用户名: 密码: 验证码:
锚固洞室的抗爆性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争已进入到了具有核威慑条件下的信息化战争的时代,精确制导钻地武器正在朝高强度、钻深度、大当量和小型核化的方向发展,对地下医院、仓库等防护工程构成了严重的威胁,因此,开展防护工程围岩加固技术在钻地武器打击下的抗爆性能研究,具有重要的现实意义和战略意义。本文通过利用地质力学模型试验、数值模拟和理论分析等研究方法,在集中装药条件下,研究了锚固洞室的抗爆性能,主要内容如下:
     1.针对锚固洞室爆破响应研究一般只局限于观测洞室宏观破坏效果的现状,以量纲分析理论为指导,设计并完成了典型锚固洞室爆破响应的地质力学模型试验,得到了洞室围岩垂直应力和水平应力、洞壁表面应变、项底板相对位移和加速度、边墙加速度波形曲线,这些曲线的特征是:拱顶、边墙垂直应力波形曲线正压时间较长,边墙水平应力波形曲线正压时间较短,且曲线波动较大:由洞壁表面应变波形曲线可看出,拱顶产生拉应变,其它部位基本上产生压应变,各洞室一般拱脚部位应变最大;拱顶加速度波形曲线较光滑,底板加速度波形波动较大,且几毫秒后才出现峰值;顶底板相对位移波形曲线的波动不大,且有残余变形产生,通过系统地分析总结洞室典型部位应力等主要力学量的时程特征,为设计和改进加固洞室方法提供了依据。
     2.首次较系统地对若干常用不同类型的锚杆加固洞室方法,开展了对比模型试验研究,洞室经不同类型锚杆加固后,其抗爆性能体现在围岩应力及其衰减规律、洞壁应变等力学量和洞室宏观破坏的差异上。同普通锚杆、短密锚杆和拱脚加长短密锚杆加固洞室分别相比,长密锚杆、长短相间锚杆和拱脚加长长密锚杆加固洞室的拱顶垂直应力较大,应力衰减系数小;洞壁表面应变、顶底板相对位移和加速度、边墙加速度较小;洞室的破坏裂纹仅在锚杆加固区外产生,加固区内无裂纹。通过综合比较各洞室围岩应力等力学量和洞室宏观破坏形态的差异,不但得出了拱脚加长长密锚杆加固洞室的抗爆性能最好的结论,而且还给出了各类常见加固方法在给定药量下的应力和位移的拟合关系式。
     3.完成了锚杆加固洞室爆破响应问题的LS-DYNA3D数值模拟,得到了洞室拱顶围岩垂直应力波形曲线、拱顶位移波形曲线,结果表明:模拟应力波形曲线与实测应力波形曲线在形态上是相似的,应力波的传播趋势是一致的;通过对拱顶围岩应力和位移峰值的分析知,加固洞室拱顶围岩垂直应力与衰减规律和位移的变化规律同模型试验的一致,这样,在计算结果与试验结果基本符合的基础上,采用分别固定锚杆间距和长度的方法,得到了对确定药量、确定位置时,洞室抗爆性能最佳的锚杆间距和长度等参数给出了定量结果,对加固抗爆技术的定量化研究具有启迪意义。
     4.将保角变换方法和时频分析方法相结合,根据爆炸应力波中的SH波为弹性波的假定,在单位圆中求解了散射波的波动方程,得到了入射SH波和散射SH波在洞室围岩中引起的剪应力;通过时频分析,得到了瞬态SH波作用下洞室动应力集中系数在围岩中的分布规律,得到了瞬态SH波作用下洞室的动应力集中系数在围岩中的分布规律,为洞室围岩的有效加固指明了方向。
Modern warfare has transformed into an information warfare age that is provided with nuclear deterrent conditions. The precision-guided penetrating underground weapons are developed quickly towards high strength, penetrating more deepness, great equivalent and minitype nuclear weapons state. This condition has seriously intimidated the safety of protective projects, such as the underground hospitals and storages Therefore, it is a realistic and strategic significant research to carried out the anti-detonating characteristics study on the reinforcement technology of the surrounding rock of protective projects when these projects are attacked by the penetrating weapons. This dissertation will make use of the research methods of model experiments of geomechanics, numerical simulation and theoretical analysis to study the anti-detonating characteristics of underground opening reinforced by rockbolts under the conditions of focus charging. The main contents are as follows:
     1. The wave curves of vertical stress, horizontal stress, surface strain of underground opening wall, accelerations of roof-to-floor and sidewall and the relative roof-to-floor displacement are obtained by carrying out model experiments of geomechanics. The characteristics of these curves are as follows: The time of positive pressure of vertical stress of measuring points of vault's and sidewall is relative long. But the time of positive pressure of horizontal stress of sidewall is relative short and the wave curves' fluctuation is very big. The wave curves of surface strain show the majority strain is tensile strain of vault's measuring points. But the other measuring points is compressive strain. The largest strain of every underground openings is located in the spring of arch. The accelerating wave curves of vaults' measuring points don't fluctuate. However, the accelerating wave curves' fluctuation of the floor is relative big, and these curves reach their peak value for a few milliseconds. The fluctuations of the wave curves of the roof-to-floor relative displacement isn't big, and these curves become stabilization at their residual strain at last.
