用户名: 密码: 验证码:
生物膜的结构与性质关系的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜作为细胞的重要组成部分,它的结构与性质的关系对细胞生物学的发展和完善具有重要的意义。本文简要概述了生物膜的组成,结构和功能。介绍了生物膜的结构功能以及膜中磷脂分子和膜蛋白质分子性质的研究现状。由于目前对生物膜各方面性质的研究还存在不足,因此还需要进一步深入的研究。本文应用耗散粒子动力学方法(dissipative particle dynamics, DPD),在分子层面上对生物膜体系的动力学性质和微观状态进行了研究,取得了一些成果。
     本文应用耗散粒子动力学方法(DPD)研究了在水溶液中表面活性剂包裹油性溶质形成的胶束与生物膜发生碰撞融合与溶质传递的过程。揭示了在此过程中,溶质如何通过胶束与生物膜的碰撞融合来进行物质传递,以及有哪些因素会影响整个过程。模拟结果表明胶束首先在水中与生物膜进行间歇性碰撞,然后胶束与生物膜发生融合,最后胶束中的溶质分子向生物膜进行传递与扩散。其中融合过程可以分为三个单元过程:(1)分子接触。(2)孔道形成。(3)孔道增长。在整个碰撞融合与溶质传递过程中,存在两个速度控制步骤,即胶束与生物膜间水膜的破裂和融合时孔道的产生。胶束的初始碰撞速度,表面张力,胶束与生物膜间亲水粒子间的相互作用力以及空间排斥等影响因素在模拟中被检测。结果发现在碰撞融合过程中,耗散力(depletion force)发挥了重要的作用。而胶束的初始碰撞速度对融合比率(fusion ratio)基本没有影响。胶束表面张力增强有助于孔道的生成,提高了融合比率。而胶束与生物膜间亲水粒子间的相互作用力以及空间排斥加大,则增加了融合时的能量壁垒,降低了融合比率。
     由哑铃状双头磷脂分子(bolaform phospholipid)构成的古生菌细胞膜具有优良的热稳定性。例如耐热嗜酸古生菌(Sulfolobus acidocaldarius),能够在65-80℃的热温泉和酸性条件下(pH=2-3)生存。此种优良的热稳定性的原理还没有完全发现。本文应用耗散粒子动力学方法(DPD)使用囊泡结构作为模型研究了古生菌细胞膜在高温下的热稳定性和破裂机理。与由单极性磷脂分子(monopolar phospholipid)构成的普通细胞膜比较,发现了古生菌细胞膜结构与性质的关系。在分子层面,解释了古生菌细胞膜具有优良热稳定性的原因和破裂机理
     根据小电导率机械敏感性离子通道蛋白质(mechanosensitive ion channel of small conductance MscS)的结构与性质,本文建立了新的离子通道蛋白质粗粒化模型。在粗粒化过程中,离子通道蛋白质(MscS)的基本结构被保留。在耗散粒子动力学(DPD)模拟中发现,离子通道蛋白质模型根据模型参数的不同,存在两种不同的构型状态:打开状态和闭合状态。在膜表面张力相同条件下,离子通道的构型状态取决于蛋白质的结构,主要是蛋白质中的穿膜α螺旋的长度。模拟结果发现一定尺寸的蛋白质开关状态转变依靠膜表面张力的变化,性质和真实的小电导率机械敏感性离子通道蛋白质相同。
     应用耗散粒子动力学(DPD)方法本文还研究了锚定蛋白质(anchored protein)在细胞膜上的自聚过程。模拟发现锚定蛋白质的聚集速度和程度与细胞膜中锚定蛋白质的疏水长度有关。锚定蛋白质的聚集机理是:蛋白质的插入使周围细胞膜的上下两层结构发生不同变化,并且上下两层彼此耦合,这种变化促使蛋白质发生聚集。只有当锚定蛋白质的渗透深度(penetration depth)超过半膜厚度,下层的细胞膜结构才会发生剧烈形变。插入细胞膜深度较浅的锚定蛋白质,周围的细胞膜厚度变化较小。而插入细胞膜较深的锚定蛋白质则使细胞膜厚度波动加大。本文将锚定蛋白质的聚集机理与穿膜蛋白质的聚集机理相比较,找出了它们的异同点。
The relationship of the structures and properties of biomembrane, which is an important component of cell, is very important for development and improvement of cell biology. It is introduced the component, structure, and function of biomembrane. And, the research of the structure and function of bilayer and properties of phospholipids and proteins of membrane, which have been studied by many scientists, are also presented in the paper. It is needed to develop deeply due to the lack of work of biomembrane. By using the dissipative particle dynamics method, the dynamical property and microstructure are studied in molecular details and some results are found.
