用户名: 密码: 验证码:
桥隧相连工程多源损伤力学行为与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:桥隧相连工程,是桥梁、隧道、洞口围岩及其防护工程的复杂组合体,在国内、外均有十分广泛的应用。我国西部、南部很多山区的高速公路中,桥隧相连的现象十分普遍,其显著的特点是桥梁、隧道及洞口岩土体之间存在相互影响,因此受到的扰动或损伤来源广泛,在各种作用下的力学行为也异常复杂。尤其是软弱围岩条件下的桥隧相连工程,由于各结构或部位间的相互影响更加显著,其桥、隧结构各关键部位、洞口围岩及附近岩土体的多源损伤、力学行为以及各类工程病害的产生和发展,必然是多种复杂影响因素的耦合作用的结果。然而,目前国内外对软弱围岩(如Ⅳ、Ⅴ级围岩)中桥隧搭接(或邻接)工程的研究,存在着对施工过程及后期运营中的桥梁与隧道结构各部位、洞口围岩及附近岩土体等的多源损伤或多部位损伤与力学行为响应或病害规律及机理鲜有深入研究的情况,以及极少考虑桥、隧、岩三者间的相互影响或长期的车辆荷载(尤其是重载、超载车辆)及其冲击作用对桥隧相连段中桥、隧结构及相关岩土体等产生的各种不利影响的现状。
     随着桥隧相连在国内外的日益广泛应用和发展,越来越多的多源损伤或工程病害现象以及各种复杂多变的影响因素与相关问题的不断出现,在对相关工程的设计、施工提出新要求的同时,还必须慎重考虑其对大量已建成的桥隧相连工程在后期运营、管理或维护中产生的各种具体影响等问题。
     针对上述问题,本文结合贵州省重大专项研究项目(200904)和湖南省交通科技项目(200928)“桥隧相连工程多源损伤力学行为与控制技术研究”,在试验和理论研究的基础上,主要开展了以下几项工作:
     (1)在阐述和分析桥隧相连工程应用及主要特点的基础上,分析了桥隧相连工程的多源损伤特点,探讨了导致桥隧相连工程多源损伤及复杂力学行为机理,并分析了诱发桥隧相连多源损伤与复杂力学行为的主要影响因素。
     (2)通过多工况下的桥隧相连工程室内模型试验研究,初步探讨了桥隧相连工程的多源损伤特点和各部位间的相互作用机理,在桥隧相连的施工过程及后期运营中桥梁、隧道各部位及周围岩土体等的力学行为特征,易出现的各种损伤或病害的诱发机理及发展规律,并根据相关模型试验结果提出了控制或减少多种损伤或病害产生或发展的合理化建议。
     (3)分析了桥隧相连中各种工程材料的损伤特性,给出了材料普适弹塑性本构关系的详细表述,并以此为基础探讨了材料的弹塑性损伤本构的一般形式,给出了相应的损伤本构关系、损伤演化方程的具体形式;之后,基于损伤理论探讨并分析了一些常用且适于描述桥隧相连工程中混凝土和岩土体材料各种损伤的本构模型及其具体形式,以及各自的特点和适用性。
     (4)依据工程结构和材料的弹塑性损伤及疲劳损伤累积等理论和分析方法,提出了桥隧相连多源损伤力学行为数值模拟简化分析方法和考虑损伤效应的桥隧相连处桩基桥台的简化计算方法;进行了适用于软弱围岩条件下桥隧相连中桥隧结构及岩土体损伤数值分析程序和本构模型的二次开发,给出了相应的实现方法、程序分析步骤与相关计算公式的具体表达式,方便工程实际应用或简化分析时采用。
     (5)根据相应的数值模拟简化分析方法,建立了一系列模拟桥隧相连多源损伤力学行为的有限元分析模型。通过系统的数值模拟计算和结果分析,研究了考虑不同部位的损伤对桥隧相连工程中桥梁、桥台及桩基础、洞口附近隧道衬砌及围岩等在车辆荷载及冲击作用下的多源损伤与力学行为(或响应)的具体影响及变化规律。
     (6)基于有限元模拟,系统分析了各种车辆荷载(重载、超载车辆及冲击)作用下的软弱围岩桥隧相连段各结构或部位的多源损伤力学行为中的关键影响因素,提出了桥隧相连工程多源损伤不利力学行为与病害控制的技术措施。图80幅,表20个,参考文献216篇
Abstract:Section between bridge and tunnel is a complex combination of bridge, tunnel with its surrounding rocks, the side or front slopes and the protection works nearby the entrance etc., which has a wide application both at home and abroad. It is very common on highways in mountain areas either west China or south China, which has a remarkable characteristic that all parts nearby have effects on each other causing many kinds of multiple-source damages and complex mechanical behaviors. Especially on bridge and tunnel connected project in weak surrounding rocks (such as grade IV or V surrounding rock), some key parts have much more significant effects on each other, with a characteristic that kinds of multiple-source damages, diseases and mechanical behaviors are certainly caused by coupling influences of each other. But according to the current comparatively little investigation situation at home and abroad, it is easily seen that little research has been done on multiple-source damages, mechanical behaviors or responses or diseases laws on some key parts of bridge, tunnel, surrounding rocks or soils nearby, but most of related researches or studies have little consideration of the influences among each other (bridge, tunnel and surrounding rocks) or influences caused by vehicle loads especially heavy load or overload at long time and so on.