     2. When the underground openings are reinforced by the different kinds of rockbolts, their anti-detonating characteristics should be manifested by the differences of the peak value of stress of surrounding rock and its attenuating rule, strain of surface wall, acceleration of roof-to-floor and sidewall, displacement of roof-to-floor and the macroscopic damage forms of every underground opening. By comparing individually the vertical stress in surrounding rocks of underground openings reinforced by normal rockbolts, by the short and dense rockbolts, by the short and dense lengthened rockbolts at the spring of arch, the vertical stress of surrounding rocks of underground openings reinforced by the long and dense rockbolts, by the long and short alternating rockbolts, by the long and dense lengthened rockbolts at the spring of arch is relative large, and their stress attenuating coefficients are relative small, their damage cracks generate out of the reinforced zone, and there is no cracks in the reinforced zone. By synthetical comparison of stress of surrounding rock, strain of surface wall, acceleration of roof-to-floor and sidewall, displacement of roof-to-floor and the macroscopic damage forms of every underground opening, the result shows the anti-detonating characteristics of the underground opening reinforced by the long and dense lengthened rockbolts at the spring of arch is the best. When the reinforced type of rockbolts and charge mount is known, stress of surrounding rocks,acceleration and displacement can be forcasted by the fitting equations of stress,acceleration and displacement.
     3. LS-DYNA3D program is used to build the corresponding numerical model of the first explosion of model experiment and numerical simulation is carried out. Vertical stress wave curves and vault's displacement wave curves of the surrounding rocks of underground openings are obtained. The results indicate that the forms of stress wave curves obtained by numerical simulation and measuring are similar, and the trend of stress waves' propagation is consistent. By analyzing the peak value of vertical stress and displacements of vaults' surrounding rocks, stress of all the reinforced underground openings' surrounding rocks is larger than that of the underground opening unreinfoced by rockbolts. The variable rules of the vertical stress of surrounding rocks and its attenuation and the displacement's changing are consistent with that of model experiments. By using the methods of fix individually interval and length of rockbolts are adopted, the proper rockbolts' interval and length which can enhance the anti-detonating characteristics of underground opening are obtained when charge amount is 100g and explosive center is located in the distance of 83cm right overhead the vault, and this result has a reference value of reinforcing the surrounding rocks of protective projects and tunnels.