     The kinetic process of collision-driven solute transfer in an aqueous phase in which micelles are used as solute carriers is investigated by dissipative particle dynamics simulations. It is showed that in the transfer process of hydrophobic solute molecules, how the solute molecules are transferred through collision and fusion between micelle and bilayer and what factors affect the whole process. The simulation results indicate that, after a stage of intermittent collision between two neighboring aggregates, the fusion happens and the solute molecules transfer from the micelle to bilayer and diffuse. There are roughly three sequential events in a coalescence stage:(1) molecular contact, (2) neck formation, and (3) neck growth. It is found that there are two rate-limiting steps in the whole process of solute transfer, i.e., the break of the water film between two neighboring aggregates and the nucleation of a pore between two surfactant films. The effects of the collision velocity, the surface tension, the repulsive interaction between the surfactant films of the colliding aggregates, as well as the steric repulsion are examined. The simulation results show that the depletion force plays an important role during the coalescence stage, while the initial collision velocity basically does not change the fusion ratio. The results also demonstrate that the stronger of the surface tension facilitates the formation of the pores and increase of the fusion ratio. The effect of interaction between the colliding aggregates and the steric repulsion change the energy barrier and the fusion ratio.
     It is known that the archaebacterial cell membrane, which is formed by the bolaform phospholipids, is thermal stability at high temperature. For example, the thermoacidophilic archaebacterium Sulfolobus acidocaldarius can grow in hot springs at 65-80℃and live in acidic environments (pH 2-3). However, the origin of its unusual thermal stability remains unclear. In this work, using a vesicle as a model, the thermal stability and rupture of archaebacterial cell membrane are studied by using dissipative particle dynamics method. The structure-property relationship of monolayer membrane formed by bolaform lipids is found by comparing it with that of bilayer membrane formed by monopolar lipids. The origin of the unusually thermal stability of archaebacterial cell and the mechanism for its rupture are presented in molecular details.
     According to the structure and property of a kind of membrane protein, the mechanosensitive channel of small conductance (MscS), a coarse-grained model is proposed. The basic structure of the MscS is preserved when the protein is coarse grained. For the coarse-grained model, the channels show two different states, namely the open and closed states, depending on the model parameters in the dissipative particle dynamics simulations. Under the same membrane tension, the state of the ion channel is found to be critically determined by the protein structure, especially the length of three transmembrane a-helices. It is also found that for the protein with certain size, the gating transition occurs when the membrane tension is applied, resembling in a real mechanosensitive channel.
     The cluster formation of anchored proteins in a membrane has been studied in this work by dissipative particle dynamics simulation. The rate and extent of clustering is found to be dependent on the hydrophobic length of the anchored proteins embedded in the membrane. The cluster formation mechanism of anchored proteins in our work is ascribed to the different local perturbations on the upper and lower monolayers of the membrane and the intermonolayer coupling. Simulation results demonstrate that only when the hydrophobic depth of anchored proteins is larger than half the membrane thickness, the structure of the lower monolayer can be significantly deformed. Moreover, studies on the local structures of membranes indicate weak perturbation of bilayer thickness for a shallowly inserted protein, whereas there is significant perturbation for a more deeply inserted protein. Finally, in this study we addressed the difference of cluster formation mechanisms between anchored proteins and transmembrane proteins.
