用户名: 密码: 验证码:
含硼铁锰氧化物中硼的释放特性及其在黄棕壤上的生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用人工合成的方式,合成了不同形态的含硼针铁矿和含硼水锰矿,通过将它们引入到黄棕壤中,来研究含硼氧化物中硼的植物有效性及含硼氧化物对土壤性质的影响,主要研究结果如下:
     1、对针铁矿,水锰矿以及它们的含硼氧化物的合成方法进行了论述,并从氧化物的比表面积,扫描电镜照片和氧化物的硼含量等方面讨论了不同氧化物的性质差别,对氧化物特性有一个初步的了解。结果表明:针铁矿的比表面积和水锰矿的变化规律一致,即硼包被态氧化物>普通氧化物>硼吸附态氧化物。并且铁氧化物扫描电镜结果显示硼包被态针铁矿的颗粒明显比普通针铁矿和硼吸附态针铁矿要细,这和硼在氧化物上的结合形式有关。
     通过不同的提取方式测定了氧化物中硼的含量,发现针铁矿和水锰矿两种氧化物中硼的含量有很大的差别,含硼针铁矿中硼的含量远远高于含硼水锰矿。并且硼吸附态氧化物和硼包被态氧化物的硼含量也有很大的差别,硼吸附态针铁矿中硼的有效性远远高于硼包被态针铁矿,而水锰矿两种负载体中硼有效性的差异相对较小。
     2、通过在黄棕壤上添加不同量的氧化物,我们研究了含硼氧化物随着添加量的增加对土壤硼含量,土壤酸度变化以及油菜硼含量和油菜生物量的影响。结果发现,随着含硼针铁矿在土壤中添加量的增加,土壤中硼含量和油菜中硼含量也呈现一个逐渐升高的趋势,并且当含硼针铁矿的添加量达到5或10 g kg-1土时,土壤和植物中硼的含量呈现一个急剧的上升现象,但是普通针铁矿随着添加量的增加对土壤和油菜中硼含量却有一个小幅度的降低作用。不同量的含硼水锰矿对土壤和油菜硼含量的影响也呈现一种随添加量增加而增加的趋势。
     随着含硼氧化物添加量的增加,油菜的生物量呈现逐渐增加的趋势,在氧化物的添加量为3 g kg-1土时油菜生物量达到最大值。
     含硼铁锰氧化物对土壤酸度的改变呈现明显的剂量关系,含硼铁氧化物对土壤酸度的改变呈现稳定的升高趋势,而含硼水锰矿对土壤酸度的影响在2 g kg-1土时出现一个明显的转折点。
     综合以上现象,我们将2-3 g氧化物kg-1土的添加剂量作为我们进一步研究的最佳剂量。
     3、通过盆栽试验的方式,将人工合成的含硼铁锰氧化物引入土壤,研究含硼氧化物对土壤中不同形态硼含量以及油菜硼吸收的影响。结果发现,含硼铁锰氧化物的引入均不同程度地提高了土壤水溶态硼,非专性吸附态硼,专性吸附态硼及铁铝氧化物结合态硼的含量。其中含硼针铁矿对土壤不同形态硼含量的提高作用要远远大于含硼水锰矿。含硼铁锰氧化物的引入也大大促进了油菜对硼的吸收,提高了油菜地上部和根部的硼含量。
     通过对土壤不同形态硼含量与油菜硼含量进行简单线性回归分析发现,土壤中水溶态硼,非专性吸附态硼,专性吸附态硼及无定形铁铝氧化物结合态硼含量均与油菜地上部和根部的硼含量有很大的相关性。但逐步回归发现只有水溶态硼和无定形铁铝氧化物结合态硼含量与油菜硼含量存在直接的相关关系,这说明不仅土壤水溶态硼含量可以作为诊断植物有效性的指标,而且铁铝氧化物固定态硼在保持植物对硼吸收利用方面也有重要作用。
     4、含硼氧化物的引入改善了土壤中硼,钙,镁,铁,锰,铜,锌的有效性。并促进了油菜对这些养分的吸收利用,进而提高了油菜生物量。通过对土壤中养分含量与油菜生物量进行回归分析发现,土壤中钙和镁的含量与油菜生物量之间有显著的相关性。但是多重回归的结果则显示只有钙的含量显著影响油菜生物量的累积。可见,含硼氧化物提供植物硼营养只是植物对养分吸收的一个前提,而真正促进油菜生长的原因可能是含硼氧化物的加入为油菜吸收利用养分提供了一个有利的环境。
     5、通过根箱试验,研究了含硼氧化物的加入对根际土壤性质的影响。结果发现,含硼氧化物的加入对根际土壤性质产生了很大的影响。其中交换性酸,交换性钙和交换性镁的含量均表现出正根际效应,而根际土壤pH和交换性钾的含量却比非根际低。含硼氧化物的加入也刺激了土壤酶活性的变化,其中根际土壤过氧化氢酶和多酚氧化酶的活性比非根际高,而转化酶和酸性磷酸酶的活性却比非根际土壤低。
     通过WinRHIZO 2.0根系扫描仪对油菜根系形态进行了分析。结果发现,含硼氧化物的加入促进了油菜根系的生长,它们增加了包括总根长,根尖数,根体积和根表面积在内的油菜根系形态指标。
     6、通过盆栽试验,研究了含硼氧化物在黄棕壤上的添加对油菜生理指标的影响,结果发现含硼氧化物很大程度上提高了油菜的生理适应性。与对照相比,含硼氧化物的加入均提高了油菜叶片叶绿素的含量,可溶性糖含量,以及油菜的根系活力,且降低了油菜叶片中丙二醛和脯氨酸的积累。
     7、通过将含硼氧化物负载到石英砂上,用砂培的方式获得较单一的氧化物体系,从而清楚地观察到氧化物中硼的释放规律,该规律可以阐明含硼氧化物中硼的释放机理。实际上,氧化物在石英砂上负载之后覆盖了石英砂的大部分表面,但是铁氧化物并不是均匀分布在石英砂表面,而是主要负载在石英砂粗糙的表面或孔隙中。通过扫描电镜/X射线能谱分析,对铁氧化物,石英砂及负载铁氧化物的石英砂中的元素含量进行了分析,结果可以看出,只有Fe, Si和O的信号可以被检测到,B元素的信号没有在图片中显示出来。能谱仪定量分析结果发现,硼包被态针铁矿负载的石英砂中Fe元素的含量达到29.51%,明显高于针铁矿和硼吸附态针铁矿负载的石英砂中铁的百分比。
     8、通过砂培方式,研究了含硼氧化物随时间的变化硼的释放规律,以及氧化物中硼的释放对营养液中硼含量和油菜硼吸收的影响。结果发现,溶液中硼含量的变化规律与氧化物水溶态硼含量的变化规律非常相似,都是在0-2 d有一个急剧的变化,只是氧化物中硼的含量急剧下降,溶液中硼的含量急剧升高。氧化物中全硼含量的变化相对水溶态硼含量的变化要缓慢很多,没有观察到前两天的突降现象,只是在第6d到第8d有一个相对强烈的下降。氧化物对油菜硼吸收的影响呈现一个单峰曲线变化的规律。氧化物的加入对营养液的酸度起到很大影响。随着时间的变化营养液的酸化呈现一种缓解的趋势,两种氧化物对营养液pH的改变分别从最初的pH 5.02上升到实验结束时的7.97和7.73。
     为了更好的了解含硼氧化物中硼释放的规律,对含硼氧化物中的硼随时间的释放规律,含硼氧化物对上清液中硼的含量及pH的变化进行了曲线拟合,并做了相应的参数估计。结果发现Elovich方程最能反映氧化物中硼的释放过程,其次是抛物线方程和权函数方程。含硼氧化物对上清液中硼含量影响曲线拟合以零级方程,一级方程和权函数方程的拟合度最高,与含硼氧化物中硼的释放规律不一样,这可能是因为植物对硼吸收的缘故。含硼氧化物对上清液pH的影响与含硼氧化物中硼的释放规律相吻合,而且无论是氧化物中全硼的释放量还是水溶性硼的释放量均与溶液pH的增加量达到极显著的相关性,这说明氧化物中硼的释放量与溶液的酸度变化之间存在一种必然的内在联系。
Different forms of boron-containing goethite and manganite were synthesized artificially. Through introducing them to the acid yellow-brown soil, the plant availability of the boron contained in the oxides and the effect of the boron-containing oxides on soil proprieties were observed, and the main results were shown as follows:
     1. The synthesis method of goethite, manganite and their boron-containing oxides were described and the properties of the oxides including surface areas, SEM photos and boron content of the oxides were discussed. The results showed that the changes of the specific surface area exhibited the same trends, that is oxide with occluded boron> ordinary oxide> oxide with adsorbed boron. And scanning electron microscopy results showed that the particles of goethite with occluded boron (i.e. oc-B-goethite) were more fine than ordinary goethite and goethite with adsorbed boron (i.e. ad-B-goethite), which is related to the combination form of boron on oxides.
