用户名: 密码: 验证码:
MCM-41介孔分子筛的制备及其重金属离子吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1992年Mobil公司的科研人员成功合成了以MCM-41为代表的M41S系列介孔分子筛以来,介孔材料以其高的比表面积和孔体积、均匀的孔径分布、丰富的表面基团等引起了广大科研工作者的兴趣。但到目前为止,MCM-41介孔分子筛仍未在工业上得到大规模的应用,除与其较低的水热稳定性有关外,另外非常重要的原因是受硅源的性质、模板体系、合成方法等的限制而导致其合成成本高以及不能大批量生产。
     本文的主要研究目的是以工业固体废弃物微硅粉和稻壳灰代替传统的有机硅源,利用硅源的特异宏观形貌低成本合成具有特殊形貌的MCM-41介孔分子筛,研究杂质存在情况下的最佳工艺条件和合成机理,并对该介孔分子筛的结构和重金属离子吸附性能进行表征和研究。主要包括以下几方面的内容:
     1.微硅粉的预处理及纯化研究
     对微硅粉的结构和性质进行测试分析,提出先预处理后再两步酸浸的纯化工艺路线。考察了酸浓度、酸浸温度和反应时间对微硅粉纯化的影响,并分析了杂质的去除机理。其最优纯化实验条件为:H2SO4和HCl的浓度为6mol/L,液固比为50:1,反应温度为60℃,反应时间为2h,搅拌速率为600r/min。
     2.微硅粉合成MCM-41介孔分子筛及其重金属吸附性能研究
     以酸浸微硅粉为硅源成功合成了MCM-41介孔分子筛,其孔径范围为2-5nm,研究了不同的硅源、CTAB/SiO2摩尔比、NaOH/SiO02摩尔比、晶化时问、晶化温度、模板剂的种类以及后处理工艺等因素对合成的MCM-41介孔分子筛结构和性能的影响,并探讨了该介孔分子筛的合成机理。MCM-41介孔分子筛最优化合成工艺条件条件是:CTAB/SiO2摩尔比为0.15,NaOH/SiO2摩尔比为0.2-0.3,晶化时间为48小时,晶化温度为90℃,采用CTAB和PEG6000混合模板剂。
     研究了MCM-41介孔分子筛对重金属离子Cu(Ⅱ)、Pb(Ⅱ)(?)口Cd(Ⅱ)的吸附性能并与硅藻土、沸石的吸附性能进行比较,探讨了介孔分子筛的用量、溶液pH值、吸附时间和重金属离子初始浓度对吸附的影响,并研究了吸附等温线、吸附动力学以及该介孔材料的重金属离子吸附机理。
     3.稻壳灰合成MCM-41介孔分子筛
     对稻壳灰的结构和性质进行了测试分析,并提出了预处理工艺。以预处理后的稻壳灰为硅源合成MCM-41介孔分子筛,考察了CTAB/SiO2摩尔比、NaOH/SiO2摩尔比、晶化温度和晶化时间对MCM-41结构和性能的影响,并初步探讨了MCM-41介孔分子筛的合成机理。其较佳的合成工艺条件为:pH为12、CTAB/SiO2摩尔比为0.05、晶化时间为72小时。
     4.MCM-41介孔分子筛的修饰及其重金属离子吸附研究
     对合成的MCM-41介孔分子筛进行了有机功能化表面修饰,研究了该复合介孔分子筛对重金属离子Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)的吸附性能并与修饰前的介孔分子筛的吸附性能进行比较。对吸附等温线、吸附动力学和吸附热力学作了全面的研究,并探讨了介孔分子筛功能化后的重金属离子吸附机理。
Due to their excellent performances such as large specific surface area, uniform pore size distribution and rich surface functional groups, the M41s mesoporous molecular sieves have attracted great interest of scientists, since they had successfully synthesized by Mobil researchers in1992. On account of the properties of silica source, template system, synthesis methods etc, the MCM-41mesoporous molecular sieve has not been widely utilized so far.
     In this work, industrial solid waste, rice husk ash and silica fume were chosen to be silica resources instead of traditional organic silica resource. The main purpose of this work is to synthesis the MCM-41mesoporous molecular sieve with special morphology from particular macroscopic morphology of silica sources, studying the synthesis mechanism in condition of impurities, moreover characterizing the structure of mesoporous molecular sieve and the absorptive property of heavy metal ionic. This dissertation mainly was consisted by the following several aspects.