     With wide application and rapid development of the bridge and tunnel connected project, more and more problems or influence factors will come across, which will not only bring new demands to its design or construction method but also bring things into consideration that some particular influences affect the operation, management or maintenance works of those existed projects.
     Aiming at problems mentioned above, supported by the major research project of Guizhou province (No.200904) and the transportation scientific research project of Hunan province (No.200928)-"Study on Mechanical Behavior and Control Technology of Multiple-Source Damage on Section between Bridge and Tunnel", main research work of this dissertation based on model tests and theoretical researches can be summarized as follows:
     (1)The characteristics, mechanism and main influence factors of multiple-source damage and mechanical behavior on bridge and tunnel connected project are discussed based on the discussion and analysis on its application and main features which cause kinds of multiple-source damages and mechanical behaviors.
     (2) A preliminary study has been performed on the characteristics of multiple-source damages and acting mechanism among some key parts of bridge and tunnel connected project, the characteristics of mechanical behaviors and the inducements along with its mechanism and developing law of some damages or diseases that easily seen on some parts of the bridge, tunnel or surrounding rocks during the construction or operation period on the basis of indoor model tests under multiple load cases. And some suggestions on how to control or reduce several kinds of damage or diseases have been provided according to the test results.
     (3) The elastoplastic damage model has been discussed together with the constitutive relation equations and the damage evolution equations, based on the summary and analysis on the damage characteristics of various materials and the detailed description of the constitutive relation of the elastoplastic model. Then several constitutive models and their detail forms of kinds of concretes, rock and soil masses which are suitable and in common use for researches on section between bridge and tunnel have been discussed along with some analysis on their characteristics and applicability, according to certain damage theories, massive research results and reference materials.
     (4) Some simplified numerical simulation and analysis method on multiple-source damage and mechanical behavior of bridge and tunnel connected project and a simplified calculation method on the bridge abutment with piles with the consideration of damage effects have been put forward based on theories or analysis methods such as the elastoplastic damage model, the fatigue damage accumulation model, etc. Secondary development of the numerical simulation software and the elastoplastic damage model are carried out which suitable for the damage analysis or calculation for concrete or rock and soil mass of bridge and tunnel connected project in weak surrounding rocks along, along with the implementation methods or the detailed analysis steps of each program, for the purpose of practical engineering application or uses for simplified analysis.
     (5) Series of models for finite element analysis on characteristics or law of multiple-source damage and its mechanical behavior of bridge and tunnel connected project have been created according to certain simplified numerical simulation and analysis method. Some specific influences along with variations of some multiple-source damages and mechanical behaviors under different vehicle load considering impact on beam, abutment with pile foundation, tunnel lining and surrounding rocks near the entrance in the bridge and tunnel connected project under circumstances of different part in different damage grade, which are summarized through systematical calculations of different finite element models and analyses of the results.
     (6) Systematical analyses and studies on some key influence factors of kinds of multiple-source damages and mechanical behaviors of some certain parts of in bridge and tunnel connected section in weak surrounding rocks under different kinds of vehicle loads (especially heavy load or overload ones considering impact) have been performed through systematical analyses and calculations of finite element models under different cases. And then some control technologies or reasonable treatments on how to reduce or control some certain damages, unfavorable mechanical behaviors or engineering diseases in bridge and tunnel connected projects have been investigated and and put forward according to some related theories and FEA results.
引文
[1]R. K. Gupta, R. W. Traill-Nash. Bridge dynamic loading due to road surface irregularities and braking of vehicle [J]. Earthquake engineering and structural dynamics,1980,8:83-96.
    [2]Kerr A D, Moroney B E. Track transition problems and remedies [J]. Bulletin American Railway Engineering Association,1995,742:265-298.
    [3]G. J. Monley and T. H. Wu. Tensile reinforcement effects on bridge approach settlement. Journal of geotechnical engineering. ASCE,1993,119 (4):749-762.
    [4]王飞.山区高速公路桥隧相连技术的研究与应用[J].公路工程与运输,2008,(11):124-126.
    [5]刘佑荣,贾洪彪,唐辉明,等.湖北巴东长江公路大桥斜坡稳定性研究[J].岩土力学,2004,25(11):1 828-1 831.
    [6]罗强.高速铁路路桥过渡段动力学性能分析及工程试验研究[D].成都:西南交通大学,2003:217-221.
    [7]丁浩,蒋树屏,程崇国,等.桥隧混合异型隧道结构设计[J].建筑监督检测与造价,2009,2(11~12):58-62.
    [8]李勇,丁浩.桥隧相接条件下超大断面隧道的设计[J].地下空间与工程学报,2006,2(3):416-419.