     4. According to the hypothesis of elastic waves of SH-wave which exists in explosive stress waves, the method of conformal mapping of complex function at unit circle is used to solve wave equation. The shear stress in surrounding rocks of underground opening caused by incident SH-wave and scattered SH-wave is obtained. By time-frequency analysis, the distribution rule of dynamic stress concentration coefficient under the action of the transient SH-wave in surrounding rocks has been obtained. The location which may be damaged under the effects of transient SH-wave is found. This place should be reinforced.
引文
[1]汪新红,魏登仿,王明洋.信息化战争条件下防护工程的发展与对策[J].解放军理工大学学报(自然科学版).20045(6):37-40
    [2]王涛,余文力,王少龙等.国外钻地武器的现状与发展趋势[J].导弹玉航天运载技术,2005(5):51-56
    [3]王承树.爆炸荷载作用下坑道喷锚支护的破坏形态[J].岩石力学与工程学报,1989,8(1):72-91
    [4]杨升田,丁兆奎,龚振鹏等.由邻近爆炸引起的岩洞振动规律[J).爆炸与冲击,1983,3(4):33-43
    [5]杨升田.爆炸荷载下坑道振动规律及安全性估计[J].爆炸与冲击,1985,5(4):17-23
    [6]刘慧.近距侧爆情况下马蹄形隧道动态响应特点的研究[J].爆炸与冲击.2000,20(2):175-181
    [7]付海峰,张永哲,唐春海.备用料场开采爆破对百色地下厂房安全影响的试验研究[J].长江科学院院报.2003,第20卷增刊:120-123
    [8]甄胜利,霍永基.爆破作用下隧洞动态响应及破坏分析[A].工程爆破文集(第五集)[C]:309-317.
    [9]朱震海.爆炸波与地下结构物相互作用的动光弹探讨[J].爆炸与冲击.1989,9(3):21-24.
    [10]P.K.Rajmeny,U.K.Singhb,B.K.P.Sinha.Predicting rock failure around boreholes and drives adjacent to stopes in Indian mines in high stress regions[J].International Journal of Rock Mechanics & Mining Sciences.2002,39(2):151-164
    [11]Singh P.K.Blast vibration damage to underground coal mines from adjacent open-pit blasting[J].International Journal of Rock Mechanics & Mining Sciences.2002,39(8):959-973
    [12]喻晓今,余学文,张豫.数种情形下土钉的瞬态应变累积效应分析[J].华东交通大学学报,2006,23(4):1-4
    [13]曾宪明,杜云鹤,李世民.土钉支护抗动载原型与模型对比试验研究[J].岩石力学与工程学报.2003,22(111):1892-1897
    [14]孙钧,汪炳鉴编著.地下结构有限元法解析[M].上海:同济大学出版社,1988.
    [15]孙钧,侯学渊.地下结构[M].北京:科学出版社,1991
    [16]杜义欣,刘晶波,伍俊等.常规爆炸下地下结构的冲击震动环境[J].清华大学学报(自然科学版).2006,46(3):322-326
    [17]赵以贤,王良国.爆炸载荷作用下地下圆形结构动态分析[J].应用力学学报.1997,14(1):94-98
    [18]赵以贤,王良国.爆炸载荷作用下地下拱形结构动态分析[J].爆炸与冲击,1995,15(3):201-211
    [19]杨升田.侧向爆炸荷载作用下直墙拱形岩洞强度的近似分析[J].爆炸与冲击.1982,4:24-32.
    [20]李铮.爆炸地震波作用下隧道稳定性的计算[J].防护工程.1993,(4):19-25
    [21]王青海,沈军辉,卫宏.爆炸冲击波对地下巷道破坏效应分析[J].中国地质灾害与防治学报.2000,11(3):67-69
    [22]阳生权.小线间距施工隧道爆破地震影响下既有隧道围岩线性动力分析[J].工程爆破.1998,4(1):1-6.
    [23]陈剑杰.深埋岩石硐室在爆炸应力波荷载作用下的破坏效应[D].同济大学博士学位论文,2000.