     The boron content of the boron-containing oxides were extracted by different methods, it was found that the boron content of the goethite and manganite was greatly different, the boron content of boron-containing goethite is much higher than that of boron-containing manganite. And the boron content between oxides with adsorbed boron and oxides with occlude boron was also different, the boron content of ad-B-goethite was much higher than that of oc-B-goethtie, but the difference between manganite with adsorbed boron (i.e. ad-B-manganite) and manganite with occluded boron (i.e. oc-B-manganite) was relatively smaller.
     2. The effect of different amounts of the oxides on soil boron content, soil acidity, boron content of rape and rape biomass were investigated. The results showed that with the increasing of the boron-containing goethtie added into the soil, the boron content of the soil and rape was also increased. And when the amount of the boron-containing goethtie reached to 5 or 10 g kg-1 soil, the boron content of the soil and rape showed a dramatic rise phenomenon. But with the increasing of ordinary goethite added into the soil, the boron content of the soil and rape was reduced. The boron-containing manganite also increased the boron content of the soil and rape with the amount increasing.
     With the addition of boron-containing oxides increasing, the biomasses of rape showed a growing trend. When the amount of the oxides reached 3 g kg-1 soil, the biomasses of the rape reached maximum.
     The improvement of the soil acidity by the boron-containing iron and manganese oxides showed a clear dose relationship. The boron-containing iron oxides presented a stable increase on improving soil acidity with the amount increasing of the boron-containing goethtie, but it appeared a turning point of 2 g kg-1 soil addition of boron-containing manganite.
     Based on the above phenomenon, we think when the additive quantity of the oxides was 2-3 g kg-1 soil; it will be the best dose for our further research.
     3. Through the addition the boron-containing iron and manganese oxides into the soil, the influence of the boron-containing oxides on soil boron fractionation and the uptake of boron by rape was observed in a pot experiment. The results showed that the addition of the boron-containing oxides into the soil increased different forms of boron content including water soluble boron, nonspecifically adsorbed boron, specifically adsorbed boron and boron occluded in Fe and Al oxides. And the effect of boron-containing goethite on increasing soil boron content was greater than that of boron-containing manganite. The introduction of the boron-containing oxides was also increased the boron content of the shoot and root of rape.
     The simple linear regression analysis between different forms of the soil boron content and boron content of rape was calculated, results showed that the content of water soluble boron, nonspecifically adsorbed boron, specifically adsorbed boron and the boron occluded in amorphous Fe and Al oxides in the soil was all significantly correlated with the boron content of the shoot and root of rape. However, stepwise regression showed that only the water soluble boron and boron occluded in amorphous Fe and Al oxides in the soil was significantly correlated with the boron content of rape, which indicated that not only hot water-soluble boron can be regarded as a suitable index of plant available boron, the boron occluded in amorphous Fe and Al oxides also can play an important role in promoting the boron uptake by plants.
     4. The introduction of the oxides also enhanced soil available nutrient content and promoted rape seedling uptake of nutrients, and therefore promoted the rape growth. Regression analysis of nutrient content of the soil and rape seedling dry weight showed there was a significant positive correlation between the Ca and Mg content of the soil and rape seedling dry weight. Multiple regression results showed only Ca content in the soil significantly influenced rape seedling dry weight. It is surmised that the boron-containing oxides provided a pre-condition for the absorption of nutrients, i.e., an environment for plants to better utilize Ca and other elements during seedling growth and therefore promoted rape seedling dry weight.
     5. Rhizobox experiment was conducted to investigate the impact of boron-containing oxides on rhizosphere soil proprieties. The exchangeable acid and exchangeable Ca and exchangeable Mg all showed a positive rhizosphere effect; whereas the soil pH and exchangeable K in the rhizosphere soil was lower than that in the bulk soil. The addition of boron-containing oxides also stimulated soil enzyme activities, of which the catalase and polyphenol oxidase activity in rhizosphere soil was greater than that in the bulk soil, but the invertase and acid phosphatase activity in rhizosphere was lower than that in bulk soi.
     Rape seedling root morphology were analyzed using a WinRHIZO 2.0 Scanner Instrument, it showed that the rape roots growning on the boron-containing oxides treatments were more developed by increasing the total root length, root area, root tips, root volume and root surface area.
     6. A pot experiment was conducted to investigate the impact of boron-containing oxides on rape physiological proprieties. Results showed that the boron-containing improved the physiological adaptability of rape. Compared with the control, they all raised the chlorophyll and soluble sugar content of the leaves, as well as the root activity of rape. Also the addition of boron-containing oxides reduced malondialdehyde and proline accumulation in the leaves of rape.
     7. The release mechanism of the boron from the boron-containing oxides was investigated by loading the oxides onto quartz sand. Sand culture experiment was undertaken to investigate the release of the boron from the oxides clearly. It was found that the iron oxide in the quartz sand surface is not uniformly distributed, it mainly concentrated on the rough surfaces and pores of the quartz sand. The element content of the iron oxides, quartz sand and iron oxide coated quartz sand was investigated through scanning electron microscopy/X-ray energy analysis. The results showed that only Fe, Si and O signals can be detected, B element was not detected. EDS quantitative analysis found that the Fe content in oc-B-goethtie coated quartz sand reached 29.51%, which significantly higher than ordinary goethite or ad-B-goethite coated quartz sand.