    [9]湖南省交通科学研究院.桥隧相连工程多源损伤力学行为与控制技术研究可行性研究报告[R].长沙:湖南省交通科学研究院,2008.
    [10]黄锦源,潘国庆.桥隧结合的越江渡海工程[J].中国市政工程,1994,(2):26-29.
    [11]Wahls H.E. NCHRP synthesis of highway practice 159:design and construction of bridge approaches. Transportation Research Board, National Research Council, Washington D C,1990,45.
    [12]James H.L, Scott M. Olson T D. Strk. Differential movement at embankment/bridge structure interface in Illinois. Transportation Research Board Paper,1998.
    [13]Edward J H. Guidelines for the use, design and construction of bridge approach slabs[J]. Virginia Transportation Research Council,1999,12.
    [14]赵峰,夏永旭,许东.桥隧相接隧道明洞稳定性研究[J].公路,2009,(12):180185.
    [15]刘涵,欧香英.山区高速公路桥隧毗邻群段中的风险传播问题[J].山西建筑,2008,34(22):190-191.
    [16]刘柏秀.山区高速公路桥隧连接段安全评价及改善研究[D].西安:长安大学,2009.
    [17]李培楠,肖勇刚.浅埋偏压段桥隧相接特殊洞门修建技术研究[J].广东公路交通,201 0,(3):66-69.
    [18]吴昊,罗敖.山区高速公路桥隧连接段交通事故成因分析[J].山西建筑,2010,36(31):267-268.
    [19]薛杰.山区高速公路桥隧连接工程关键性技术研究[D].武汉:武汉理工大学,2010:40-68.
    [20]李殿龙.日本新干线路基的设计与施工[J].中国铁路,1998,9:44-47.
    [21]Sunaga, Makoto. Vibration behavior of roadbed on soft grounds under trainload [J]. Quartly Report of RTRI,1990,31:29-35.
    [22]Cai C S, Shi X M, Voyiadjis G Z. Structural Performance of Bridge Approach Slabs under Given Embankment Settlement, ASCE Journal of Bridge Engineering,2005, 10(4):482-489.
    [23]Roy Sujata. Nonlinear Finite Element Analysis of Reinforced Concrete Bridge Deck/Bridge Approach Slab Using ABAQUS, M.S. Thesis in Civil Engineering at University of Missouri Kansas City,2005.
    [24]Allen D L. A Survey of the States on Problems Related to Bridge Approaches: Research Report UKtrP-85-25, Kentucky Transportation Research program,1985,10.
    [25]魏永幸,蔡成标,罗强.客运专线两桥(隧)之间短路基合理设计参数研究[J].科学技术通讯,2005,(4):43-47.
    [26]张子洋.岩溶隧道桥隧相连施工力学行为与支护结构受力特性研究[D].长沙:中南大学,2008:5-74.
    [27]王树英.隧道施工对邻近扩大基础桥梁结构的影响研究[D].长沙:中南大学,2007:2-75.
    [28]陈列.武广客运专线桥隧相连地段混凝土简支箱形梁施工方案[J].铁路工程学报,2007,10:1-5.
    [29]叶茂.铁路客运专线桥隧相连段桥式方案的选择[J].城市道桥与防洪,2010,(5):39-41.
    [30]施成华,雷明锋,彭立敏,等.桥隧相连结构静动力特性影响因素分析[J].中南大学学报(自然科学版),2011,42(4):1085-1091.
    [31]张剑.山区高速铁路隧道间桥隧连接结构探讨[J].铁道工程学报,2011,155(8):62-67.
    [32]李冬生,马志富,许占良,等.长昆线桥隧相连设计研究[J].铁道工程学报,2011,(12):69-73.
    [33]佐藤裕.轨道力学[M].北京:中国铁道出版社,1981.
    [34]佐藤吉彦.高周波轨道振动の理论解析[R].铁道技术研究报告,N1013,1976.
    [35]佐藤吉彦著,徐涌等译.新轨道力学[M].北京:中国铁道出版社,2001,56-97.
    [36]Ahlbeck O R. Effects of track dynamics impedance on vehicle-track interactions[J]. Vehicle System Dynamic Supplement,1985,24:58-71.
    [37]Fannin R J. Geogrid reinforcement of granular layers on soft clay. PhD Thesis Unversity of Oxford, England,1987.
    [38]Lipen A B, Chigarev A V. The displacements in an elastic half-space when a load moves along a beam lying on its surface [J]. Journal of Applied Maths Mechanics, 1998,62(5):791-796.
    [39]Birmann F. Recent investigation of the dynamic modulus of elasticity of the track in ballast with regard to high speeds. Railroad Track Mechanics and Technology,1978: 197-220.
    [40]Birmann F. The importance of permanent way elasticity for the rolling stability of vehicles[J]. RR&EN,1992,14(3):78-81.
    [41]Grassie S L. Track deflections and macroscopic movement of railway embankment[J]. Vehicle System Dynamics Supplement,1995,24:154-163.