     1. Pretreatment and acid leaching purification of silica fumes
     Based on the characterization upon the structure and properties of silica fume, the purification process of silica fume had been determined. Firstly silica fume had been pretreated and then was leached by acids using two-steps method. The influence of concentration of acids, reaction temperature, reaction time, have been discussed. The mechanisms of cleaning impurities have also been studied. The best purification experiment conditions were as fellows:concentration of H2SO4and HC1was6mol/L, liquid-solid ratio was50:1, reaction temperature was60℃, reaction time was2h, and stirring speed was600r/min.
     2. MCM-41mesoporous molecular sieve synthesized from silica fumes
     MCM-41mesoporous molecular sieve were synthesized by hydrothermal method using acid leached silica fumes as silica source.The factors to influence the structure and performances of MCM-41were studied, such as properties of silica source, CTAB/SiO2molar ratio, NaOH/SiO2molar ratio, crystallization time, crystallization temperature, the type of template and the post-treatment technology. The mechanisms of synthesizing this MCM-41material were also discussed. The proper parameters under this trial condition were selected:CTAB/SiO2molar ratio was0.15, NaOH/SiO2molar ratio was0.2-0.3, Crystallization time was48h; Crystallization temperature was90℃; Template system was the mixture of CTAB and PEG6000.
     The MCM-41has been used for the adsorption of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions. The influence of the dosage of mesoporous molecular sieve, pH value of solution, adsorption time and initial concentration of heavy metal ions has been discussed. The adsorption isotherm, adsorption kinetics and the adsorption mechanism of heavy metal ionic of MCM-41have also been analyzed.
     3. MCM-41mesoporous molecular sieve synthesized from rice husk ash
     Based on the characterization upon the structure and properties of rice hull ash, the pretreatment technologies have been determined. MCM-41mesoporous molecular sieve was synthesized by hydrothermal method with rice husk ash as silica source. The factors such as CTAB/SiO2molar ratio, NaOH/SiO2molar ratio, crystallization temperature and time crystallizing were studied. The mechanism of synthesizing this MCM-41material was also discussed. The optimal parameters of synthesis for this silica source were listed in following:pH value was12, CTAB/SiO2molar ratio was0.05, and Crystallization time was72h.
     4. The study of MCM-41organic functionalization and heavy metal ionic adsorption performance
     Organic ligands containing fuctional groups (-NH2and-SH) were grafed to the surface and inner pore of a mesoporous molecular sieve MCM-41prepared from silica fume as silica source. The organic-inorganic composites were used for the adsorption of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) from aqueous solutions. The adsorption isotherm, adsorption kinetics and thermodynamics are exmined. The adsorption mechanisms of heavy metal ionic were also analyzed after the functionalization of MCM-41.
引文
[1]红帆.毓基修饰的核壳式磁性二氧化硅材料的制备及对重金属的去除:[硕士学位论文].湖北:华中科技大学,2008
    [2]周怀东,彭文启等,水环境与水环境修复.北京:化学工业出版社,2005
    [3]胡必彬,我国十大流域片水污染现状及主要特征,重庆环境科学2003,25(6):15-17
    [4]周怀东,彭文启,杜霞等,中国地表水水质评价,中国水利水电科学研究院学报,2004,2(4):255-264
    [5]国家环保总局,2000年环境状况公报(摘录),环境教育,2001,4:46-47
    [6]朱圣清,葳小平,长江主要城市江段重金属污染状况及特征,人民长江,2001,32(7):23-25
    [7]孟多,周立岱,于常武,水体重金属污染现状及治理技术,辽宁化工,2006,35(9):534-536
    [8]Weber J. Wastewater Treatment. Metal Finishing,1999,97(1):801-818
    [9]Thornton G J P, Walsh P D. Heavy metals in the waters of the Nanty-Fendrod:change in pollution levels and dynamics associated with the redevelopment of the Lower Swansea Valley, South Wales, UK. Science of the Total Environment,2001,278(1-3):45-55