    [24]陈剑杰,孙钧,林俊德.深埋岩石洞室受爆炸应力波荷载作用的破坏效应[J].辽宁工程技术大学学报(自然科学版).2001,20(4):402-404
    [25]朱波,赵国志,阳波.钻地炸弹近爆地下工事的动力响应数值分析[J].箭弹与制导学报,2005,60-62
    [26]郑际汪,陈理真.爆破荷载作用下隧道围岩稳定性分析[J].矿山压力与顶板管理,2004,4:53-55
    [27]马行东,李海波,李扬.空间不均匀性对地下洞室的影响初探[J].矿业研究与开发.2006,26(5):25-28
    [28]马行东,李海波,肖克强.动荷载作用下地下岩体洞室应力特征的影响因素分析[J].防灾减灾工程学报.2006,26(2):164-169
    [29]马行东,李海波,冯海鹏.动参数对三维洞室动态特性的影响分析[J].地下空间与工程学报.2006,2(1):83-86
    [30]鲍亦兴,毛昭宙.弹性波的衍射与动应力集中[M].刘殿魁等译.北京:科学出版社,1993
    [31]Kolsky,H.Stress Waves in Solids[M].Clarendon Press,Oxford,1953.
    [32]Yih-hsing Pao,Stephan A,Thau,A Perturbation Method for Boundary Value Problems in Dynamic Elasticity,PartⅡ[J],Quart,J.Appl.Math.,Vol.28,1970,P191.
    [33] Yih-Hsing pao. Elastic waves in solids, Journal of Applied Mechanics[J], 1983, 50(4): 1152-1164
    [34] J. Miklowitz. Scattering of a plane elastic compressional pulse by a cylindrical cavity [A].11~(th) international cong. of applied mechanics[C]. 1964,469-483
    [35] Lofcher R.D. A Method for the Study of Failure Mechanism in Cylindrical Rock Cavity due to Diffraction of A Pressure Wave,[D].Massachusetts Institutes of Technology, Cambridge, Massachusetts, July, 1962.
    [36] Baron, M.L, A.T. Matthews, Diffraction of a Pressure Wave by a Cylindrical Cavity in an Elastic Medium[J],J.appl.Mech., 1961, vol.28
    [37] Mow C.C. Carrier G.E, PerahaL.A. An Approximate Procedure for the Solution of a Class of Transient Wave Diffraction Problems[J]. Journal of Applied M echanics, 1966, 33: 168-172.
    [38] V.W.LEE, J.Karl. Diffraction of SV waves by underground, circular, cylindrical cavities[J]. Soil Dynamics and Earthquake Engineering, 1992,11:445-456
    [39] V.W.Lee, James K.On deformations near a circular underground cavity subjected to incident plane P waves[J]. European Earthquake Engineering, 1993,7(1):29-36.
    [40] V.W.Lee, Mihailo D. Trifunac. Response of Tunnels to Incident SH-waves [J]. Journal of the Engineering Mechanics Division, 1979,21:643-659.
    [41] V.W.Lee, Xiaoyun Wu. Application of the weighted residual method to diffraction by 2-D canyon of arbitrary shape: Ⅱ .Incident P,SV and Rayleigh waves[J].Soil Dynamics and Earthquake Engineering,1993,13:365-375.
    [42] Cao. H, V.W. Lee. Scattering of plane P waves by circular cylindrical canyons with various depth-to-width ratio[J]. Soil Dynamics and Earthquake Engineering, 1990,9(3):141-150
    [43] V.W. Lee, Xiaoyun Wu. Application of the weighted residual method to diffraction by 2-D canyon of arbitrary shape: I. Incident SH waves[J]. Soil Dynamics and Earthquake Engineering, 1993,13:355-364.
    [44] V.W.Lee, Michael E. Manoogian, Surface motion above an arbitrary shape underground cavity for incident SH waves[J]. European Earthquake Engineering, 1995, patron editor.