    [42]Sheng X, Jones C J C, Petyt M. Harmonic load acting on Ground vibration generated by a railway track[J]. Journal of Sound and Vibration,1999,225 (1):3-28.
    [43]高自茂,张志华.客运专线桥隧相连运架装备方案研究[J].铁道标准设计,2005,(6):38-41.
    [44]刘亚滨.桥隧相连和两桥并行区段的整孔箱梁桥架设技术研究[J].铁道标准设计,2009,(6):21-28.
    [45]王春强.桥隧接口尾跨预应力T梁架设技术[J].桥梁,2009,(7):179-181.
    [46]孙筠.已建软基桥梁桥头跳车的处治方法机理分析及试验研究[D].杭州:浙江大学,2010:1-151.
    [47]黄曙升.浅谈桥隧连接条件下箱梁的施工[J].才智,2011,(01):53.
    [48]鲁云岗.山区高速公路桥隧连接下的桥台施工技术[J].中外建筑,2011,(10):82-83.
    [49]MacKown, A. F. Perimeter controlled blasting for underground excavations in fractured and weathered rocks[J]. Bull. Assoc. Engg. Geol. XXⅢ (4),1986:461-478.
    [50]Ricketts T. E. Estimating Underground mine damage produced by blasting[A]. In:4th Mini Symp. On Explosive and Blasting Res., Soc. Explosive Engg, Anaheim, California,1988:1-156.
    [51]Forsyth W.W. A discussion on the blast induced over-break around underground excavations[J]. Fragblast,1993, (4):161-166.
    [52]Persson, P.A., Holmberg, R. Rock Blasting and Explosive Engineering[M]. CRC Press, Tokyo,1996:265-285.
    [53]Singh P.K et al. Mines to vibration induced by adjacent open-pit blasting[J]. Environment Geology,2005,47 (2):205-214.
    [54]MANDAL S K, SINGH M M. Evaluating extent and causes of overbreak in tunnels[J]. Tunnelling and Underground Space Technology,2009,24 (1):22-36.
    [55]JEON S, KIM J, SEO Y, et al. Effect of a fault and weak plane on the stability of a tunnel[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41 (3): 1-6.
    [56]Sayers C. M, Kachanov M. Microcrack-induced elastic wave anisotropy of brittle rocks[J]. Journal of Geophysical Researeh,1995,100 (B3):4149-4156.
    [57]Otto Schulze, Till Popp, Hartmut Kern. Development of damage and permeability in deforming rock salt[J]. Engineering Geology,2001,61 (2):163-180.
    [58]Rubin A M, Ahrens T J. Dynamic tensile failure induced velocity deficits in rock[J]. Geophys ResLett,1991,18 (2):219-223.
    [59]Krautkrammer, J., Krautkrammer, H. Ultrasonic Testing of Materials[M]. New Delhi: Narosa Publishing House,1993.
    [60]Raina A. K., Chakraborty A. K., Ramulu M. et al. Rock mass damage from underground blasting, a literature review, and lab. and full scale tests to estimate crack depth by ultrasonic method[J]. Fragblast,2000, (4):103-125.
    [61]傅鹤林,韩汝才,朱汉华.破碎围岩中单拱隧道荷载计算的理论解[J].中南大学学报(自然科学版),2004,35(3):478-483.
    [62]傅鹤林,范臻辉,朱汉华,等.板裂介质围岩中的隧道衬砌与围岩相互作用机理研究[J].公路交通科技,2003,20(5):64-67.
    [63]吕建兵,傅鹤林.破碎围岩中深埋隧道荷载计算值的对比[J].西部探矿工程,2004,93(2):96-99.
    [64]郭军,王明年,李宁,等.大断面黄土隧道地基处理的沉降计算分析与讨论[J].铁道建筑,2007,(4):81-83.
    [65]赵慧岭,柳献,袁勇,等.软土隧道长期沉降的纵向作用效应研究[J].特种结构,2008,25(1):79-83.
    [66]高新强,仇文革.新型铁路隧道门洞口段结构受力特征现场试验研究[J].岩石力学与工程学报,2005,24(12):2 155-2 159.
    [67]刘志春,李文江,朱永全,等.软岩大变形隧道二次衬砌施作时机探讨[J].岩石力学与工程学报,2008,27(3):580-588.
    [68]朱合华,黄锋,徐前卫.变埋深下软弱破碎隧道围岩渐进性破坏试验与数值模拟[J].岩石力学与工程学报,2010,29(6):1 113-1 122.
    [69]刘钦.炭质页岩隧道软弱破碎围岩大变形机理与控制对策及其应用研究[D].济南:山东大学,2011:23-186.
    [70]吴鹏,葛耀君,熊洁.我国公路桥梁汽车荷载演变与比较[J].上海公路,2007(1):37-41.
    [71]Waarts P. H., Vrouwenvelder A. A Description of Vehicular Load on Bridge[R]. TNO Building and Consruction Research Report, B-91-218,1991,3.