引文
[1]瞿中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2005.1-100
    [2]Gorter E, Grendel F. On bimolecular layers of lipoids on the chromocytes of the blood[J]. J. Exp. Med.,1925,41:439-443
    [3]Danielli J F, Davson H. A contribution to the theory of permeability of thin films[J]. J. Cell. Comp. Phys.,1935,5:495-508
    [4]Robertson J D. The ultrastructure of cell membranes and their derivatives[J]. Biochem. Soc. Symp.,1959,16:3-43
    [5]Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membranes [J]. Science,1972,175:720-731
    [6]Simons K, Ikonen E. Functional rafts in cell membranes[J]. Nature,1997,387:569-572
    [7]Pike L J. Lipid rafts:heterogeneity on the high seas[J]. Biochem. J.,2004,378:281-292
    [8]Edidin M. The state of lipid rafts:from model membrane to cells[J]. Annu. Rev. Biophys. Biomol. Struct.,2003,32:257-283
    [9]Weiss S, Jakobs J, Reemtsma T. Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation[J]. Environ. Sci. Technol.,2006,40:7193-7199
    [10]Yin N, Liu F, Zhong Z X, et al. Integrated membrane process for the treatment of desulfurization wastewater[J]. Ind. Eng. Chem. Res.,2010, DOI:10.1021/ie901267q
    [11]Li T G, Liu J X, Bai R B, et al. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater[J]. Environ. Sci. Technol.,2008,42:2099-2104
    [12]Bader H, Ringsdorf H, Schmidt B. Water-soluble polymers in medicine[J]. Angew. Makromol. Chem.,1984,123/124:457-485
    [13]Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications[J]. Adv. Drug. Deliv. Rev.,2003,55:403-419
    [14]Savic R, Luo L, Eisenberg A, et al. Micellar nanocontainers distribute to defined cytoplasmic organelles[J]. Science,2003,300:615-618
    [15]Rharbi Y, Winnik M A, Hahn K G. Kinetics of fusion and fragmentation nonionic micelles:triton X-100[J]. Langmuir,1999,15:4697-4700
    [16]Rharbi Y, Li M, Winnik M A, et al. Temperature dependence of fusion and fragmentation kinetics of triton X-100 micelles[J]. J. Am. Chem. Soc.,2000,122:6242-6251
    [17]Karaborni S, van Os N M, Esselink K, et al. Molecular dynamics simulations of oil solubilization in surfactant solutions[J]. Langmuir,1993,9:1175-1178
    [18]Shillcock J C, Lipowsky R. Tension-induced fusion of bilayer membranes and vesicles[J]. Nat. Mater.,2005,4:225-228
    [19]Grafmuller A, Shillcock J, Lipowsky R. Pathway of membrane fusion with two tension-dependent energy barriers[J]. Phys. Rev. Lett.,2007,98:218101
    [20]Rekvig L, Frenkel D. Molecular simulations of droplet coalescence in oil/water/surfactant systems[J]. J. Chem. Phys.,2007,127:134701
    [21]Muller M, Katsov K, Schick M. A new mechanism of model membrane fusion determined from monte carlo simulation[J], Biophys. J,2003,85:1611-1623
    [22]Stevens M J, Hoh J H, Woolf T B. Insights into the molecular mechanism of membrane fusion from simulation:evidence for the association of splayed tails[J]. Phys. Rev. Lett.,
    2003,91:188102
    [23]De Rosa M, Gambacorta A, Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids[J]. Microbiol. Rev.,1986,50:70-80
    [24]Lo S L, Chang E L. Purification and characterization of a liposomal-forming tetraether lipid fraction[J]. Biochem. Biophys. Res. Commun.,1990,167:238-243
    [25]Elferink M G L, de Wit J G, Driessen A J M, et al. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids[J]. Biochim. Biophys. Acta Biomembr., 1994,1193:247-254
    [26]Komatsu H, Chong P L G. Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius[J]. Biochemistry,1998,37:107-115
    [27]Sprott G D, Tolson D L, Patel G B. Archaeosomes as novel antigen delivery systems[J]. FEMS Microbiol. Lett.,1997,154:17-22
    [28]Cornell B A, Braach-Maksvytis V L B, King L G, et al. A biosensor that uses ion-channel switches[J]. Nature,1997,387:580-583
    [29]Meister A, Blume A. Self-assembly of bipolar amphiphiles[J]. Curr. Opin. Colloid Interface Sci.,2007,12:138-147
    [30]Estroff L A, Hamilton A D. Water gelation by small organic molecules[J]. Chem. Rev., 2004,104:1201-1218