     8. Sand culture experiment was conducted to investigate the boron release of the boron from boron-containing oxide and its effect on the boron content of the nutrient solution and rape. It was found that the changes of boron concentration in solution and the changes of water soluble boron content of the oxide is very similar, they all showed a drastic changes at 0-2 days, which was not same is the boron content of the oxides was sharply declined and the boron concentration in the solution was increased. The change of the total boron content of the oxide was relatively eased, it just showed a decline at 6-8 days. The influence of the oxides on the boron content of rape showed a single peak curve pattern. The oxides influenced the nutrient solution pH greatly, the pH of the solution in the two oxides treatment was changed from 5.02 at the initial of the experiment to7.97 and 7.73 at the end of the experiment, respectively.
     In order to better understand the release of boron from the boron-containing oxides, the curve fitting was conducted and the corresponding parameter was estimated. It was found that the highest correlation between boron release content of the boron-containing oxides and the changes of time is the Elovich equation; the second is parabolic diffusion equation and power function equation. Whereas, the changes of the boron content of the solution was not the same with the boron release content of the boron-containing oxide, which may be due to the absorption of the boron by rape seedling. The influence of the boron-containing oxides on solution pH was similar with the boron release content of the boron-containing oxides. Moreover, the total boron release content and the water soluble release content were all significantly correlated with the increase of the solution pH, which indicated that it must has exist an inherent relationship between the boron release content of the oxides and the changes of the solution pH.
引文
1.鲍士旦.土壤农化分析.北京:中国农业出版社,2000
    2.曹凑贵,张光远,蔡崇法,王运华.植物物料腐解及硼素释放研究.华中农业大学学报,2000,19(1):18-21
    3.曹凑贵,张光远,王运华,丁敏,蔡崇法.鄂南丘陵区棕红壤硼分级及时空分布.土壤,1999,31(3):144-148
    4.曹慧,孙辉,杨浩,孙波,赵其国.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1);105-109
    5.曹一平等.译,高等植物的矿质营养.北京:北京农业大学出版社,1991:17-25
    6. 陈红,叶兆杰,方士等.不同状态Mn02对废水中As(Ⅲ)的吸附研究.中国环境科学,1998,2:126.
    7.陈家坊,何群,邵宗臣.土壤中氧化铁的活化过程的探讨.土壤学报,1983,20(4):87-392
    8.陈家坊.土壤胶体中的氧化物.土壤通报,1981,2:44-49
    9.陈能扬,童庆宣.根际环境在环境科学中的地位.生态学杂志,1994,13(3):45-52
    10.陈天虎,汪家权.天然锰矿物催化氧化处理含硫废水的研究.环境科学,1993,4:58-61
    11.陈秀红,朱端卫,程东升,刘武定.硼的吸附-解吸对土壤表面性质的影响.土壤学报,2002,39(2):145-151
    12.陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究. 环境科学学报,1993,13(1):45-50
    13.陈有鑑,陶澎,邓宝山.小麦根际环境中铜和铅形态的变化.环境科学学报,200020(3):365-369
    14.程东升,朱端卫,刘武定.几种常见矿物与硼作用的红外光谱特性研究.土壤学报,2002,39(5):671-678
    15.董淑富,何承顺,黄天栋等. 苹果砧木苗根际微域环境的研究.土壤学报,1997,34(3):323-326
    16.杜应琼,廖新荣,黄志尧等.pH和质地对土壤供硼影响的研究.土壤与环境, 2000,9(2):125-128
    17.樊耀亭,吕秉玲,徐杰等.水溶液中二氧化锰对铀的吸附.环境科学学报,1999, (1):42-47
    18.范晓辉,刘芷宇.根际PH环境与P素利用研究进展.土壤通报,1992,23(5):238-240
    19.高贤彪,张丽华,卢丽萍,杨果.山东省土壤速效硼影响因素分析.土壤通报,1999,30(3):123-124
    20.关松荫.土壤酶学研究方法.农业出版社,北京:1986,320-329
    21.郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd、Cu和Zn释放及其形态转化的影响.应用生态学报,2003,14(9):1547-1550
    22.郭天财,宋晓,马冬云,王永华,谢迎新,岳艳军,查菲娜.施氮量对冬小麦根际土壤酶活性的影响.应用生态学报,2008,19(1):110-114
    23.郝建朝,吴沿友,连宾,吴春笃.土壤多酚氧化酶性质研究及意义.土壤通报,2006,37(3):470-474
    24.黄昌勇,沈冰.硅对大麦铝毒的消除和缓解作用研究.植物营养与肥料学报,2003,9(1):98-101
    25.黄昌勇,袁可能,朱祖祥.砖红壤及其矿物表面对重金属离子的专性吸附研究. 土壤学报,1995,32(4):370-376
    26.黄艺,陈有键,陶澎.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响.应用生态学报,2000,3:431-434
    27.黄益宗.植物对硼素不足的反应及其成因探讨.土壤与环境,2002,11(4):434-438
    28.黄益宗,李志先.尾时一按叶片氮磷钾钙镁硼元素营养诊断指标.生态学报,2002,22(8):1254-1259
    29.季国亮.氧化铁对磷酸根和氟离子的竞争吸附.土壤学报,1986,23(3):220-226
    30.蒋秋怡,叶仲节,钱新标.杉木根际土壤微生物和酶活性初探.土壤,1993,25(5):271-273
    31.李朝苏,刘鹏,蔡妙珍,王保义,张文君,张晓燕.荞麦对酸铝胁迫生理响应的研究.水土保持学报,2005,19(3):105-1091
    32.李德全,赵会杰,高辉远.植物生理学.北京:中国农业科技出版社,1999: 46-47
    33.李海生,张志权.不同铝水平下茶对铝及矿质养分的吸收与累积.生态环境,2007,16(1):186-190
    34.李庆康.茶园土壤酸化研究的现状及展望.土壤通报,1987,(2):69-71
    35.李双霖.应用聚类-主组元分析检验土壤酶活性作为土壤肥力指标的可行性性.土壤通报,1990,21(6):272-274
    36.李瑛,李洪军,张桂银.几种电解质对土壤吸附Cu2+的影响.生态环境,2003,12(1):8-11
    37.梁颁捷,林毅,朱其清.福建植烟土壤pH与土壤有效养分的相关性.中国烟草科学,2001(1):25-27
    38.廖万有.我国茶园土壤物理性质研究概况与展望.土壤,1997,(3):121-124
    39.廖万有.我国茶园土壤的酸化及防治.农业环境保护,1998,17(4):178-180
    40.林天,何园球,李成亮,杨芳,徐江兵.红壤旱地中土壤酶对长期施肥的响应.土壤学报,2005,42(4):682-686
    41.林玉锁.三种氧化铁样品吸持铜离子性能的研究.土壤学报,1996,33(1):111-112
    42.刘春生,宋国菡,史衍玺,杨守祥,马玉增,萧月芳.棕壤和褐土的酸淋溶特征. 水土保持学报,2002,16(3):5-8
    43.刘鸣达,张玉龙.水稻土硅素肥力的研究现状与展望.土壤通报,2001,32(4): 187-192.