    [72]Waarts P. H., Vrouwenvelder A. Traffic Models [R]. TNO Building and Consruction Research. RePort B-91-218,1992,3.
    [73]Ditlevsen O. Traffic Loads on Large Bridges Modeled as White-noise Fields[J]. Journal of Engineering Mechanics, ASCE,1994,120(4):681-694.
    [74]Fu G. K. et al. Vehicular Overloads:Load Model, Bridge Safety, and Permit Checling[J]. Journal of Bridge Engineering, ASCE,2000,5 (1):49-57.
    [75]Miao T. J. Bridge Live Load Models with Special Reference to Hong Kong[D]. HongKong:The Hong Kong Polytechnic University,2001.
    [76]GINDY MAYRAI. Development of a Reliability-based Deflection Limit State for Steel Girder Bridges[D]. New Jersey:The State University of New Jersey,2004.
    [77]李运生,张彦玲,林玉森.公路钢筋混凝土梁基于抗力劣化的可靠性分析[J].中国公路学报,2003,6(4):50-54.
    [78]梅刚,秦权,林道锦.公路桥梁车辆荷载的双峰分布概率模型[J].清华大学学报,2003,43(10):1 394-1 396.
    [79]王荣辉,池春,陈庆中,等.广州市高架桥疲劳荷载车辆模型研究[J].华南理工大学学报,2004,32(12):94-96.
    [80]黄华,刘伯权,刘鸣.车辆荷载谱作用下简支T梁力学性能[J].长安大学学报:自然科学版,2007,27(2):58-62.
    [81]刘伯权,黄华,刘鸣.简支梁桥在车辆荷载谱作用下的动力分析[J].土木工程学报,2006,39(3):76-80.
    [82]凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究[J].同济大学学报:自然科学版,2002,(11):15-20.
    [83]孙吉书,杨春风,窦远明,等.基于交通调查的重载交通公路桥梁设计车辆荷载探讨[J].河北工业大学学报,2009,38(1):91-95.
    [84]李书芳.超载运营下在役RC桥梁疲劳性能研究[D].重庆:重庆交通大学,2011.
    [85]Chu K. H., Garg V K., Dhar C. L. Railway-Bridge Impact:Simplified Train and Bridge Model [J] Journal of the Structural Division, ASCE,1979,105 (9):1823-1844.
    [86]Chu K. H., Garg V K. Wiriyachai A. Dynamic Interaction of Railway Train and Bridges[J]. Vehicle System Dynamics,1980,9(4):207-236.
    [87]Olsson M. On the foundational moving load problem[J]. Joural of sound and Vibration, ASEC,1991,145(2).
    [88]Tanable M., Yamada Y. Model method for interaction of train and bridge[J]. Journal of Computers and Structures, ASEC,1987,27 (1).
    [89]Chatterjee P. K., Datta T. K. et al. Vibration of continues bridges under moving vehicles[J]. Journal of sound and vibration, ASEC,1991,169(5):619-632.
    [90]Wang T. L. et al. Cable-stayed bridge vibration due to road surface roughness[J]. Joural of Structural Engineering, ASEC,1992,188(5):1354-1373.
    [91]Kawatani M., Kobayashi Y., Takamori K. Non-stationary random analysis with coupling vibration of bending and torsion of simple girder-bridge under moving vehicle[J]. Structural Engineering Earthquake Engineering, JSCE,1998,15(1):107-114.
    [92]Andersen L. et al. Vehicle moving along an infinite beam with random surface irregularities o'n a Kelvin foundation[J]. Journal of Applied Mechanics, ASEC,2002, 69-75.
    [93]Calcadal R., Cunha A., Delgado R. Analysis of Traffic-Induced Vibrations in a Cable-Stayed Bridge. Partl:Experimental Assessment[J]. Journal of Bridge Engineering, ASEC,2005,10 (4):370-385.
    [94]CalgadalR., Cunha A., Deigado R. Analysis of Traffic-Induced Vibrations in a Cable-Stayed Bridge. PartⅡ:Numerical Modeling and Stochastic Simulation[J]. Journal of Bridge Engineering, ASEC,2005,10 (4):386-397.
    [95]Zhang Q. L. et al. Dynamic amplification factors and EUDL of bridges under random traffic flows[J]. Engineering structures,2001, (23):663-672.
    [96]Schwarz M., Laman J. A. Response of Prestressed Conerete I-Girder Bridges to Live Load[J]. Journal of Bridge Engineering, ASEC,2001,6 (1):1-8.
    [97]Croce P., Salvatore W. Stochastic model for multilane traffic effects on bridges[J]. Journal of Bridge Engineering, ASEC,2001,6 (2):136-143.
    [98]Wang T. L., M. ASCE, Liu C. H. et al. Truck Loading and Fatigue Damage Analysis for Girder Bridges Based on Weigh-in-Motion Data[J]. Journal of Bridge Engineering, ASEC,2005,10(1):12-20.
    [99]郭向荣,曾庆元.京沪高速铁路南京长江斜拉桥方案行车临界风速分析[J].铁道学报,2001,23(5):75-80.