    [31]Yamauchi K, Doi K, Yoshida Y, et al. Archaebacterial lipids:highly proton-impermeable membranes from 1,2-diphytanyl-sn-glycero-3-phosphocoline[J]. Biochim. Biophys. Acta, 1993,1146:178-182
    [32]Gabriel J L, Chong P L G. Molecular modeling of archaebacterial bipolar tetraether lipid membranes[J]. Chem. Phys. Lipids,2000,105:193-200
    [33]Goetz R, Lipowsky R. Computer simulations of bilayer membranes:self-assembly and interfacial tension[J]. J. Chem. Phys.,1998,108:7397-7409
    [34]Marrink S J, Mark A E. Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles[J]. J. Am. Chem. Soc.,2003,125:15233-15242
    [35]Groot R D, Rabone K L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants [J]. Biophys. J.,2001,81:725-736
    [36]Nielsen S O, Ensing B, Ortiz V, et al. Lipid bilayer perturbations around a transmembrane nanotube:a coarse grain molecular dynamics study[J]. Biophys. J.,2005,88:3822-3828
    [37]Nielsen S O, Lopez C F, Srinivas G, et al. Coarse grain models and the computer simulation of soft materials[J]. J. Phys.:Condens. Matter,2004,16:R481-R512
    [38]Pickholz M, Saiz L, Klein M L. Concentration effects of volatile anesthetics on the properties of model membranes:A coarse-grain approach[J]. Biophys. J.,2005,88: 1524-1534
    [39]Shelley J C, Shelley M Y, Reeder R C, et al. A coarse grain model for phospholipid simulations[J]. J. Phys. Chem. B,2001,105:4464-4470
    [40]Shelley J C, Shelley M Y, Reeder R C, et al. Simulations of phospholipids using a coarse grain model[J]. J. Phys. Chem. B,2001,105:9785-9792
    [41]Zhang X R, Chen B H, Wang Z H. Computer simulation of adsorption kinetics of surfactants on solid surfaces[J]. J. Colloid Interface Sci.,2007,313:414-422
    [42]Shillcock J C, Seifert U. Thermally induced proliferation of pores in a model fluid membrane[J]. Biophys. J.,1998,74:1754-1766
    [43]Davis C H, Nie H, Dokholyan N V. Insights into thermophilic archaebacterial membrane stability from simplified models of lipid membranes[J]. Phys. Rev. E,2007,75:051921
    [44]Anishkin A, Kung C. Microbial mechanosensation[J]. Curr. Opin. Neurobiol.,2005,15: 397-405
    [45]Hamill O P, Martinac B. Molecular basis of mechanotransduction in living cells[J]. Physiol. Rev.,2001,81:685-740
    [46]Kung C. A possible unifying principle for mechanosensation[J]. Nature,2005,436: 647-654
    [47]Berrier C, Coulombe A, Szabo I, et al. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria[J]. Eur. J. Biochem.,1992,206:559-565
    [48]Blount P, Moe P C. Bacterial mechanosensitive channels:integrating physiology, structure and function[J]. Trends Microbiol.,1999,7:420-424
    [49]Levina N, Totemeyer S, Stokes N R, et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity[J]. EMBO J.,1999,18:1730-1737
    [50]Martinac B, Buechner M, Delcour A H, et al. Pressure-sensitive ion channel in Escherichia coli[J]. Proc. Natl. Acad. Sci. U.S.A.,1987,84:2297-2301
    [51]Chang G, Spencer R H, Lee A T, et al. Structure of the MscL homolog from mycobacterium tuberculosis:a gated mechanosensitive ion channel[J]. Science,1998,282: 2220-2226
    [52]Bass R B, Strop P, Barclay M, et al. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel[J]. Science,2002,298:1582-1587
    [53]Wilson D P, Susnjar M, Kiss E, et al. Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697[J]. Biochem. J.,2005,389:763-774
    [54]Decoursey T E. Voltage-gated proton channels and other proton transfer pathways[J]. Physiol. Rev.,2003,83:475-579
    [55]Vassort G. Adenosine 5'-triphosphate:a P2-purinergic agonist in the myocardium[J]. Physiol. Rev.,2001,81:767-806
    [56]North R A. Molecular physiology of P2X receptors[J]. Physiol. Rev.,2002,82: 1013-1067
    [57]Ruthe H J, Adler J. Fusion of bacterial spheroplasts by electric fields[J]. Biochim. Biophys. Acta,1985,819:105-113
    [58]Saint N, Lacapere J J, Gu L Q, et al. A hexameric transmembrane pore revealed by two-dimensional crystallization of the large mechanosensitive ion channel (MscL) of Escherichia coli.[J]. J. Biol. Chem.,1998,273:14667-14670
    [59]Perozo E, Cortes D M, Sompornpisut P, et al. Open channel structure of MscL and the gating mechanism of mechanosensitive channels[J]. Nature,2002,418:942-948