    [10]Helle V A, Jespor K, Christian P, et al. Environmental risk assessment of surface water and sediments in Copenhagen harbor. Water Science and Technology,1998,37(6-7):263-272
    [11]Rybicka E H. Environmental impact of mining and smelting industries in Poland. Fuel and Energy Abstracts,1997,38(3):186-189
    [12]Razo I, Carrizalos L, Castro J, et al. Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid mining area in Mexico. Water, Air and Soil Pollution,2004,152:129-152
    [13]李永华,姬艳芳,杨林生等,采选矿活动对铅锌矿区水体中重金属污染研究,农业环境科学学报,2007,26(1):103-107
    [14]曲荣君等,金属离子吸附材料.北京:化学工业出版社,2009
    [15]Mihaela M, Aurora R, loan S, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere,2008,73(9): 1499-1504
    [16]Li N, Bai R. Highly enhanced adsorption of lead ions on chitosan granules functionalized with poly (acrylic acid). Industrial and Engineering Chemistry Research,2006,45(23):7897-7904
    [17]Stathi P, Litina K, Gournis D, et al. Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation, Journal of Colloid and Interface Science,2007,316(2):298-309
    [18]Mier M V, Callejas L R, Gehr R, et al. Heavy metal removal with Mexican clinoptilolite:multi-component ionic exchange. Water Research, 2001,35(2):373-378
    [19]Xu T, Liu X Q. Peanut Shell Activated Carbon:Characterization, Surface Modification and Adsorption of Pb2+ from Aqueous Solution. Chinese Journal of Chemical Engineering,2008,16(3):401-406
    [20]Li Y H, Di Z C, Ding J, et al. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research,2005, 39(4):605-609
    [21]Jeon C, Nah I W, Hwang K Y. Adsorption of heavy metals using magnetically modified alginic acid. Hydrometallurgy,2007,86(3-4): 140-146
    [22]Mohan D, Chander S. Single component and multi-component adsorption of metal ions by activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,177(2-3):183-196
    [23]Huang C P, Blankkenship D W. The removal of mercury (Ⅱ) from dilute aqueous solution by activated carbon. Water Research,1984,18(1): 37-46
    [24]Nezer A, Hughes D E. Adsorption of copper, lead and cobalt by activated carbon. Water Research,1984,18(8):927-933
    [25]Rangel-Mendez J R, Streat M. Adsorption of cadmium by activated carbon cloth:influence of surface oxidation and solution pH.Water Research.2002,36(5):1244-1252
    [26]Zhu S M, Yang N, Zhang D. Poly (N, N-dimethylaminoethyl methacrylate) modify-cation of activated carbon for copper ions removal. Materials Chemistry and Physics,2009,113(2-3):784-789
    [27]Iijima Sumio. Helical microtubules of graphitic carbon, nature,1991, 354:56-58
    [28]Li Y H, Wang S G, Cao A Y, et al. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chemical Physics Letters,2001,350(5-6):412-416
    [29]Li Y H, Wang S G, Wei J Q, et al. Lead adsorption on carbon nanotubes. Chemical Physics Letter,2002,357(3-4):263-266
    [30]Goswami A, Singh A K. Silica gel functionalized with resacetophenone: synthesis of a new chelating matrix and its application as metal ion collector for their flame atomic adsorption spec-trometric determination. Aanlytica Chimica Acta,2002,454(2):229-240
    [31]Goswami A, Singh A K.1,8-Dihydroxyanthraquinone anchored on silica gel:synthesis and application as solid phase extractant for lead (Ⅱ), zinc (Ⅱ) and cadmium (Ⅱ) prior to their determination by flame atomic adsorption spectrometry. Talanta,2002,58(4):669-678
    [32]张立,牟寄美,纳米材料和纳米结构.北京:科学出版社,2001:24-25
    [33]Watzke H J, Fendler J H. Quantum size effects of in situ generated colloidal cadmium sulfide particles in dioctadecyldimethylammonium chloride surfactant vesicles. The Journal of Physical Chemistry,1987,91(4): 854-861
    [34]Mier Mabel Vaca, Callejas Raynumdo Lopez, Gehr Ronald, et al. Heavy metal removal with Mexican clinoptilolite:multi-component ionic exchange. Water Research,2001,35(2):373-378