    [100]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道 出版社,1999.
    [101]徐文涛.车辆与道路/桥梁耦合随机动力分析及优化[D].大连:大连理工大学,2010:10-122.
    [102]林茂成,赵济海.GB 7031-1987车辆振动输入——路面平度表示方法[S].北京:中国标准出版社,1987.
    [103](日)松平精.关于东海道新干线桥梁挠曲的容许折角限值的研究[R].铁道技术研究所,1961.
    [104](日)佐藤吉彦,等.以走行安全和乘车舒适性考虑的线路结构的折角限度[R].铁道技术研究所,1972.
    [105]殷新锋.汽车荷载作用下梁式桥与斜拉桥的动态响应分析[D].长沙:湖南大学,2010:5-134.
    [106]李皓玉.车辆与路面相互作用下路面结构动力学研究[D].北京:北京交通大学,2011:15-135.
    [107]杨果岳.车辆随机荷载与柔性路面相互作用的研究[D].长沙:中南大学,2007:14-103.
    [108]沈火明.移动荷载作用下桥梁的振动理论及非线性研究[D].成都:西南交通大学,2005:13-134.
    [109]吕峰.车辆与结构相互作用随机动力分析[D].大连:大连理工大学,2008:57138.
    [110]叶茂.城市公路高架桥系统环境振动研究[D].哈尔滨:哈尔滨工业大学,2010:21-191.
    [111]Sweet and Morill. Influence of freefield strains on nonlinear lateral abutment stiffnesses[J]. Proc. of the Seventh Canadian Conference on Earthquake engineering. Montreal. June.1993.
    [112]Martin. G. R. Lam. I. P. Yan. L. P. Kapuskar. M. and Law. H. Bridge abutments modelling for seismic response analysis[J]. Proc. of the 4th Caltrans Seismic Research Workshop. Sacramento. July.1996.
    [113]H. True. Vehicle-track dynamic on a ramp and on the bridge:simulation and measurement[J]. Vehicle System Dynamic.2000:605-615.
    [114]Ding qing Li. David Davis. Transition of Railroad Bridge Approaches[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005.
    [115]蔡成标,翟婉明,赵铁军,等.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报,2001,1(01):17-19.
    [116]李献民,肖宏彬,王永和.行车速度对桥路过渡段路基动应力的影响[J].地震工程与工程振动,2005,25(01):49-53.
    [117]张洪亮,胡长顺,吕文江.路桥过渡段容许差异沉降计算模型[J].交通运输工程学报,2005,05(01):19-23.
    [118]刘建勋,王龙飞.桥隧之间柔性短路基段变整体刚性路面段的设计与施工[J].青海交通科技,2010(增刊):65-67.
    [119]刘佑荣,唐辉明,方云,等.巴东长江大桥地质环境与岩土工程问题研究[J].中国地质大学学报,2001,26(4):410-414.
    [120]李杨秋.坡体中桩基的受力特性分析[D].重庆:重庆大学,2005:18-85.
    [121]钟桂标.埋藏斜坡上嵌岩桩的桩群稳定性分析[D].昆明:昆明理工大学,2006:14-128.
    [122]李春鹏.锚固桩基础在高墩桥梁中的应用研究[D].武汉:中国地质大学,2007:16-64.
    [123]刘云鹏.库岸再造条件下桥隧结合部边坡的稳定性分析及防治措施[D].成都:成都理工大学,2008:4-86.
    [124]王春雷.桥基荷载作用下三维高边坡岩体力学行为及桥基位置确定的研究[D].成都:西南交通大学,2008:19-172.
    [125]郑光,许强,杜宇本.高陡岩质桥隧工程边坡稳定性评价及工程支护措施[J].成都理工大学学报(自然科学版),2011,38(4):430-437.
    [126]何本国ANSYS土木工程应用实例(第三版)[M].北京:中国水利水电出版社,2011:135-441.
    [127]李围,等.隧道及地下工程ANSYS实例分析[M].北京:中国水利水电出版社,2008:13-424.
    [128]邢静忠,王永岗,陈晓霞,等ANSYS 7.0分析实例与工程应用[M].北京:机械工业出版社,2004:21-466.
    [129]费康,张建伟ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010:1-83.
    [130]傅鹤林,彭思甜,韩汝才,等.岩土工程数值分析新方法[M].长沙:中南大学出版社,2006:2-162.
    [131]傅鹤林.块裂岩质边坡稳定性的理论分析模型及其工程应用研究[D].长沙:中南大学,2000:10-113.
    [132]李国,洗进.隧道及地下工程FLAC解析方法[M].北京:中国水利水电出版社,2009:41-239.
    [133]常斌,李宁,马玉扩.神经网络方法在洞室施工期应力及变形预测中的应用及其改进[J].岩石力学与工程学报,2004,23(7):1132-1135.
    [134]王毅才.隧道工程(第二版),上册[M].北京:人民交通出版社,2008:7-695.