    [60]Perozo E, Kloda A, Cortes D M, et al. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating[J]. Nat. Struct. Biol., 2002,9:696-703
    [61]Tsai I J, Liu Z W, Rayment J, et al. The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity[J]. Eur. Biophys. J,2005,34:403-412
    [62]Corry B, Rigby P, Liu Z W, et al. Conformational changes involved in MscL channel gating measured using FRET spectroscopy[J]. Biophys. J.,2005,89:L49-L51
    [63]Betanzos M, Chiang C S, Guy H R, et al. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension[J]. Nat. Struct. Biol., 2002,9:704-710
    [64]Colombo G, Marrink S J, Mark A E. Simulation of MscL gating in a bilayer under stress[J]. Biophys. J,2003,84:2331-2337
    [65]Gullingsrud J, Kosztin D, Schulten K. Structural determinants of MscL gating studied by molecular dynamics simulations[J]. Biophys. J.,2001,80:2074-2081
    [66]Gullingsrud J, Schulten K. Gating of MscL studied by steered molecular dynamics[J]. Biophys. J.,2003,85:2087-2099
    [67]Kong Y F, Shen Y F, Warth T E, et al. Conformational pathways in the gating of Escherichia coli mechanosensitive channel[J]. Proc. Natl. Acad. Sci. U.S.A.,2002,99: 5999-6004
    [68]Sukharev S, Betanzos M, Chiang C S, et al. The gating mechanism of the large mechanosensitive channel MscL[J]. Nature,2001,409:720-724
    [69]Martinac B. In Biological Membrane Ion Channels:Dynamics, Structure, and Applications[M]. New York:Springer,2006.369-398
    [70]Akitake B, Anishkin A, Liu N, et al. Straightening and sequential buckling of the pore-lining helices define the gating[J]. Nat. Struct. Mol. Biol.,2007,14:1141-1149
    [71]Akitake B, Anishkin A, Sukharev S. The "dashpot" mechanism of stretch-dependent gating in MscS[J]. J. Gen. Physiol,2005,125:143-154
    [72]Sotomayor M, Schulten K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS[J]. Biophys. J.,2004,87:3050-3065
    [73]Sotomayor M, van der Straaten T A, Ravaioli U, et al. Electrostatic properties of the mechanosensitive channel of small conductance MscS[J]. Biophys. J.,2006,90: 3496-3510
    [74]Spronk S A, Elmore D E, Dougherty D A. Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance[J]. Biophys. J.,2006,90:3555-3569
    [75]Anishkin A, Sukharev S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS[J], Biophys. J.,2004,86:2883-2895
    [76]Sotomayor M, Vasquez V, Perozo E, et al. Ion conduction through MscS as determined by electrophysiology and simulation[J]. Biophys. J.,2007,92:886-902
    [77]Vora T, Corry B, Chung S H. Brownian dynamics investigation into the conductance state of the MscS channel crystal structure [J]. Biochim. Biophys. Acta,2006,1758:730-737
    [78]Anishkin A, Kamaraju K, Sukharev S. Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance[J]. J. Gen. Physiol.,2008,132:67-83
    [79]Muller M, Katsov K, Schick M. Biological and synthetic membranes:What can be learned from a coarse-grained description?[J]. Phys. Rep.,2006,434:113-176
    [80]Venturoli M, Sperotto M M, Kranenburg M, et al. Mesoscopic models of biological
    membranes[J]. Phys. Rep.,2006,437:1-54
    [81]Yefimov S, van der Giessen E, Onck P R, et al. Mechanosensitive membrane channels in action[J]. Biophys. J.,2008,94:2994-3002
    [82]Sackmann E. Biological membranes architecture and function. In Structure and Dynamics of membranes[M]. Amsterdam:Elsevier,1995.1-65
    [83]Picot D, Loll P J, Garavito R M. The x-ray crystal structure of the membrane protein prostaglandin H2 synthase-1[J]. Nature,1994,367:243-249
    [84]Wendt K U, Poralla K, Schulz G E. Structure and function of squalene cyclase[J]. Science, 1997,277:1811-1815
    [85]Binda C, Newton-Vinson P, Hubalek F, et al. Structure of human monoamine oxidase-b, a drug target for the treatment of neurological disorders[J]. Nat. Struct. Biol.,2002,9: 22-26
    [86]Bracey M H, Hanson M A, Masuda K R, et al. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling[J]. Science,2002,298:1793-1796