    [35]Zeng H, Fisher B, Giammar D E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. Environmental Science and Technology,2008,42(1):147-152
    [36]Li G L, Zhao Z S, Liu J Y, et al.Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of Hazardous Materials,2011,192(1):277-283
    [37]Aguado J, Arsuaga J M, Arencibia A, et al. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials,2009,163(1):213-221
    [38]IUPAC. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II:Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Applied Chemistry,1972,31: 577-638
    [39]Kresge C. T., Leonewicz M. E., Roth W.J. et al. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature,1992,359:710-712
    [40]Beck J. S., Vartuli J. C., Roth W. J., et al., A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates, Journal of the American Chemical Society,1992,114(27):10834-10843
    [41]陈永,多孔材料制备与表征.合肥:中国科学技术大学出版社,2010:6-9
    [42]Yang P, Zhao D, Margolese D, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature,1998,396:152-155
    [43]Zhao D Y, Feng J L, Huo Q S, Melosh N, et al. Triblock copolymer syntheses of meso-porous silica with periodic 50 to 300 angstrom pores. Science,1998,279:548-552
    [44]Di Renzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-tempalted meso-porous silica. Microporous Materials,1997,10(2): 283-286
    [45]Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan,1990,63: 988-992
    [46]Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporous silicates-Nanoscopic reactor coming of age.Advanced Materials,2000.12(19):1403-1419
    [47]Davidson A. Modifying the walls of mesoporous silicas prepared by supramolecular-templating. Current Opinion Collid and Interface Science, 2002,7(1-2):92-106
    [48]Corma A, Martinez A, Martinezsoria V J. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts. Journal of Catalysis,1997,169(2): 480-489
    [49]Kloetstra K R, Vanbekkum H. Base and acid catalysis by the alkali-containing MCM-41 mesoporous molecular-sieve. Chemistry Communication,1995, (10):1005-1006
    [50]Kim S W, Son S U, Sang I, et al. Cobalt on mesoporous silica:the first heterogeneous Pauson-Khand catalyst. Journal of the American Chemical Society,2000,122(7):1550-1551
    [51]Kozhevnikov I V, Sinnema A, Jansen R J, et al. New acid catalyst comprising heteropoly acid on a mesoporous molecular-sieve MCM-41. Catalysis Letters,1994,30(1-4):241-252
    [52]Sun Y Y, Zhu L, Lu H J. et al. Sulfated zirconia supported in mesoporous materials. Applied Catalysis A:General,2002,237(1-2):21-31
    [53]袁兴东,沈健,李国辉,SBA-15介孔分子筛表而的磺酸基改性及其催化性能,催化学报,2002,23(5):435-438
    [54]Mihaela M, Aurora R, loan S, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere,2008,73(9): 1499-1504
    [55]Reedy B R, Priya D N, Park K H. Separation and recovery of cadmium (Ⅱ), cobalt (Ⅱ) and nickel (Ⅱ) from sulphate leach liquors of spent Ni-Cd batteries using phosphorus based extractants. Separation and Purification Technology,2006,50(2):161-166
    [56]Eveliina R, Tonni A K, Jolanta K. W, et al. Removal of Co (Ⅱ) and Ni(Ⅱ) ions from conta- minated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. Journal of Hazardous Materials, 2009,171(1-3):1071-1080
    [57]Lam K. F, et al. Selective mesoporous adsorbents for Cr2O72- and Cu2+ separation. Micro- porous and Mesoporous Materials,2007,100(1-3): 191-201
    [58]徐应明,李军幸,戴晓华等,介孔分子筛表面功能膜的制备及对水体中铅汞镉的去除作用,应用化学,2002,19(10):941-945
    [59]Li G L, Zhao Z S, Liu J Y, et al. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of Hazardous Materials,2011,192(1):277-283
    [60]Zhang L X, Zhang W H, Shi J L, et al. A new thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent. Chemical Commun-ications,2003,2:210-211
    [61]Shevchenko N, Zaitsev V, Walcarius A.Bifunctionalized mesoporous silicas for Cr (Ⅵ) reduction and concomitant Cr (Ⅲ) immobilization. Environmental Science and Technology,2008,42(18):6922-6928