    [135]王涛.高速公路桥梁交通荷载调查分析及仿真模拟[D].西安:长安大学,2010: 16-134.
    [136]卢树圣.现代预应力混凝土理论与应用[M].北京:中国铁道出版社,2000:148-270.
    [137]熊峻江.疲劳断裂可靠性工程学[M].北京:国防工业出版社,2008:13-61.
    [138]雷冬.疲劳寿命预测若干方法的研究[D].合肥:中国科技大学,2006:15-100.
    [139]韩成林.基于损伤累积效应的PC桥梁疲劳性能演化分析[D].武汉:武汉理工大学,2005:45-71.
    [140]李干.既有公路混凝土桥梁疲劳寿命与使用安全评估研究[D].西安:长安大学,2011:53-60.
    [141]朱红兵.公路钢筋混凝土简支梁桥疲劳试验与剩余寿命预测方法研究[D].长沙:中南大学,2011:8-122.
    [142]吴刚,孙钧,吴中如.复杂应力状态下完整岩体卸荷破坏的损伤力学分析[J].河海大学学报,1997,23(3):44-49.
    [143]李志勇.公路路基动强度设计方法及其在全风化花岗岩路基中的应用研究[D].成都:西南交通大学,2005:3-85.
    [144]李德寅,王邦楣,林亚超.结构模型试验[M].北京:科学出版社,1996.
    [145]左东启,等.模型试验的理论和方法[M].北京:水利电力出版社,1984:226328.
    [146]刘自明.桥梁结构模型试验研究[J].桥梁建设,1999,(4):1-7.
    [147]张开敬,王俊义,胡明.V形支撑连续梁全桥横向刚度有机玻璃模型的试验与分析[J].铁道学报,1998,20(6):86-92.
    [148]来弘鹏,谢永利,杨晓华.公路隧道衬砌断面型式模型试验研究[J].岩土工程学报,2006,28(6):740-744.
    [149]陈星烨,马晓燕,宋建中.大型结构试验模型相似理论分析与推导[J].长沙交通学院学报,2004,20(1):11-14.
    [150]董昌周,杨建辉,胡挺.公路隧道围岩模型试验相似材料的试验研究[J].公路,2010,(3):207-211.
    [151]王戍平.破碎围岩隧道的模拟试验研究[D].杭州:浙江大学,2004:30-89.
    [152]裘伯永,盛兴旺,乔建东,文雨松.桥梁工程[M].北京:中国铁道出版社,2000:37-410.
    [153]赵锡宏,孙红,罗冠威.损伤土力学[M].上海:同济大学出版社,2000:19-84.
    [154]任廷鸿.冲击载荷下疲劳损伤力学及锻锤基础的疲劳损伤分析[D].杭州:浙江大学,2006:82-141.
    [155]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993:5-183.
    [156]卡恰诺夫L M.连续介质损伤力学引论[M].杜善义,王殿富译.哈尔滨:哈尔 滨工业大学出版社,1989:2-135.
    [157]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990:29-213.
    [158]张庆华.混凝土本构模型及损伤力学研究[D].上海:同济大学,2000:52-113.
    [159]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999:387-531.
    [160]邱战洪.非线性动力损伤力学理论及其数值分析模型[D].杭州:浙江大学,2005:41-101.
    [161]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002:180-489.
    [162]郑颖少,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989:71-265.
    [163]尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994:1-24.
    [164]闰东明.混凝土动态力学性能试验与理论研究[D].大连:大连理工大学,2006:1-19.
    [165]Casey J, Lin H H. Calculated hardening softening and perfectly plastic responses of a special class of materials [J]. Acta mechanical,1984,55:41-67.
    [166]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2007:41-169.
    [167]J. Lemaitre. A Course on Damage Mechanics [M]. Spring-V er.lag,1992.
    [168]J.Lemaitre, Chaboche J L. Mecanique des Materiaux Solides [M]. Chap.7, Endommagement, Dumond,1985.
    [169]Janson J and Hult J. Fracture mechanics and damage mechanics, a combined approach [J]. J.de Mech, Appl.,1997,1(1):59-64.
    [170]Kachanov L M. Introduction to Continuum Damage Mechanics [M]. Martinus Nijhoff Publishers, Dordrecht,The Netherlands,1986.
    [171]Kachanov L M. Time of rupture process under creep conditions [J]. TVZ Akad Nauk,S.R.Otd,Tech.Nauk,1982, (8):657-659.
    [172]Tvergaard V. Material Failure by Void Growth to Coalescence [J]. DCAMM Report No.S54, The technical university of Denmark,1988, (3):112-119.
    [173]于海祥.基于理想无损状态的混凝土弹塑性损伤本构模型研究及应用[D].重庆:重庆大学,2009:59-142.
    [174]钟祖良.Q2原状黄土体本构模型及其在隧道工程中的应用研究[D].重庆:重庆大学,2008:46-102.
    [175]蓝航.节理岩体采动损伤本构模型及其在露井联采工程中的应用[D].北京:煤炭科学研究总院,2007:21-48.