    [87]Williams P A, Cosme J, Sridhar V, et al. Mammalian microsomal cytochrome P450 monooxygenase:structural adaptations for membrane binding and functional diversity[J]. Mol. Cell,2000,5:121-131
    [88]Braceya M H, Cravatta B F, Stevens R C. Structural commonalities among integral membrane enzymes[J]. FEBS Lett.,2004,567:159-165
    [89]Fowler P W, Coveney P V. A computational protocol for the integration of the monotopic protein prostaglandin H2 synthase into a phospholipid bilayer[J]. Biophys. J.,2006,91: 401-410
    [90]Nina M, Berneche S, Roux B. Anchoring of a monotopic membrane protein:the binding of prostaglandin H-2 synthase-1 to the surface of a phospholipids bilayer[J]. Eur. Biophys. J.,2000,29:439-454
    [91]Rajamani R, Gao J L. Balancing kinetic and thermodynamic control:the mechanism of carbocation cyclization by squalene cyclase[J]. J. Am. Chem. Soc.,2003,125: 12768-12781
    [92]Schwab F, van Gunsteren W F, Zagrovic B. Computational study of the mechanism and the relative free energies of binding of anticholesteremic inhibitors to squalene-hopene cyclase[J]. Biochemistry,2008,47:2945-2951
    [93]Balali-Mood K, Bond P J, Sansom M S P. Interaction of monotopic membrane enzymes with a lipid bilayer:a coarse-grained MD simulation study[J]. Biochemistry,2009,48: 2135-2145
    [94]Fowler P W, Balali-Mood K, Deol S, et al. Monotopic enzymes and lipid bilayers:a comparative study [J]. Biochemistry,2007,46:3108-3115
    [95]Ollila O H S, Risselada H J, Louhivuori M, et al.3D Pressure distribution in lipid membranes and membrane-protein complexes[J]. Phys. Rev. Lett.,2009,102:078101
    [96]Pantano D A, Klein M L. Characterization of membrane-protein interactions for the leucine transporter from aquifex aeolicus by molecular dynamics calculations[J]. J. Phys. Chem. B,2009,113:13715-13722
    [97]Periole X, Huber T, Marrink S J, et al. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers[J]. Langmuir 2007,23:12617-12623
    [98]Fukuda M, Kanno E, Ogata Y, et al. Mechanism of the SDS-resistant synaptotagmin
    clustering mediated by the cysteine cluster at the interface between the transmembrane and spacer domains[J]. J. Biol. Chem,2001,276:40319-40325
    [99]Garcia M, Mirre C, Quaroni A, et al. GPI-anchored proteins associate to form microdomains during their intracellular transport in Caco-2 cells[J]. J. Cell Sci.,1993, 104:1281-1290
    [100]Kanazawa K, Kudo A. Self-assembled RANK induces osteoclastogenesis ligand-independently[J]. J. Bone Miner. Res.,2005,20:2053-2060
    [101]Navaratnam D, Bai J P, Samaranayake H, et al. N-terminal-mediated homomultimerization of prestin, the outer hair cell motor protein[J]. Biophys. J.,2005,89: 3345-3352
    [102]Neumann-Giesen C, Falkenbach B, Beicht P, et al. Membrane and raft association of reggie-1/flotillin-2:role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression[J]. Biochem. J.,2004,378:509-518
    [103]Petersen N O, Brown C, Kaminski A, et al. Analysis of membrane protein cluster densities and sizes insitu by image correlation spectroscopy[J]. Farad. Discuss.,1999,111: 289-305
    [104]Ronzon F, Desbat B, Buffeteau T, et al. Structure and orientation of a glycosylphosphatidyl inositol anchored protein at the air/water interface[J]. J. Phys. Chem. B,2002,106:3307-3315
    [105]Sieber J J, Willig K I, Kutzner C, et al. Anatomy and dynamics of a supramolecular membrane protein cluster[J]. Science,2007,317:1072-1076
    [106]Uhles S, Moede T, Leibiger B, et al. Isoform-specific insulin receptor signaling involves different plasma membrane domains[J]. J. Cell Biol.,2003,163:1327-1337
    [107]Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature,2006,440:935-939
    [108]Stradner A, Sedgwick H, Cardinaux F, et al. Equilibrium cluster formation in concentrated protein solutions and colloids[J]. Nature,2004,432:492-495
    [109]Dan N, Pincus P, Safran S A. Membrane-induced interactions between inclusions[J]. Langmuir,1993,9:2768-2771
    [110]Schmidt U, Guigas G, Weiss M. Cluster formation of transmembrane proteins due to hydrophobic mismatching[J]. Phys. Rev. Lett.,2008,101:128104
