用户名: 密码: 验证码:
新型开放骨架结构亚磷酸锌和亚磷酸铁晶体的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis and Property Research of Novel Open Framework Zinc Phosphites and Iron Phosphites
  • 作者:乔健
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2011
  • 导师:刘云凌 ; 宋天佑
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2011-05-01
摘要
开放骨架材料是由主体骨架(无机或无机-有机杂化)与客体分子构成的晶体类孔材料,而最早的开放骨架材料是矿物学家Cronstedt在1756年发现并命名为“沸石”的矿物Stilbite。数百年来,经过数辈无机合成化学家的努力,开放骨架材料已逐步发展为涵盖硅(铝)酸盐、磷基酸盐、锗(硅)酸盐、砷酸盐、亚硒酸盐、金属有机骨架化合物(MOF)、金属有机多面体(MOP)、共价有机骨架化合物(COF)等数十个次级学术领域,而其结构与应用化学也在这数个世纪里也得到了飞速发展。例如合成手性及螺旋骨架结构用以支持不对称催化反应、拆分LD型有机以及生物小分子;用于组装功能化材料、进行光化学、电化学反应的特定骨架结构;制备适于有机以及生物大分子反应、主客体分离(气相、液相等)反应的超大孔道结构等等。
     十余年来,使用假四面体构型的[HPO_3]~(2-)基团代替四面体构型的[PO_4]~(3-)基团开发出的开放骨架金属亚磷酸盐,因其新颖的骨架结构以及独特的物化性能备受各国科研人员的关注,一些具有特殊结构(超大孔道、特殊笼腔、手性及螺旋特征等)与新颖性质(磁性、光致发光、光电效应、转晶等)开放骨架金属亚磷酸盐的相继报道更是吸引了大量无机合成化学家的眼球。迄今为止,已有百余种结构新颖、组成丰富的开放骨架金属亚磷酸盐在水热、溶剂热、离子热以及熔融体系中制备出来。而在开放骨架金属亚磷酸盐这个大家庭中,结构已达六十余种的开放骨架亚磷酸锌无疑所受关注度是最高的,但是目前手性及螺旋开放骨架亚磷酸锌在合成体系上的选择较为单一,科研人员对使用手性金属配合物或手性模板剂诱导制备具有手性及螺旋结构开放骨架亚磷酸锌的研究还处于探索阶段,虽然有使用金属配合物进行合成的报道,但在这些化合物的结构中并未出现金属配合物与无机骨架的手性传递作用;而在大量的开放骨架亚磷酸锌中,溶剂热体系下使用小型刚性有机配体参与制备无机-有机杂化亚磷酸锌的报道更为少见。另外相对于开放骨架亚磷酸锌这个庞大的分支,对于能够产生特殊磁学性质开放骨架亚磷酸铁的研究也是非常少的。鉴于以上开放骨架金属亚磷酸盐的研究动态,为了丰富开放骨架金属亚磷酸盐的结构与性质化学,我们将合成具有新颖结构和性质的开放骨架亚磷酸锌和亚磷铁晶体作为主要研究内容,进行了探索性研究:
     1.首次在DMF/DOA的混合溶剂热体系下,以螺旋桨构型的金属配合物Co(en)_3Cl_3作为模板剂,合成了结构中含有左右手螺旋链状特征的三维开放骨架亚磷酸锌晶体|Co(en)_3|[Zn_4(HPO_3)_5(H_2PO_3)]。该化合物中平行于ab平面的4-,6-,8-网层结构通过Zn-P共边相连构筑了化合物的10-,12-员环孔道。客体分子以△和Λ两种不同状态存在于10-员环孔道中,并且通过与主体骨架中[HPO_3]~(2-)基团的氢键作用,将自身手性部分地传递到主体骨架之中,使化合物4-,6-,8-网层中产生了左右手螺旋链,对比相关具有手性及螺旋结构的开放骨架磷酸锌和亚磷酸锌的报道,可以发现无机骨架与螺旋状金属配合物之间显著的立体相互效应源自于主体骨架与客体分子之间的氢键作用。
     2.在水热体系中,以手性有机胺2-甲基戊二胺作为模板剂,制备了含有左右手螺旋链状结构的二维层状磷酸亚磷酸锌晶体|C_6H_(16)N_2| [Zn_4(PO_4)_2(HPO_3)_2]·H_2O。二维层中的MPMD分子通过与无机骨架的氢键作用将其手性传递到主体中,使化合物骨架中-Zn-O-P-连接发生一定的扭曲和变形,进而诱导生成了二维层中的左右手螺旋链,与结构类似的磷酸亚磷酸锌晶体|C_6H_(17)N_3|[Zn_4(PO_4)_2(HPO_3)_2]的对比,进一步说明了手性模板剂的确能够通过与骨架的氢键作用,诱导生成手性或螺旋结构特征。
     3.利用溶剂热技术,在DMF/DOA体系下,以小型刚性的三乙烯二胺(DABCO)为配体合成了柱支撑结构的无机-有机杂化亚磷酸晶体[Zn_3(C_6H_(12)N2_)_2(HPO_3)_3],中性的DABCO配体以支撑剂的方式将化合物的12-员环亚磷酸锌层以ABAB的方式连接起来,构筑了化合物的一维六方超大孔道(孔径约为1.0 nm×1.0nm)。该化合物是首例在DMF/DOA体系中制备的具有纳米尺度孔径的无机-有机杂化开放骨架亚磷酸锌晶体。通过Topos4.0和Systre程序计算,该化合物具有新颖的3-,4-,5-混合连接的拓扑学结构,对应Schlafli符号为{4;6~2}3{4~3;6~3}2{6~6;10~4}。结合相关文献分析并总结了DABCO分子在合成中所起的作用。荧光光谱显示配体DABCO对金属Zn存在电子转移,而表面光电压谱的测定进一步说明化合物具有极为特殊的光电效应。