    44.刘鹏,杨玉爱.油菜在低硼胁迫下的生理反应研究进展.中国油料作物学报,1999,21:74-78
    45.刘鹏,吴建之,杨玉爱.土壤中的硼及其植物效应的研究进展.农业环境保护,2000,19(2):119-122
    46.刘文新,栾兆坤,汤洪霄.铝的生物可给性及其生态效应研究进展.应用生态学报,1999,10(2):251-254
    47.刘秀娣,李继云.土壤有效态微量元素含量与不同地貌单元关系的研究.环境科学,1998,17(1):19-22
    48.刘铮.华中丘陵区红壤中微量元素的供给情况以及与作物生长的关系.土壤,1975,(2):76-85
    49.刘铮,朱其清.土壤中硼的含量和分布的规律性.土壤学报,1989,26(4): 353-361
    50.刘铮.微量元素的农业化学.北京:农业出版社,1991
    51.刘芷宇.根际微域环境的研究.土壤,1993,(5):225-230
    52.柳若安,刘厚田.酸度和铝对马尾松生长的影响.植物学报,1995,37(2):154-1581
    53.鲁安怀,卢晓英,任子平,韩丽荣,方勤方,韩勇.天然铁锰氧化物及氢氧化物环境矿物学研究.地学前缘,2000,7(2):473-483
    54.陆雅海,黄昌勇,袁可能.砖红壤及其矿物表面对重金属离子的专性吸附研究.土壤学报,1995,32(4):370-376
    55.陆雅海,朱祖祥,袁可能,黄昌勇.针铁矿对重金属离子的竞争吸附研究.土壤学报,1996,33(1):782-841
    56.吕德国,秦嗣军,刘国成,于翠,马怀宇.樱桃根际土壤特征及其评价.土壤通报,2008,39(6):1343-1347
    57.马同生.我国水稻土中硅素丰缺原因.土壤通报,1997,28(4):169-171
    58.孟赐福,水建国,傅庆林,吴益伟.浙江中部红壤施用石灰对土壤交换性钙、镁及土壤酸度的影响.植物营养与肥料学报,1999,5(2)129-136
    59.孟凡华.硼对甜菜生长发育及产量的影响.土壤肥料,1995,(3):47-49
    60.宁平,陈亚雄,孙佩石等.含锰废渣吸收低浓度SO2生产MnSO4·H2O研究.环境科学,1997,18(6):58-60
    61.牛义,张盛林.植物硼素营养研究的现状及展望.中国农学通报,2003,9(2): 101-104
    62.潘纲,秦延文,李贤良,胡天斗,谢亚宁,吴自玉.用EXAFS研究Zn在水锰矿上的吸附—解吸机理.环境科学,2003,24(3):1-7
    63.彭青枝,皮美美,曹享云.硼对油菜不同品种酶活性和根系活力的影响.植物营养与肥料学报,1996,2(3):233-237
    64.邱莉萍,刘军,王益权等.土壤酶活性与土壤肥力的关系研究.植物营养与肥料学报,2004,10(3):277-280
    65.邵兴华,章永松,林咸永,都韶婷.三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系.植物营养与肥料学报,2006,12(2):208-212
    66.邵宗臣,陈家坊.土壤和氧化铁对氟化物的吸附和解吸.土壤学报,1986,23(3): 236-242
    67.沈慧,姜凤岐,杜晓军,郭浩,王世忠.水土保持林土壤肥力及其评价指标.水土保持学报,2000,14(2):60-65
    68.沈振国,沈康.硼在油菜体内分配与运转的研究.南京农业大学学报,1991,14(4):13-17
    69.沈志良,朱祖祥,袁可能.铁铝氧化物吸附磷的研究.浙江学业大学学报,1990,16(1):7-13
    70.施卫明.土壤中铁的根际效应及其吸收机理.植物生理学通讯.1990,(2):1-7
    71.苏德纯,黄焕忠,张福锁.印度芥菜对土壤中难溶态Cd的吸收及转化.中国环境科学,2002,22(4):342-345
    72.孙波,赵其国,张桃林.土壤质量与持续环境Ⅲ,土壤质量评价的生物学指标.土壤,1997,29(5):169-175
    73.孙权,何振立,杨肖娥.铜对小白菜的毒性效应及其生态健康指标.植物营养与肥料学报,2007,13(2):324-330
    74.唐丽华,徐俊祥,朱其清,尹楚良.黄壤中微量元素的含量和分布.土壤学报,1983,20(2):186-195
    75.童依平,李继云.新乡市西四县土壤营养元素有效性影响因素分析.土壤肥料,1995,(1):13-17
    76.汪雅各,盛沛麟,袁大伟.模拟酸雨对土壤金属离子的淋溶和植物有效性的影响.环境科学,1988,9(2):22-26
    77.王光华,金剑,潘相文,周克琴,刘晓冰.不同氮肥对大豆根圈土壤酶活性和氮营养分布的影响.大豆科学,2003,22(3):213-217
    78.王火焰,王运华,吴礼树.不同硼效率甘蓝型油菜品种的硼钙营养效应.中国油料作物学报,1998,20(2):59-65
    79.王敬国.植物营养的土壤化学.北京:北京农业大学出版社,1995,92-103
    80.王敬华,张效年,于天仁.华南红壤对酸雨敏感性的研究.土壤学报,1994,31(4):348-354
    81.王娟,廖水姣,朱端卫,任丽英,周文兵,丁家旺.不同氧化物硼负载体吸附锰离子的特性研究,土壤学报,2006,43(5):745-755
    82.王俊,汤凤庆.二氧化锰棉柱富集水中痕量石墨炉原子吸收光度法测定.环境科学,1986,7(3):80-83
    83.王力军,青长乐,牟树森.模拟酸雨对土壤化学及蔬菜生长的影响.农业环境保护,1993,12(1):17-20
    84.王文军,郭熙盛,武际,朱宏斌.施用白云石对酸性黄红壤作物产量及化学性质的影响.土壤通报,2006,37(4):723-726
    85.王运华,刘武定,皮美美.棉花潜在性缺硼与有效施硼的研究.中国农业科学,1985,(2):62-70
    86.王运华,刘武定,皮美美.我国主要棉区缺硼与施硼分区.华中农业大学学报,1989,(增刊):155-156
    87.卫春智.山西省太原市土壤中微量元素状况.土壤,1994,26(4):216-219
    88.吴大清,刁桂仪.含铁矿物的表面催化氧化作用及其环境意义. 矿物岩石,2003,12:11-14
    89.吴建明,高贤彪,高弼模.山东省土壤中微量元素含量及分布状况.土壤学报,1990,27:87-89
    90.吴建明.山东省不同土类中微量元素含量及分布状况.中国农业科学,1988,21: 17-19
    91.吴礼树,魏文学.硼素营养研究进展.土壤学进展,1994,22(2):1-8
    92.武际,郭熙盛,王文军,朱宏斌.施用白云石粉对黄红壤酸度和油菜产量的影响.中国油料作物学报,2006,28(1):55-58
    93.谢思琴,周德智,顾宗濂.模拟酸雨下土壤中铜、镉行为及急性毒性效应.环境科学,1991,12(2):24-28
    94.熊毅,陈家坊.土壤胶体(第三册)土壤胶体的性质.北京:科学出版社,1990,25-26
    95.徐莉英,邢光熹.铁氧化物和层状硅铝酸盐矿物在土壤吸持重金属离子中的作用.土壤学报,1995,32(增刊):201-209
    96.徐明岗.土壤离子吸附Ⅰ.离子吸附的类型及其研究方法.土壤肥料,1997,5:3-7
    97.徐仁扣,刘志光.土壤中的氧化锰对酚类化合物的氧化降解作用土壤学报,1995,32:179-185
    98.阎华,黄升谋.硼吸附对针铁矿表面性质的影响.安徽农业科学,2007,35(5): 1569-1570
    99.杨昂,孙波,赵其国.中国酸雨的分布、成因及其对土壤环境的影响.土壤, 1999, (1):13-18
    100.杨承栋,焦如珍.杉木人工林根际土壤性质变化的研究林业科学,1999,35(6): 23-27
    101.杨清.我国硼肥应用现状与展望.土壤肥料,1988,(1):20-23
    102.杨琼,刘武定,皮美美.不同硼浓度对棉花磷的吸收和分配利用的影响.植物生理学通讯,1995,31(6):424-426
    103.杨万勤.土壤酶的研究动态与展望.应用与环境生物学报,2002
    104.杨永森,段雷,靳腾,赵大为,张冬保,郝吉明.石灰石和菱镁矿对酸化森林土壤修复作用的研究.环境科学,2006,27(9):1878-1883
    105.杨玉盛,何宗明邹双全.格氏栲天然林和人工林根际土壤微生物及其生化特性的研究.生态学报,1998,18(2):198-202
    106.尹永强,何明雄,邓明军.土壤酸化对土壤养分及烟叶品质的影响及改良措施.中国烟草科学,2008,29(1):51-54
    107.于天仁,季国亮,丁昌璞等著.可变电荷土壤的电化学.科学出版社,北京,1996,211-218
    108.于天仁.我国农业持续发展和生态环境中重大土壤问题的化学机理研究建议.土壤,2001,3:119-122
    109.喻敏,王运华.不同硼效率甘蓝型油菜品种对镁吸收分配的影响.土壤肥料,1999,(6):12-14
    110.袁可能.植物营养元素的土壤化学.北京:科学出版社,1983:1381-421
    111.张芬琴,沈振国.Al3+对小麦幼苗根系生长和膜保护酶活性的影响及Ca2+的缓解效应.西南农业学报,2000,13(3):22-271
    112.张福锁,曹一平.根际动态过程和植物营养.土壤学报,1992,29(3):239-248
    113.张广莉,宋光煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响.土壤学报,2002,39(1):23-27
    114.张丽莉,陈利军,刘桂芬,武志杰.污染土壤的酶学修复研究进展.应用生态学报,2003,14(12):2342-2346
    115.张西科,张福锁,毛达如.水稻根表铁氧化物胶膜对水稻吸收磷的影响.植物营养与肥料学报,1997,3(4):295-299