    [111]Botelho A V, Huber T, Sakmar T P, et al. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes[J]. Biophys. J.,2006, 91:4464-4477
    [112]Venturoli M, Smit B, Sperotto M M. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins[J]. Biophys. J.,2005,88:1778-1798
    [113]Reynwar B J, Illya G, Harmandaris V A, et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions [J]. Nature,2007,447:461-464
    [114]Gil T, Ipsen J H, Mouritsen O G, et al. Theoretical analysis of protein organization in lipid membranes[J]. Biochim. Biophys. Acta,1998,1376:245-266
    [115]Owicki J C, McConnell H M. Theory of protein-lipid and protein-protein interactions in bilayer membranes[J]. Proc. Natl. Acad. Sci. USA,1979,76:4750-4754.
    [116]Espanol P, Warren P. Statistical mechanics of dissipative dynamics[J]. Europhys. Lett.,
    1995,30:191-196
    [117]Groot R D, Warren P B. Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation[J]. J. Chem. Phys.,1997,107:4423-4435
    [118]Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhys. Lett.,1992,19:155-160
    [119]Gao L H, Lipowsky R, J S. Tension-induced vesicle fusion:pathways and pore dynamics[J]. Soft Matter,2008,4:1208-1214
    [120]Gao L H, Shillcock J, Lipowsky R. Improved dissipative particle dynamics simulations of lipid bilayers[J]. J. Chem. Phys.,2007,126:015101
    [121]Grafmuller A, Shillcock J, Lipowsky R. The fusion of membranes and vesicles:pathway and energy barriers from dissipative particle dynamics[J]. Biophys. J.,2009,96: 2658-2675
    [122]Illya G, Lipowsky R, Shillcock J C. Effect of chain length and asymmetry on material properties of bilayer membranes[J]. J. Chem. Phys.,2005,122:1-6
    [123]Kranenburg M, Smit B. Phase behavior of model lipid bilayers[J]. J. Phys. Chem. B,2005, 109:6553-6563
    [124]Kranenburg M, Venturoli M, Smit B. Molecular simulations of mesoscopic bilayer phases[J]. Phys. Rev. E,2003,67:060901
    [125]Kranenburg M, Venturoli M, Smit B. Phase behavior and induced interdigitation in bilayers studied with dissipative particle dynamics[J]. J. Phys. Chem. B,2003,107: 11491-11501
    [126]Kranenburg M, Vlaar M, Smit B. Simulating induced interdigitation in membranes[J]. Biophys. J.,2004,87:1596-1605
    [127]Malfreyt P, Tildesley D J. Dissipative particle dynamics simulations of grafted polymer chains between two walls[J]. Langmuir,2000,16:4732-4740
    [128]Ortiz V, Nielsen S O, Discher D E, et al. Dissipative particle dynamics simulations of polymersomes[J]. J. Phys. Chem. B,2005,109:17708-17714
    [129]Shillcock J C, Lipowsky R. Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations[J]. J. Chem. Phys., 2002,117:5048-5061
    [130]Evans G T. Dissipative particle dynamics:transport coefficients[J]. J. Chem. Phys.,1999, 110:1338-1342
    [131]Avalos J B, Mackie A D. Dynamic and transport properties of dissipative particle dynamics with energy conservation[J]. J. Chem. Phys.,1999,111:5267-5276
    [132]Flekkφy E G, Coveney P V. From molecular dynamics to dissipative particle dynamics[J]. Phys. Rev. Lett.,1999,83:1775-1778
    [133]Pagonabarraga I, Frenkel D. Dissipative particle dynamics for interaction systems[J]. J. Chem. Phys.,2001,111:5015-5026
    [134]Groot R D. Electrostatic interactions in dissipative particle dynamics simulation of polyelectrolytes and anionic surfactants[J]. J. Chem. Phys.,2003,118:11265-11277
    [135]Amitesh M, Simon M. Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension[J]. J. Chem. Phys.,2004, 120:1594-1601
    [136]Partington J R, Hudson R F, Bagnall K W. Self-diffusion of aliphatic alcohols[J]. Nature,
    1952,169:583-584
    [137]Li S Y, Zhang X R, Dong W, et al. Computer simulations of solute exchange using micelles by a collision-driven fusion process[J]. Langmuir,2008,24:9344-9353
    [138]Michielsen K, De Raedt H. Morphological image analysis[J]. Comput. Phys. Commun., 2000,132:94-103
    [139]Michielsen K, De Raedt H. Integral-geometry morphological image analysis[J]. Phys. Rep.,2001,347:461-538
    [140]Giardina C R, Dougherty E R. Morphological methods in image and signal processing[M]. Prentice-Hall:Englewood Cli!s,1988.