    [62]Lam K F, et al. Efficient approach for Cd2+ and Ni2+ removal and recovery Using mesoporous adsorbent with tunable selectivity. Environmental Science and Technology,2007,41(9):3329-3334
    [63]Zhang J M, Zhai S R, Li S, et al. Pb (Ⅱ) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process. Chemical Engineering Journal,2013,215-216:461-471
    [64]Nijkamp G D, Raaymakers J J Van E M, Dillen A J. Hydrogen storage by using physic-sorption materials demand. Applied Physics A:Materials Science and Processing,2001,72(5):619-623
    [65]Sheppard D A, Buckley C E, Maitland C F. Preliminary results of hydrogen adsorption and SAXS modeling of mesoporous silica:MCM-41. Journal of Alloys and Compounds,2005,404-406:405-408
    [66]张光旭,方园,陈波等,掺杂金属介孔分子筛MCM-48的合成及储氢研究,武汉理工大学学报,2011,33(11):1-5
    [67]张雪峥,高滋,PW/SBA-15负载型催化剂的性能研究,高等学院化学学报,2001,22(7):1169-1172
    [68]Huo Q, Magrolese D I, et al. Generalized synthesis of periodic surfactant/inorganic compo-site materials. Nature,1994,378:317-321
    [69]赵衫林,翟玉春,MCM-41沸石分子筛的微波合成与表征,石油化 工,1999,28(3):139-141
    [70]宋华,冯化林,孙兴龙,介孔材料合成研究进展,工业催化,2010,18(9):2-6
    [71]Ryoo R, Ko C H, Park I S. Synthesis of highly ordered MCM-41 by micelle-packing control with mixed surfactants. Chemical Communications, 1999,15:1413-1414
    [72]Zhao D, Feng J, Huo Q. et al. Triblock copolymer syntheses of mesoporous silica with period 50-300 angstrom pores. Science,1998,279: 548-552
    [73]Wei Y, Feng Q, Xu J, et al. Polymethacrylate-silica hybrid nanoporous materials:A bridge between inorganic and polymeric molecular sieves. Advanced Materials,2000,12(15):1148-1150
    [74]Pang J B, Qiu K Y, Xu J, et al. A facile preparation of transparent and monolithic meso-porous silica materials. Chemical Communications,2000, 7:477-478
    [75]万颖,王正,马建新等,以CTMABr和CTMAOH为共模板剂合成MCM-41,高等学校化学学报,2002,23(6):1135-1139
    [76]Mizuno N, Flatayma H, Uchida S, et al. Tunable one-pot synthesis of hexagonal-, cublic-, and lamellar-mesostructured vanadium Phosphorus oxides. Chemistry of Materials,2001,13(1):179-184
    [77]Margolese D I, Melero J A, Christiansen S C, et al. Direct synthesis of ordered SBA-15 Mesoporous silica containing sulfonic acid groups. Chemistry of Materials,2000,12(8):2448-2459
    [78]He N Y, Cao J M, Bao S L, et al. Room-temperature synthesis of an Fe-containing meso-porous molecular sieve. Materials Letters,1997,31(1): 133-136
    [79]Park S E, Kin D S, Chang J S, et al. Snythesis of MCM-41 using microwave heating wih tehytlene glyeo. Catalysis Today,1998,44(2): 301-308
    [80]Lin W Y, Chen J S, Sun Y, et al. Bimodal mesoporous distribution in a silica prepared by calcining a wet surfactant-containing silicate Gel. Journal of Chemical Society, Chemical Communications,1995,2367-2368
    [81]Clark J H, Macquarrie D J. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chemical Communications,1998,8:853-860
    [82]Tanev P T,Pinnavaia T J. A neutral templating route to mesoporous molecular-sieves. Science,1995,267(5199):865-867
    [83]徐如人,庞文琴,于吉红等,分子筛与多孔材料化学.北京:科学出版社,2004
    [84]Huo Q S, Margolese D I, Ceisla U, et al. Organization of Organic-Molecules with Inorganic Molecular-Species into Nanocomposite Biphase Arrays. Chemistry of Materials,1994,6(8):1176-1191
    [85]Inagaki S, Fukushima Y, Kuroda K. Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. Chemical Communications,1993:680-682
    [86]Goltner C G, Antonietti M. Mesoporous materials by templating of liquid crystalline phase. Advanced Materials,1997,9(5):431-436
    [87]Goltner C G, Henke S, Weissenberger M C, et al. Mesoporous silica from lyotropic liquid crystal polymertemplates. Angewandte Chemie International Edition,1998,37(5):613-616
    [88]Vartuli J C, Schmitt K D, Krege C T, et al. Development of a Formation Mechanism for M41S Materials. Zeolites and Related Microporous Materias: State of the Art,1994,53-60.