    [45] Liu D.K., Gai B.Z., Tao G,Y., Applications of the method of complex function to dynamic stress concentration [J], Wave Motion, Vol,4,pp293-304.
    
    [46] 刘殿魁, 刘宏伟 .SH 波散射与界面圆孔附近的动应力集中[J]. 力学学 报,1998,30(5):597-604
    [47]刘殿魁,刘宏伟.孔边裂缝对SH波散射及动应力强度因子[J].力学学报,1999,31(3):292-299
    [48]王艳,刘殿魁.SH波入射时浅埋衬砌结构的动力分析[J].哈尔滨工程大学学报,2002,23(6):43-47
    [49]王国庆,刘殿魁.SH波对浅埋相邻多个圆孔作用的动力分析[J].哈尔滨工程大学学报,2003,24(1):43-47
    [50]陈志刚,刘殿魁.SH波冲击下浅埋任意形孔洞的动力分析[J].地震工程与工程学报.2004,24(4):32-36.
    [51]边克信.爆破地震对地下构筑物的影响[J].有色金属,1981,(6):25-36
    [52]朱瑞赓,李铮.爆破地震波作用下隧道的安全距离问题[J].地下工程,1981,(4):26-33.
    [53]朱瑞赓,李铮.爆破地震波作用下岩石隧道的临界振动速度[A].土岩爆破文集(第二辑)[C].,冶金工业出版社,1983,285-291
    [54]史文谱,刘殿魁,林宏等半无限空间中稳态P波在衬砌周围的散射[J].地震工程与工程学报,2002,22(3).19-25.
    [55]易长平,卢文波,张建华等.爆破振动对任意形状地下洞室的影响研究[J].岩土力学.2007,28(11):2451-2455
    [56]易长平,卢文波,张建华.爆破振动作用下地下洞室临界振速的研究[J].爆破,2005,22(4):4-8
    [57]方从严,卓家寿.锚杆加固机制的试验研究现状[J].河海大学学报(自然科学版),2005,33(6):696-700
    [58]苏华友,张继春.紫坪铺进水口高陡边坡锚索抗爆破振动分析[J].岩石力学与工程学报,2003,22(11):1916-1918,
    [59]陆遐龄.岩石高边坡爆破开挖对锚固设施的影响[J]爆破,2000,17增刊:147-151
    [60]张云,刘开运.近区爆破对锚固设施的影响研究[J].水力发电,1996,8:23-26
    [61]杨湖,王成.弹性波在锚杆锚固体系中传播规律的研究[J].测试技术学报,2003,17(2):145-149
    [62]易长平,卢文波.爆破振动对砂浆锚杆的影响研究[J].岩土力学,2006,27(8):1312-1316
    [63]Ortlepp W D,Stacey T R.Performance of tunnel support under large deformation static and dynamic loading[J].Tunnelling and Underground Space Technology,1998,13(1):15-21.
    [64]Tannant D D,Brummer R K,YI X.Rockbolt behaviour under dynamic loading field Ms and modeling[J].International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1995,32(6):537-550.
    [65]Gisle S,Arne M.The influence of blasting on grouted rock bolts[J].Tunnelling and Underground Space Technology,1998,13(1):65-70.
    [66]Anders A.Dynamic Ming of steel for a new type of energy absorbing rock bolt[J].Journal of Constructional Steel Research,2006,62(5):501-512.
    [67]Anders A.Laboratory Ming of a new type of energy absorbing rock bolt[J].Tunnelling and Underground Space Technology,2005,20(4):291-300.
    [68]C.S.Zhang,D.H.Zou,V.Madenga.Numerical simulation of wave propagation in grouted rock bolts and the effects of mesh density and wave frequency.International Journal of Rock Mechanics & Mining Sciences,2006(43):634-639.
    [69]荣耀,许锡宾,赵明阶,等.锚杆对应力波传播影响的有限元分析[J].地下空间与工程学报,2006,2(1):115-119.