    116.赵其国.中国东部红壤地区土壤退化的时空变化、机理及调空.北京:科学出版社,2002,70-75
    117.赵宗晟.氧化铁砷体系除砷机理研究.中国环境科学,1995,15(1):18-21
    118.郑红,汤鸿霄.几种天然矿物去除苯酚效果及日光光解效应评价.环境化学,1998,17(5):473-479
    119.郑磊,张民,陈宝成.硼磷配施对甘蓝型油菜生长及品质的影响.中国农学通报,2009,25(05):173-177
    120.周代华,李学恒,徐凤琳.重金属在氧化物表面的吸附形式.土壤学报,1997,34(3):348-351
    121.周世伟,章钢娅,张效年.可变电荷土壤及矿物的交换性碱.土壤,2002,2: 61-67
    122.朱端卫,皮美美,刘武定.硼在土壤中的吸附—解吸及其对植物吸附硼的影响.土壤学报,1998,35(1):70-75
    123.朱端卫,石磊,陈秀红,刘武定.土壤硼吸附热及温度对硼滞后解吸特性影响的研究.土壤学报,2000,37(2):250-256
    124.朱端卫,成瑞喜,刘景福,刘武定.土壤酸化与油菜锰毒关系研究.热带亚热带土壤科学,1998,7(4):250-253
    125.朱端卫,程东升,耿明建.氢氧化铝表面硼吸附络合物结构状况的解析.华中农业大学学报,1998,17(1):40-44
    126.朱宏斌,王文军,武际叶舒娅,郭熙盛.天然沸石和石灰混用对酸性黄红壤改良及增产效应的研究.土壤通报,2004,35(1):26-29
    127.朱建华,耿明建,曹享云.硼对棉花不同品种根系吸收活力、根系分泌物和伤流液组分的影响.棉花学报,2001,13(3):142-145
    128.朱茂旭,蒋新,和文祥,王芳.土壤与酸性含氟溶液相互作用特征及机理研究.环境科学学报,2001,21(4):465-469
    129.朱其清,尹楚良.石灰岩土中微量元素的含量与分布.土壤学报,1984,21(2): 58-59
    130.Ali A M and Dzombak D A. Interactions of copper, organic acids and sulfate in goethite suspensions. Geochimica et Cosmochimica Acta,1996,60(24): 5045-5053
    131.Alkinson R J, Posner A M and Quirk J P. Adsorption of potential-determining ions at the ferric oxide aqueous electrolyte interfaces. Phys. Chem.,1967,71, 550-558
    132.Al-Sewailem M S, Khaled E M, Mashhady A S. Retention of copper by desert sands coated with ferric hydroxides. Geoderma,1999,89 (3-4):249-258
    133.Bargar J R, Parks G A. Surface complexation of Pb (Ⅱ) at oxide-water interfaces; Ⅱ. XAFS and bond-valence determination of mononuclear Pb (Ⅱ) sorption products and surface functional groups on iron oxides. Geochimica et Cosmochimica Acta,1997,61 (13):2639-2652
    134.Bell R W. Diagnosis and prediction of boron deficiency for plant production. Plant soil,1997,193:149-168
    135.Benjamin M M. Sorption and filtration of metals using iron oxide coated sand. Water Res.,1996,30 (11):2609-2620
    136.Bernal M P, McGrath S P. Effect of pH and heavy metal concentration in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil,1994,166:83-92
    137.Bertrand P, Hinsinger B, Jaillard. Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic phosphated calcite and goethite. Plant soil, 1999,211:111-119
    138.Beyrouty C A, Van Scoyoc G E, Feldkamp J R. Evidence supporting specific adsorption of boron on synthetic aluminum hydroxides. Soil Sci. Soc. Am. J., 1984,48:284-287
    139.Bingham F T, Page A L, Coleman N T, Flach K. Boron adsorption characteristics of selected soils from Mexico and Hawaii. Soil Sci. Soc. Am. J.1971,35: 546-550
    140.Blevins D G and Lukaszewski K M. Boron in plant structure and function. Annu.Rev.Plant Physiul. Plant Mol.Biul,1998,49:481-500
    141.Bloesch P M, Bell L C and Hughes J D. Adsorption and desorption of boron by goethite. Aust. J. Soil Res.,1987,25,377-390
    142.Bouma T J, Nielsen K L, Koutstaal B. Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil,2000,218, 185-196
    143.Brown M E. Seed and root bacterization. Annu Res Phytopathol,1974, 12:181-197
    144.Brown P H and Hu H N. Boron uptake in sunflower, squash and cultured tobacco cells:studies with stable isotope and ICP-MS. Plant soil.1993,155/156:147-150
    145.Brown P H and Shelp B J. Boron mobility in plants. Plant soil.1997,193: 85-101
    146.Chen C C, Dickson J B and Turner R T. Iron coatings on rice roots:morphology and models of development. Soil Sci. Am. J.,1989,44:1113-1119
    147.Chen N C, Chen H M. Chemical behavior of cadmium in wheat rhizosphere. J Plant Nutr,1987,10:1185-1195
    148.Cornell R M and Schwertmann U.2003. The iron oxides:structure, properties, reactions, occurrence and uses.2nd edition WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim
    149.Corrales I, Poschenrieder C, Barcelo J. Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J. Plant Physiology,2008,165(5): 504-513
    150.Deng S P, Tabatai M A. Effect of tillage and residue management on enzyme activities in soils. Ⅲ. Phosphatases and arysulphatases. Biology and Fertility of Soils,1997,24:141-146
    151.Dick R P. Enzyme activities as integrative indicators of soil healthy. In Park Hurst CE et al Ees Bioindicatorrs of Soil Health United Kingdom. Oxon CAB International.1997,121-156
    152.Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S. Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. J. Plant Physiology,2005,162:529-536