    [89]Vartuli J C, Kresge C T, Leonowicz M E, et al. Synthesis of Mesoporous Materials-Liquid-Crystal Templating Versus Intercalation of Layered Silicate. Chemistry of Materials,1994,6(11):2070-2077
    [90]Chen C Y, Burkette S L, Li H X, et al. Studies on mesoporous materials II Synthesis mechanism of MCM-41. Microporous Materials,1993,2(1): 27-34
    [91]Stucky G D, Huo Q S, Firouzi A, et al. Directed synthesis of organic/inorganic composite structures. Progress in Zeolite and Microporous Materials,1997,3-28
    [92]Huo Q S, Margolese D I, Stuky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials,Chemistry of Materials, 1996,8(5):1147-1160
    [93]姜延顺.高稳定性介孔分子筛的合成、表征与催化性能的研究:[博士学位论文].江苏:南京理工大学,2005
    [94]魏昊,韩路,石琳等,单分散核-壳结构介孔二氧化硅微球的合成高等学校化学学报,2011,32(3):503-507
    [95]张介轩,微硅粉的应用及其捕集,城市管理与科技,2001,3:30-32
    [96]史斌,微硅粉在公路桥梁中的应用,北方交通,2006,6:136-139
    [97]Rashad M M, Hessien M M, Abdel-Aal E A, et al. Transformation of silica fume into chemical mechanical polishing (CMP) nano-slurries for advanced semiconductor manufacturing. Powder Technology,2011, 205(1-3):149-154
    [98]刘晓华,盖国胜,微硅粉在国内外应用概述,铁合金,2007,5:41-44
    [99]裴新意,赵鹏,王尉和,微硅粉生石灰煅烧酸溶制作白炭黑的研究,应用化工,2008,37(2):129-130
    [100]曲艳丽,胡建喜,利用微硅粉生产水泥的实践,四川水泥,2008,6:36-38
    [101]Pacheco-Malagon G, Norma A, Sanchez-Flores, et al. New synthesis technique of supported ZSM-5 using organo-alumino-silicic gels. Microporous and Mesoporous Materials,2007,100(1):70-76.
    [102]Rajan K V, Ramesh B, Ramesh S H, Sridhar K. Template free ZSM-5 from siliceous rice hull ash with varying C contents. Microporous and Mesoporous Materials,2006,93(1):134-140
    [103]Kalapathy U, Proctor A, Shultz J. An improved for production of silica from rice hull ash. Bioresource Technology,2002,85(1-3):285-289
    [104]余其俊,赵三银,冯庆革等,高活性稻壳灰的制备及其对水泥性能的影响,武汉理工大学学报,2003,25(1):15-18
    [105]候贵华,罗驹华,陈景文,用稻壳灰为硅源合成有序介孔二氧化硅材料的研究,材料科学与工程学报,2006,24(4):528-530
    [106]Wang L H, Lin C I. Adsorption of chromium (Ⅲ) ion from aqueous solution using rice hull ash. Journal of the Chinese Institute of Chemical Engineers,2008,39:367-373
    [107]Farook Adam, et al.Iron incorporated heterogeneous catalyst from rice husk ash. Journal of Colloid and Interface Science,2006,304(1): 137-143
    [108]Barmatora M, Ivanchikova I, Elkina E, et al. Mesoporous "core-shell" adsorbents and catalysts with controllable morphology, Applied Surface Science,2010,256(17):5513-5519
    [109]Keane D A, Hamrahan J P, Copley M P, et al. A modified Stober process for the production of mesoporous Sub 2 micron silica microspheres; applications in HPLC, Journal of Porous Materials,2010,17(2):145-152
    [110]Lai X Y, Wang D, Han N, et al. Ordered Arrays Bead-Chain-like In2O3 Nanorods and Their Enhanced Sensing Performance for Formaldehyde. Chemistry of Materials,2010,22(10):3033-3042.