    [176]Chow C L and Wang June. An anisotropic theory of elasticity for continuum damage mechanics. Engg. Fract. Mech.,1987, (33):3-10.
    [177]Sidoroff F. Description of anisotropic damage application to elasticity IUTAM Colloquium. Physical Nonlinearities in Structural Analysis,1981.237-240.
    [178]赵吉坤,张子明,仝兴华,等.岩石宏细观弹塑性损伤破坏对比研究[J].中国石油大学学报(自然科学版),2007,31(4):78-84.
    [179]孙红,赵锡宏.软土的弹塑性各向异性损伤分析[J].岩土力学,1999,20(3):7-12.
    [180]Krajcinovic D. Damage mechanics[J]. Mechanics of Materials,1989,8:117-197.
    [181]Simo J C and Ju J W. Strain and stress based continuum damage models. Int. J. Solids Structures,1987, (23):821-840.
    [182]王时越,张立翔,徐人平,等.混凝土疲劳刚度衰减规律试验研究[J].力学与实践,2003,25(5):55-57.
    [183]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003:4-87.
    [184]林燕清.混凝土疲劳累积损伤与力学性能劣化研究[D].哈尔滨:哈尔滨工业大学,1998:2-37.
    [185]曾春华.奇妙的疲劳现象[M].北京:科学出版社,1986:52-129.
    [186]曾春华,邹十践.疲劳分析方法及其应用[M].北京:国防工业出版社,1991:1-20.
    [187]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990:35-53.
    [188]J.勒迈特.损伤力学教程[M].北京:科学出版社,1996:122-167.
    [189]Nard H Le, Bailly P. Dynamic behavior of concrete:the structural effects on compressive strength increase[J]. Mech Cohens-Frict Mater.2000; 5:491-510.
    [190]董毓利,谢和平,赵鹏.受压混凝土理想弹塑性损伤本构模型[J].力学与实践,1996,18(6):14-17.
    [191]董毓利,谢和平,赵鹏.砼受压损伤力学本构模型的研究[J].工程力学,1996,13(1):44-53.
    [192]J.C.Simo, J.W.Ju. Strain and stress based continuum damage models-Ⅰ: Formulation[J]. International Journal of Solids and Structures,1987,23:821-840.
    [193]杨圣奇,徐卫亚,苏承东.考虑尺寸效应的岩石损伤统计本构模型研究[J].岩石力学与工程学报,2005,24(24):4484-4490.
    [194]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [195]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,23(11):1810-1814.
    [196]葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.
    [197]任建喜,蒋宇,葛修润-单轴压缩岩石疲劳寿命影响因素试验分析[J].岩土工程学报,2005,27(11):1 282-1 285.
    [198]肖建清.循环荷载作用下岩石疲劳特性的理论与实验研究[D].长沙:中南大学,2009:27-97.
    [199]张国华.基于围岩累积损伤效应的大断面隧道施工参数优化研究[D].武汉:中国科学院武汉岩土力学研究所,2010:22-62.
    [200]胡柳青.冲击载荷作用下岩石动态断裂过程机理研究[D].长沙:中南大学,2005:40-112.
    [201]Hakailehto K O. The behaviour of rock under impulse loads-A study using the Hopkinson split bar method[D]. Technical University, Otaniemi-Helsinki, Acta Polytechnica Scandinanca,1969.
    [202]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994:22-180.
    [203]蒲美玲.岩石动载损伤破坏的研究进展[J].江汉石油职工大学学报,2008,21(2):7-11.
    [204]高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散[J].岩石力学与工程学报,2003,22(11):1 777-1 780.
    [205]王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究[J].岩石力学与工程学报,2003,22(2):223-226.
    [206]JTG D63-2007,公路桥涵地基与基础设计规范[S].北京:人民交通出版社,2007:18-150.
    [207]孙广臣.浅基础用桩加固的二次病害模型研究[D].长沙:中南大学,2007:2775.
    [208]JTG D70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004:7-67.
    [209]JTG D60-2004,公路桥涵设计通用规范[S].北京:人民交通出版社,2004:6-37.
    [210]JTG D20-2006,公路路线设计规范[S].北京:人民交通出版社,2006:15-48.
    [211]邵旭东,程翔云,李立峰.桥梁设计与计算[M].北京:人民交通出版社,2007:123-780.
    [212]蒋树屏.我国公路隧道建设技术的现状及展望[J].交通世界,2003,(2):22-27.
    [213]何川,佘健.高速公路隧道维修与加固[M].北京:人民交通出版社,2006:67-206.
    [214]王明年,关宝树.三车道公路隧道在不同构造应力作用下的力学行为研究[J].岩土力学,1998,20(1):50-55.
    [215]刘全林,杨敏.软弱围岩巷道锚注支护机理及其变形分析[J].岩石力学与工程学报,2002,8(21):1159-1 161.
    [216]王忠昶.岩石类材料损伤局部化失稳及锚固的力学机制研究[D].大连:大连理工大学,2007:17-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700