    153.Doerge T A, Garder E H Reacidification of two lime amended soils in western Oregon. Soil Sci. Soc. Am. J.,1985,49(3):680-685
    154.Dzombak D A, Morel. Surface complexation modeling:Hydrous ferric oxide. John Wiley and Sons.1990. New York
    155.Elrashidi M A, O'Connor G A. Boron adsorption and desorption in soil. Soil Sci. Soc. Am. J.1982,46:27-31
    156.El-shintinawy F. Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica,1999,36:565-573
    157.Environ J. The use of hematite for chromium (VI) removal. Sci Health A,1993, 28 (8):1813-1826
    158.Foy C D. Plant adaptation to acid, aluminium-toxic soils. Commun. Soil Sci. Plant Anal,1988,19:959-987
    159.Gao Y, Mucci A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Cheochimica et cosmochimica Acat.,2001,65(4):2361-2378
    160.Gareia-Gonzalez M, Mated ATED P, Bonilial. Effect of boron deficiency on photosynthesis and reductant sources and their relationship with nitrogenase activity in Anabaena PCC7119. Plant Physio 1,1990,93:560-565
    161.Geelhoed J S, Findenegg G R and Vanriemsdijk W H. Availability to plants of phosphate adsorbed on goethite:experiment and simulation. Eur. J. soil sci.,1997, 48:473-481
    162.Gersani M, Brown J S, O'Brian E E, Godfrey M M and Abramsky Z. Tradegy of the commons as a result of root competion. J. Ecol.,2001,89:660-669
    163.Goldbach H E, Wimmer M A, Chaumont F. Rapid responses of plants to boron deprivation:Where are the links between boron's primary role and secondary reactions. In:Goldbach H E, Rerkasem B, Wimmer MAl et al(eds.).Boron in plantand animal nutrition. New York:Kluwer Academic/Plenum Publishers. 2002,167-180
    164.Goldberg S. Reactions of boron with soils. Plant Soil,1997,193,35-48
    165.Goldberg S. Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. J. Colloid and Interf. Sci.2005,285:509-517
    166.Goldberg S and Glaubig R A. Boron and silicon adsorption on an aluminum oxide. Soil Sci. Soc. Am. J.1988,52,87-91
    167.Goldberg S, Forster H S and Heick E L. Temperature effects on boron adsorption by reference minerals and soils. Soil Sci.1993a,156:316-321
    168.Goldberg S, Forster H S and Heick E L. Boron adsorption mechanisms on oxides, clay minerals and soils inferred from ionic strength effects. Soil Sci. Soc. Am. J. 1993b,57:704-708
    169.Greipsson S and Crowder A A. Amelioration of cooper and nickel toxicity by iron plaque on roots of rice. Can J. Bo t.,1992,70:824-830
    170.Gu B, Lowe L E. Studies on the adsorption of boron on humic acids. Can. Soil Sci,1990,70:305-311
    171.Gupta U C. Relationship of toatl and hot-water soluble boron, and fixation of added boron, to properties of Podzol soils. Soil Sci. Soc. Am. P roc.1968,32:45-48
    172.Hammer D, Keller C. Change in the rhizosphere of metal accumulating plants evidenced by chemical extractants. J. Environ. Quality,2002,31 (5):1561-1569
    173.Harada T, Tamai M. Some factors affecting behaviour of boron in soil. Ⅰ. Some soil properties affecting boron adsorption of soil. Soil Sci. Plant Nutr.1968,14, 215-224
    174.Hingston F J, Atkinson R J, Posner A M and Quirk J P. Specific adsorption of anion on goethite.9th. Inter. Congr, Soil Sci.,1968,669-678
    175.Hossain A K, Hossain M A, Koyama H. and Hara T. Effects of aluminum and boron supply on growth of seedlings among 15 cultivars of wheat(Triticum aestivum L.) grown in Bangladesh. Soil Sci. Plant Nutr.,2004,50:189-195
    176.Hou J, Evans L J and Spieres G A. Chemical fractionation in soils. Commun. Soil Sci. Plant Anal.1994,25(9):1841-1853
    177.Hou J, Evans L J and Spieres G A. Chemical fractionation of soil boron:Ⅰ. Method development. Can. J. Soil Sci.1996,76:485-491
    178.Howeler R H. Iron induced organizing disease of rice in relation to physiochemical change in a flooded oxisol. Soil Sci. Am Proc.,1973,37: 898-903
    179.Huang J G, Liu J C. Enhanced removal of As (V) from water with iron-coated spentcatalyst. Seperation Science Technology,1997,32(4):1557-1603.
    180.Jacobson M, Overstreet R A. Study of potassium absorption by barley roots. Plant Physiology,1950,25:639-642.
    181.Jain A, Raven K P, and Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite:Surface charge reduction and net OH-release stoichiometry. Environ. Sci. Technology,1999,33:1179-1184.