    [111]Kim T W, Chung P W, Lin V S Y, Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size, Chemistry of Materials,2010,22(17):5093-5104
    [112]Chen H M, Hu T, Zhang X M, et al. One-step synthesis of monodisperse and hierarchically mesostructured silica particles with a thin shell. Langmuir,2010,26(16):13556-13563
    [113]Suzuki K, Ikari K, Imai H. Synthesis of silica nanoparticles having a well-ordered meso-structure using a double surfactant system, Journal of the American Chemstry Socity,2004,126(2):462-463
    [114]Han Y, Ying J. Generalized Fluorocarbon-Surfactant-Mediated Synthesis of Nanoparticles with Various Mesoporous Structures, Angewandte Chemie International Edition,2005,44(2):288-292
    [115]Martin T, Galarneau A, Renzo F D, et al. Morphological control of MCM-41 by pseudo-morphic synthesis. Angewandte Chemie International Edition,2002,41(14):2590-2592
    [116]Galarneau A, Iapichella J, Petitto C, et al. Hierarchical porous silicas for chromatographic applications obtained by pseudomorphic synthesis, Materials Research Society Symposium Proceedings,2004,847:345-347
    [117]Lefevre B, Galarneau A, Iapichella J, et al. Synthesis of large-pore mesostructured micelle-templated silicas as discrete spheres, Chemistry of Materials,2005,17(3):601-607
    [118]Won C Y, Stein A. Solvent effects on morphologies of mesoporous silica spheres prepared by pseudomorphic transformations. Chemistry of Materials,2011,23(7):1761-1767
    [119]Liu X B, Du Y, Zhen G, et al. Monodispersed MCM-41 large particles by modified pseu- domorphic transformation:Direct diamine functionalization and application in protein bio-separation. Microporous and Mesoporous Materials,2009,122(1-3):114-120
    [120]Zhu W J, Zhou Y, Ma W H, et al. Using silica fume as silica source for synthesizing spherical ordered mesoporus silica. Materials Letters,2013, 92:129-131
    [121]戴永年,二元合金相图集.北京:科学出版社,2009
    [122]张嫦,周小菊,微细硅微粉的混酸法纯化条件研究,西南民族大学自然学报(自然科学版),2004,30,6:721-723
    [123]谢克强.加压浸出工艺及理论研究:[博士学位论文].云南:昆明理工大学,2006
    [124]杨熙珍,杨武编,金属腐蚀电化学热力学电位-pH图及其应用.北京:化学工业出版社,1991
    [125]西北轻工业学院主编,玻璃工艺学.北京:中国轻工业出版社,2000
    [126]杨显万,邱定蕃,湿法冶金.北京:冶金工业出版社,1998
    [127]彭少方,郑昌琼,尹光福,超级合金废料回收过程中净化除磷的热力学分析,成都科技大学学报,1985,2:13-21
    [128]杨振伟.微硅粉湿法提纯制备球形二氧化硅:[硕士学位论文].云南:昆明理工大学,2011
    [129]赵瑞玉,徐永强,殷长龙等,硅源对介孔分子筛结构、性能的影响,中国石油大学学报(自然科学版),2008,32(6):142-146
    [130]肖飞.海泡石制备介孔分子筛MCM-41及其表征:[硕士学位论文].湖南:中南大学,2007
    [131]许俊强.掺杂介孔MCM-41分子筛的制备、表征及其催化性能研究:[博士学位论文].四川:四川大学,2007
    [132]徐如人,庞文琴,于吉红等,分子筛与多孔材料化学.北京:科学出版社,2004:529-683
    [133]赵伟,姚建东,黄茜丹等,以混合非离子-阳离子表面活性剂为模 板合成中孔MCM-48,科学通报,2001,46: 1089-1091
    [134]Guo W, Luo G S, Wang Y J. A new emulsion method to synthesize well-defined meso-porous particles. Journal of Colloid and Interface Science,2004,271(2):400-406
    [135]许珂敬,许煌汾,表面活性剂在制备Zr02微粉中的作用,材料研究学报,1999,13(4):434.436
    [136]Linssen T, Cassiers K, Cool P, et al. Mesoporous template silicates: an overview of their synthesis catalytic activation and evaluation of the stability. Advances in Colloid and Interface Science,2003,103(2):121-147
    [137]Van Der Voort P, Morey M, Stucky G D, et al. Creation of VOx surface species on pure silica MCM-48 using gas-phase modification with VO(acac)2. The Journal of Physical Chemistry B,1998,102(3):585-590
    [138]Sayari A. Unprecedented expansion of the pore size and volume of periodic mesoporous silica. Angewandte Chemie International Edition,2000, 39(16):2920-2922
    [139]Lewellyn P L, Grillet Y, Sehuth F, et al. Eeffet of pore size on adsorbate condensation and hysteresis within a potential model adsorbent:M41S. Microprous Materials,1994,3(3):345-349
    [140]Attard G S, Glyde J C, Goltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature,1995,378(6555): 366-368