    [141]Mecke K R. A morphological model for complex fluids[J]. J. Phys.:Condens. Matter, 1996,8:9663-9667
    [142]Mecke K R. Morphological thermodynamics of composite media[J]. Fluid Phase Equilibria,1998,150-151:591-598
    [143]Mecke K R. Integral geometry in statistical physics[J]. Int. J. Mod. Phys. B,1998,12: 861-899
    [144]Mecke K R, Wagner H. Euler characteristic and related measures for random geometric sets[J]. J. Stat. Phys.,1991,64:843-850
    [145]Farago O, Santangelo C D. Pore formation in fluctuating membranes[J]. J. Chem. Phys., 2005,122:044901
    [146]Muller M, Schick M. Structure and nucleation of pores in polymeric bilayers:A Monte Carlo simulation[J]. J. Chem. Phys.,1996,105:8282-8292
    [147]Netz R R, Schick M. Pore formation and rupture in fluid bilayers[J]. Phys. Rev. E,1996, 53:3875-3885
    [148]Tieleman D P, Leontiadou H, Mark A E, et al. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields[J]. J. Am. Chem. Soc.,2003,125: 6382-6383
    [149]Wang Z J, Frenkel D. Pore nucleation in mechanically stretched bilayer membranes[J]. J. Chem. Phys.,2005,123:154701
    [150]Li S Y, Zheng F X, Zhang X R, et al. Stability and rupture of archaebacterial cell membrane:a model study[J].J. Phys. Chem. B,2009,113:1143-1152
    [151]Sukharev S I, Blount P, Martinac B, et al. Mechanosensitive channels of Escherichia coli: The MscL gene, protein, and activities [J]. Annu. Rev. Physiol.,1997,59:633-657
    [152]Vasquez V, Sotomayor M, Cordero-Morales J, et al. A structural mechanism for MscS gating in lipid bilayers[J]. Science,2008,321:1210-1214
    [153]Wang W J, Black S S, Edwards M D, et al. The structure of an open form of an E. coli mechanosensitive channel at 3.45 A resolution[J]. Science,2008,321:1179-1183
    [154]Li S Y, Zhang X R, Wang W C. Coarse-grained model for mechanosensitive ion channels[J]. J. Phys. Chem. B,2009,113:14431-14438
    [155]Fernandes F, Loura L M S, Prieto M, et al. Dependence of M13 major coat protein oligomerization and lateral segregation on bilayer composition[J]. Biophys. J.,2003,85: 2430-2441
    [156]Harroun T A, Heller W T, Weiss T M, et al. Experimental evidence for hydrophobic matching and membranemediated interactions in lipid bilayers containing gramicidin[J]. Biophys. J.,1999,76:937-945
    [157]Mall S, Broadbridge R, Sharma R P, et al. Self-association of model transmembrane helix is modulated by lipid structure[J]. Biochemistry,2001,40:12379-12386
    [158]Li S Y, Zhang X R, Wang W C. Cluster formation of anchored proteins induced by membrane-mediated interaction[J]. Biophys. J.,2010,98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700