    182.Jambor J L and Dutrizac J E. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chemical Review,1998,98: 2549-2585
    183.Jin J, Martens D C, Zelazny L W. Distribution and plant availability of soil boron fractions. Soil Sci. Soc.Am.J.1987,51,1228-1231
    184.Zhang J L and Eckhard G. Changes in the extractability of cations (Ca, Mg and K) in the rhizosphere soil of Norway spruce (Picea abies) roots. Plant and Soil, 2002,243:209-217
    185.Keren R and Mezuman U. Boron adsorption by clay minerals using a phenomenological equation, clays. Clay Miner.1981,29:198-204
    186.Keren R, Bingham F T. Boron in water, soils and plants. Adv. Soil Sci.1985a, (1): 229-276
    187.Keren R, Bingham F T. Plant uptake of boron as affected by boron distribution between liquid and solid phases in soil. Soil Sci. Soc. Am. J.1985b,49:297-302
    188.Khurana N, Chatterjee C. Low sulfuralter boron metabolism of mustard. J Plant Nutr.,2002,25:679-687
    189.Knight B, Zhao F J, McGrath S P, Shen Z G. Zinc and cadmium up take by the hyperaccumulator Thlaspi caerulescens in contaml nated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil, 1997,197(1):71-81
    190.Koretsky C. The significance of surface complexation reactions in hydrological systems:a geochemist's perspective. J of Hydrology,2000, (230):127-171
    191.Kozdroj J, van Elsas J D. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biology and Biochem.,2000,32 (10):1405-1417
    192.Larsen O and Postma D. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite and goethite. Geochim. Cosmochim. Acta,2001,65:1367-1379
    193.Lazof D B, Goldsmith J G, Rufty T W, Linton R W. Rapid uptake of aluminum into cells of intact soybean root tips. A microanalytical study using secondary ion mass spectrometry. Plant Physiol,1994,106 (3):1 107-1 114
    194.Lehto T, Malkonen E. Effects of liming and boron fertilization on boron uptake of Picea abies. Plant soil,1994,163(1):55-64
    195.LeNoble M E, Blevins D G, Miles R J. Prevention of aluminum toxicity with supplemental boron. Ⅱ.. Stimulation of root growth in acidic, high aluminum subsoil. Plant Cell Environ.1996,19:1143-1148
    196.Liao S J, Wang J, Zhu D W, Ren L Y, Lu J W, Geng M J, Alan Langdon. Structure and Mn2+ adsorption properties of boron-containing goethite. Applied Clay Sci.,2007,38:43-50
    197.Liu C X, Kota S, Zachara J M, Fredrickson J K, Brinkman C K. Kinetic analysis of the bacterial reduction of goethite. Environ Sci Technol,2001,35: 2482-2490
    198.Liu Y, Mi G, Chen F, Zhang J and Zhang F. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Sci.,2004,167,217-223
    199.Liu F, Xu F L, Li X Y. and He H. Goethite morphologies of some soils in South of central China. Pedosphere,1994,4(3):193-200
    200.Lo S L. Characteristics and adsorption properties of iron-coated sand. Water Research,1997,35(7):63-70
    201.Loomis W D, Durst R W. Chemistry and biology of boron. Biofactors,1992,3: 229-339
    202.Ludwig B, Khanna P, Prenzel J. Use of a coupled equilibrium model to describe the buffering of protons and hydroxyl ions in some acid soils. Z Pflanzenernaehr. Bodenkd.1998,161:547-554
    203.Lukaszewski K M and Blevins D G. Root growth inhibition in boron-deficient or aluminum-stressed squash may be a result of impaired ascorbate metabolism. Plant Physiol.1996,112,1135-1140
    204.Luo Y M, Christie P, Baker A J M. Soil solution Zn and pH dynamics in nonrhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn /Cd contaminated soil. Chemosphere,2000,41:161-164
    205.Lynch J P. Root architecture and plant productivity. Plant Physiol.1995,109: 7-13.
    206.Madeira A C, Mendonca A, Ferreira M E, Tarborda M D. Relationship between spectroradiometric and chlorophyll measurements in green beans. Comm. in Soil Sci. Plant Ana.,2000,31 (526):631-643
    207.Manning B A, Fendorf S, and Goldberg S. Surface structure and stability of arsenic (III) on goethite:Spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol.,1998,32:2383-2388
    208.Manoharan V, Loganathan P, Tillman R W, Parfitt R L. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth. Environ. Pollut.,2007,145:778-786
    209.Maria I, Silva G, Jorge A G. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ. Pollut.,2006,143:254-260
    210.Marschner H. Mineral nutrition of higher plants. London:Academic Press,1995.
    211.Martin P R. and Smart R St C. X-ray photoelectron studies of anion adsorption on goethite. Soil Sci. Soc. Am. J.1987,51:54-56
    212.Marzadori C L, Vittori A C, Ciavatta C, Sequi P. Soil organic matter influence on adsorption and desorption of boron. Soil Sci, Soc. Am.1991,55:1582-1585
    213.Matis K A, Zouboulis A I., Zamboulis D, Valtadorou A V. Sorption of As by goethite particles and study of their flocculation. Water, Air Soil Pollut.,1999, 111:297-316
    214.Maurice P A, Hochella J M F, Parks G A, Sposito G, Schwertmann U. Evolution of hematite surface microtopography upon dissolution by simple organic acids. Clays and Clay Minerals,1995,43:29-38
    215.McGilloway R L, Weaver R W, Ming D W. Nitrification in a zeoponic substrate. Plant Soil,2003,256:371-378
    216.Mehlich, A.,1984. Mehlich 3 soil test extractant:A modification of Mehlich 2 extractant. Commun.S.S.P.A.15 (12):1409-1416
    217.Mench M J, Fargues S. Metal uptake by iron-efficient and inefficient oats. Plant Soil,1994,165:227-23
    218.Mezuman U, Keren R. Boron adsoption by soils using a phenomeno logical adsorption equation. Soil Sci. Soc. Am.1981,45:722-726
    219.Miguez S R, Diggs C, Ras C, Miguez S R. Effect of some soil properties on extractable boron content in Argentine Pampas soils. Commun. Soil Sci. plant Analy.1999, (30):2083-2100
    220.Mohamed A A, Shaaban M M. Nutrient status and enzyme activity alteration in cucumber seedlings as a response to boron deficiency. Acta Agri Hungarica,2004, 52(1):9-17
    221.Mouhtaridou G N, Sotiropoulos T E, Dimassiand K N, Therios I N. Effects of boron on growth, and chlorophyll and mineral contents of shoots of the apple rootstock MM 106 cultured in vitro. Biologia plantarum,2004,48 (4):617-619
    222.Musil I, Pavlicek V. Liming of forest soils:effectiveness of particle-size fractions. J. Forest Sci.,2002,48:121-129
    223.Olsen R V and Bergen K C.Boron fixation is luenced by pH, Soil organic matter content and other factors. Proc. SSSA,1945,11,216
    224.Parfitt R L, Smart R St C. The mechanism of sulfate adsorption on iron oxides. Soil Sci. Soc. Am. J.,1978,42:48-50
    225.Parfitt R L, Russel J D, Farmer V C. Confirmation of the surface structure of goethite and phosphated goethite by infrared spectroscopy. J.Chem.Soc.Faraday.I, 1976,72:1082-1087
    226.Paridu K M, Studies on MnO2 Ⅰ:chemical composition microstructure and electrochemical characteristic of some synthetic MnO2 of various crystalline modifications. Electrochem. Acta.1981,20:435-443
    227.Parks W L, and. White J L. Boron retention by clays and humus systems saturated with various cations. Soil Sci. Soc. Am. Proc.1952,16:298-300
    228.Peak D F, Robert G D L. Sparks. An in Situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J. Colloid and Interf. Sci.,1999,218(1): 289-299
    229.Peak D, Luther G W, and Sparks D L. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim. Cosmochim. Acta,2003,67: 2551-2560
