[J].Journal of Geotechnical Engineering Division,ASCE,1986,112(10):905-927.
    [118]Zienkiewicz O C,Humpeson C,Lewis R W.Associated and nonassociated visco-plasicity in soil mechanics[J].Geotechnique,1975,25(4):671-689.
    [119]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [120]Griffiths D V,Lane P A.Slope stability analysis by finite elements[J].Geotechnique,1999,49(3):387-403.
    [121]Dawson E M,Roth W H,Drescher A.Slope stability analysis by strength reduction[J].Geotechnique,1999,49(6):835-840.
    [122]Manzari M T,Nour M A.Significance of soil dilatancy in slope stability analysis[J].Journal of Geotechnique and Geoenvironmental Engineering,America Society of Civil Engineers,2000,126(1):75-80.
    [123]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [124]Bishop A W.The use of the slip circle in the stability analysis of slopes[J].Geotechnique,1955,(5):7-17.
    [125]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [126]张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003(1):21-27.
    [127]连阵营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [128]刘祚秋;周翠英;董立国等.边坡稳定及加固分析的有限元强度折减法[J].岩土力学,2005,26(4):558-561.
    [129]Ugai K A.Method of calculation of total factor of safety of slopes by elaso-plastic FEM[J].Soil and Foundation,1989,29(2):190-195.
    [130]李春忠,陈国兴,樊有维.基于ABAQUS的强度折减有限元法边坡稳定性分析[J].防灾减灾工程学报,2006,26(2):207-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700