    [70]薛亚东,张世平,康天合.回采巷道锚杆动载响应的数值分析[J].岩石力学与工程学报,2003,22(11):1903-1906.
    [71]陈建功,张永兴,李英民.完整锚杆低应变动力响应问题的半解析解及分析[J].世界地震工程,2004,20(3):56-61
    [72]陈建功,张永兴.完整锚杆纵向振动问题的求解与分析[J].地下空间,2003,23(3):268-271.
    [73]张永兴,陈建功.缺陷锚杆振动问题的数学模型及其求解[J].地下空间与工程学报,2005,1(1):62-66
    [74]鲍先凯,李义.应力波反射法在锚杆无损检测中的应用[J].山西煤炭,2006,26(1):36-41
    [75]李义,王成.应力反射波法检测锚杆锚固质量的实验研究.煤炭学报.2000(2):160-164
    [76]王成,恽寿榕,李义.锚杆-锚固介质-围岩系统瞬态激励的响应分析[J].太原理工大学学报,2000,31(6):658-661.
    [77]李义,刘海峰,王富春.锚杆锚固状态参数无损检测及其应用[J].岩石力学与工程学报,2004,23(10):1741-1744
    [78]张昌锁,李义,赵阳升等.锚杆锚固质量无损检测中的激发波研究[J].岩石力学与工程学报,2006,25(6):1240-1245.
    [79]汪明武,王鹤龄.锚固质量的无损检测技术.岩石力学与工程学报.2002(1):126-129
    [80]汪明武.无损检测锚杆锚固质量的现场试验研究[J].水文地质工程地质,1998,(1):56-58.
    [81]王成,恽寿榕.应力波理论在动测锚杆锚固质量中的应用[J].地震工程与工程振动.2001,21(3):6-9
    [82]刘海峰.激发应力波在锚杆锚固体中传播规律的实验研究[J].宁夏大学学报(自然科学版).2001,22(3):293-297
    [83]李冀祺,马素贞.爆炸力学[M].北京:科学出版社,1992
    [84]王礼立.应力波基础[M].北京:国防工业出版社,2005
    [85]周维垣.高等岩石力学[M].北京:水利水电出版社,1990
    [86]谢和平,陈中辉.岩石力学[M].北京:科学出版社,2004
    [87]诺言德.相似理论与因次分析[M].北京:国防工业出版社,1963
    [88]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版北,2005
    [89]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2005
    [90]李裕春,时党勇,赵远ANSYS 11.0/LS-DYNA基础理论与工程实践[M].北京:水利水电出版社,2008
    [91]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004
    [92]黄克智,黄永刚.固体本构关系[M.北京:清华大学出版社,1999
    [93]熊祝华.连续介质力学基础[M].长沙:湖南大学出版社,1997
    [94]吕洪生,曾新吾.连续介质力学(下),动载固体力学与应力波[M].长沙:国防科技大学出版社,1999
    [95]王占江,李孝兰,戈琳等.花岗岩中化爆的自由场应力波传播规律分析[J].岩石力学与工程学报,2003,22(11):1827-1831
    [96]鲍亦兴,毛昭宙著.弹性波的衍射与动应力集中[M].刘殿魁,苏先樾译.北京:科学出版社,1993
    [97]周培基,A.K.霍普肯斯著.材料对强冲击载荷的动态响应[M].赵衡阳,李永池等译,北京:科学出版社,1986
    [98]黎在良,刘殿魁.固体中的波[M].北京:科学出版社,1995.
    [99]严镇军.数学物理方法[M].合肥:中国科学技术大学出版社,2004
    [100]邵惠民.数学物理方法[M].北京:科学出版社,2004
    [101]胡聿贤.地震工程学[M].北京:地震出版社,1988
    [102]林大超,施惠基,张奇等.爆炸地震效应的时频分析.爆炸与冲击,2003,23(1):31-36
    [103]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2001
    [104]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700