    230.Pedersen H D, Postma D, Jakobsen R, and Larsen O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochimica et Cosmochimica Acta,2005,69:3967-3977
    231.Pwael W. Impact of boron on biomass production and nutrition of aluminum-stressed apple rootstocks. J. Plnat Nurt.,2003,26(12):2439-2451
    232.Rakovan J, Becker U, Michael F. Hochella J R. Aspects of goethite surface microtopography, structure, chemistry, and reactivity. American Mineralogist, Volume 84, pages 884-894,1999
    233.Raven K P, Jain A, and Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite:Kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology,1998,32:344-349
    234.Rene P J, Tjisse Hiemstra J R. Comparison of selenate and sulfate adsorption on goethite. J. Colloid and Interf. Sci.,2001,240:384-390
    235.Ruiz J M, Rivero R M and Romero L. Boron increase synthesis of glutathione in sunflower plants subjected to aluminum stress. Plant Soil,2006,279:25-30
    236.Ryan J, Miyamoto S and Stroehlein J L. Relation of solute and sorbed boron to the boron hazard in irrigation water. Plant Soil,1977,47:253-256
    237.Santos L D, Brandao P R G. Morphological varieties of goethite in iron ores from Minas Gerais, Brazil. Minerals Engineering,2003,16:1285-1289
    238.Saviozzi A, Levi-Minzi R, Riffaldi R. A comparision of soil quality in adjacent cultivated, forest and native grassland soil. Plant Soil,2001,233:251-259
    239.Scherer H W, Ahrens G. Depletion of non-exchangeable NH4-N in the soil-root interface in relation to clay mineral composition and plant species. Europ. J. Agronomy,1996,5,1-7
    240.Schottelndreier M, Falkengren-Grerup U. Plant induced alteration in the rhizosphere and the utilisation of soil heterogeneity. Plant Soil,1999,209: 297-309
    241.Schwertmann U. and Taylor R.M. Iron oxides in minerals in soil environments, Vol.1. p.379-439. Soil Science Society of America, Madison, Wisconsin,1990
    242.Scott H D, Beasley S D, Thomp son L F. Effect of lime on bron on trasport to and uptake by cotton. Soil Sci. Am. P roc.1975,39:1116-1121
    243.Shelp B J et al. Boron mobility in plants.Plant Physiol,1995,94:356-361
    244.Shkonik M Y. Trace elements in plants. Developments in Crop Sci.,1984,6: 68-109
    245.Shorrocks V M. The occurrence and correction of boron deficiency. Plant Soil, 1997,193:121-148
    246.Shuman L M, Wang J. Effect of rice variety on zinc, cadmium, iron and manganese content in rhizosphere and nonrhizosphere soil fractions. Communications in Soil Sc. Plant Analysis,1997,28 (1):23-36
    247.Singh B K, Millard P, Whiteley A S, Colin J. Murrell Unravelling rhizosphere-microbial interactions:opportunities and limitations. Trends in Microbiology,2004,12(8):386-393
    248.Su C M, Suarez D L. Coordination of adsorbed boron:A FTIR spectroscopic study. Environ. Sci. Technol.1995,29:302-311
    249.Su C M, Suarez D L. Boron sorption and release by allophane. Soil Sci. Soc. Am. J.,1997,61:69-77
    250.Su C M, Suarez D L. Boron release from weathering of illites, serpentine, shales, and illitic/palygorskitic soils. Soil Sci. Soc. Am. J.2004,68,96-105
    251.Sulaiman W, Kay B D. Measurement of the diffrsion coefficient of boron in soil using a single cell technique. Soil Sci. Soc. Am. P roc.1972, (36):746-752
    252.Tabatabai M A, Bremner J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology Biochem.,1969,1:301-307
    253.Tagagdar J C, Classen N. organic phosphous compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganism. Biol. Fertil. Soils,1988,5:308-312
    254.Taylor G J and Macfie S M. Modeling the potential for boron amelioration of aluminum toxicity using the Weibull function, Canadian J. Bot.1994,72, 1187-1196
    255.Taylor R M and SchwertmannU. The association of P with iron ferruginous soil concentions. Aust. J.Soil Res.,1974,12:123-145
    256.Trivedi P, Axe L, Dyer J. Adsorption of metal ions onto goethite:single-adsorbate and competitive systems. Colloids and Surface A:Physicochem. Engin. Aspects 2001,191,107-121
    257.Tsadilas C D, Yassoglou N, Kosmas C S, Kallianou C H. The availability of soil boron fractions to olive trees and barley and their relationships to soil properties. Plant Soil,1994,162:211-217
    258.Tu S, Ma L Q, MacDonald G E, et al. Effects of arsenic species and phosphorus on arsenic absorp tion, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environmental and Experimental Botany,2004,51:121-131
    259.Turner A, Olsen Y S. Chemical versus enzymatic digestion ofcontaminated estuarine sediments:relative importance of ironand manganese oxides in controlling trace metal bioavailability. Estuarine, Coastal Shelf Sci,2000,51 (6): 717-728
    260.Tyler G, Olsson T. Concentrations of 60 elements in the soil solution as related to the soil acidity. European J. Soil Sci.,2001,52:151-165
    261.VanBreemen N, Driscou C T and Mulder, J. Acidic deposition and internal proton in acidification of soils and water. Nature,1984,307:599-604
    262.Warington, K.,1923. The effect of boric acid and borax on the broad been and certain other plants. Ann. Bot. (Lond.) 1923,37,629-672
    263.Wenzel W W, Bunkowski M, Puschenreiter M, et al. Rhizosphere characteristic of indigenously growing nickel hyperaccumulator and excludor p lants on serpentine soil. Environ. Pollut.,2003,123:131-138
    264.Whiting S N, Leake J R, McGrath S P, et al. Zinc accumulation by Thlaspi caerulescens from soilswith different Zn availability:a pot study. Plant Soil,2001, 236:11-18
    265.Williams W J. Handbook of anion determination. Butterworth, London,1979. pp. 23-39
    266.Wojcik P. Impact of boron on biomass production and nutrition of aluminium stressed apple rootstocks. J. Plant Nutr.2003,26:2439-2451
    267.Xu J M, Wang K, Bell R W, Yang Y A, Huang L B. Soil boron fractions and their relationship to soil properties. Soil Sci. Soc. Am. J.2001,65:133-138
    268.Yang Y H, Gu H J, Fan W Y and Bilkisu A. Abdullahi.Effects of boron on aluminum toxicity on seedlings of two soybean cultivars. Water, Air, and Soil Pollut.,2004,154:239-248
    269.Yang Y H. and Zhang H Y. Boron amelioration of aluminum toxicity in mungbean seedlings, J. Plant Nutrit.,1998,21,1045-1054
    270.Yermiyaho U, Keren R, Chen Y. Effect of composted organic matter on boron uptake by plants. Soil Sci. Soc. Am.2001,65:1436-1441
    271.Youssef R A, Abd E A, HilalM H. Studies on the movement on Ni in wheat rhizosphere. J. Plant,1987,9:695-713
    272.Youssef R A, Fattah A E A, Hilal M H. Studies on the movement of Ni in wheat rhizosphere using rhizobox technique. Egyptian J Soil Sci,1997,37 (2):175-787
    273.Zhang F S, Zhang X N, Yu T R. Reactions of hydrogen ions with variable charge soils:Ⅰ.Mechanisms of reaction. Soil Sci,1991,151 (6):436-443
    274.Zhou Q H, Wua Z B, Chenga S P, Hea F, Fua G P. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biology and Biochemistry,2005,37:1454-1459
    275.Zhu D W, Wang J, Liao S J and Liu W D. Relationship between plant availability of boron and the physico-chemical properties of boron in soils In:Xu, F. et al. (ed.), Advances in Plant and Animal Boron Nutrition, Springer, Dordrecht, The Netherlands,2007, pp.345-354

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700