    [141]Cheng C F, Luan Z H, Klinowski J. The role of surfactant micelles in the synthesis of the mesoporous molecular-sieve MCM-41. Langmuir,1995, 11(7):2815-2819
    [142]Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves:inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications, Chemistry of Materials,1994,6(12):2317-2326
    [143]Tanev P T, Pinnavai T J. A neutral templating route to mesoporous molecular sieves. Science,1995,267(5199):865-867
    [144]Acharya J, Sahu J N, Mohanty C R, et al. Removal of lead (Ⅱ) from wastewater by activated carbon developed from tamarind wood by zinc chloride activation. Chemical Engineering Journal,2009,149(1/3):249-262
    [145]姜廷顺,殷广明,赵谦等,微波条件下杂原子MCM-41介孔分子筛的合成,中国有色金属学报,2007,17(8):1391-1395
    [146]欧阳东,陈楷,稻壳灰显微结构的研究,材料科学与工程学报,2003,2:647-650
    [147]侯贵华,稻壳裂解制备SiO2气凝胶的研究,无机材料学报,2003,18:407-412
    [148]蒋晶洁,纪明艳等,稻壳灰开发利用的研究,哈尔滨师范大学(自然科学)学报,1995,11(1):50-51
    [149]周春晖,张波,李庆伟等,反应介质对MCM-41介孔分子筛合成的影响研究,浙江工业大学学报,2001,29(2):110-114
    [150]王连洲等,介孔氧化硅材料的研究进展,无机材料学报,1999,14(3):333-342
    [151]Bossiere C, Larbot A, Van der Lee A, et al. A study of the assembly mechanism of the mesoporous MSU-X silica two-step synthesis. Chemistry of Materials,2001,13(6):3580-3586
    [152]刘雷,厉学武,赵琥等,辅助有机胺对介孔分子筛MCM-41合成及其性质的影响,燃烧化学学报,2004,32(1):78-82
    [153]Diaz I,Alvarez C M, Mohino F, et al. Fe-MCM-41 as a catalyst for sulfur dioxide oxidation in highly concentrated gases.Journal of Catalysis, 2000,193(2):283-294
    [154]Monnier A, Schuth F, Huo Q, et al. Co-operative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science,1993,261:1299-1303
    [155]Romero A A, Alba M D, K linow S J. Alum inosilicate mesoporous molecular sieve MCM-48. The Journal of Physical Chemistry B,1998, 102(1):123-128
    [156]侯贵华,许仲梓,稻壳制备高性能材料的研究进展,硅酸盐学报,2006,34(2):204-209
    [157]Kumar Y P, King P, Prasad V S R K. Equilibrium and kinetic studies for the biosorption system of copper (Ⅱ) ion from aqueous solution using tectona grandis L.f. leaves powder. Journal of Hazardous Materials,2006, 137(2):1211-1217
    [158]近藤精一,石川达雄,安部郁夫,吸附科学.北京:化学工业出版社,2006:146
    [159]李坤权,郑正,罗兴章等,KOH活化微孔活性炭对对硝基苯胺的吸附动力学,中国环境科学,2010,30(2):174-179
    [160]Wagner C D, Naumkin A V, Kraut-Vass A, et al. NIST-X-ray Photoelectron Spectroscopy Database 20 Version 3.4. National Institute of Standards and Technology, Gaithersburg, MD (2003). Available on line at: .
    [161]Lindberg B, Maripuu R, Siegbahn K, et al. ESCA Studies of heparinized and related surfaces:1.Model surfaces on steel substrates Journal of Colloid and Interface Science,1983,95(2):308
    [162]Taylor J A, Lancaster G M, Rabalais J W. Chemical reactions of N2+ ion beams with group IV elements and their oxides. Journal of Electron Spectroscopy and Related Phenomena,1978,13(3):435-444
    [163]Chen Y, Lo S, Kuo J. Pb (II) adsorption capacity and behavior of titanate nanotubes made by microwave hydrothermal method. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,361(1): 126-131
    [164]Xu D, Tan X, Chen C, et al. Removal of Pb (Ⅱ) from aqueous solution by oxidized multiwalled carbon nanotubes, Journal of Hazardous Materials, 2008,154(3):407-416
    [165]Lenigk R, Carles M. Surface characterization of a silicon-chip based DNA microarray. Langmuir,2001,17(8):2497-2501
    [166]Liu Z C, He Q G, Hou P, et al. Electroless plating of copper through successive pre-treatment with silane and colloidal silver. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,257-258: 283-286
    [167]Liu Z C, He Q G, Xiao P F, et al. Self-assembly monolayer of mercaptopro-pyltrimethoxysilane for electroless deposition of Ag. Materials Chemistry and Physics,2003,82(2):301-305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700