     4.在H_2O/EtOH体系中,以二乙烯三胺为模板剂,成功制备了具有6-,8-,10-员环交叉孔道结构的三维开放骨架亚磷酸铁晶体|C_4N_H_(14)|[Fe_3(HPO_3)_4F_2(H_2O)_2]。在该化合物的结构中,10-员环孔道平行于c-轴,8-员环孔道垂直于10-员环孔道,而6-员环则平行于b-轴,且每两个DETA分子以首尾相接的方式存在于这些交叉孔道的空隙中并通过弱的氢键与主体骨架相互作用。穆斯堡尔谱测定表明化合物中存在两个晶体学独立三价Fe原子,占有率分别为66.2%和33.8%。磁学性质研究表明该化合物具有反铁磁性质。5.在DMF/DOA体系中,使用非手性的三乙烯二胺为有机模板剂,合成了具有多维互穿螺旋孔道的开放骨架亚磷酸铁晶体|C_6H_(12)N_2|0.5 [Fe_(0.5)~IIIFe_(0.5)~II(H_2O)_2HPO_3F_(0.5)]·0.5H_2O。化合物中平行于[0 1 1]方向的不规则二维亚磷酸铁层通过HPO_3基团彼此相连形成了具有互穿螺旋孔道的三维结构。通过Topos4.0和Systre拓扑学程序计算,我们得到了化合物的Schlafli符号为{6~4;8~2},经过简化后的骨架拓扑结构可以更加清楚的看到化合物在各个方向上的螺旋孔道。另外,我们对化合物的圆二色谱、穆斯堡尔谱和磁学性质等研究还在进行之中。
After the discovery of Stilbite by Cronstedt in 1756, open-framework materials have been developed rapidly by the efforts of several generations of inorganic synthesis chemists. Because of their many potential applications, the mainly research area of open-framework including silicates, germinates, phosphates, phosphites, phosphonates, arsenates, borates, sulfates and selenites et al. continues to be exciting, such as using the extra-large pore framework to participate in the organic and biological macromolecules reactions and the chiral framework to support asymmetric catalysis.
     Recently, a new class of open-framework metal phosphites has been developed by employing the pyramidal phosphite units HPO_3~(2-) to replace the tetrahedral phosphate groups PO_4~(3-). This new class of materials has attracted much attention due to their novel skeletal composition and features including extra-large pores, chiral and helical structure. Research and investigation has been focused on applications of open-framework materials in the areas of optics, magnetic chemistry, electrochemistry, catalytic chemistry et al. To date, numerous of metallic elements such as Al, Be, Ga, In, Co, Fe, V, Nd, Ni, Mn, Zn et al. have been used in the synthesis of metal phosphites.
     Among the open-framework metal phosphites, the zincophosphites constitute an important family which exhibits rich structural and compositional diversity. To date only a few zincophosphites are reported to possess helical features. Such as the 2-D layered zincophosphite |C_5H_6N_2|[ZnHPO_3] with left and right helical chains and 3-D pillared layered zincophosphite FJ-15 with 1D helical chains as pillares. Thus, the design and synthesis of zincophosphites with helical or chiral structures are of current interest and of great challenge. One useful approach to prepare inorganic helical materials is by incorporating helical or chiral organic molecules as structure-directing agents (SDAs) in the synthesis. The nature and functionality of the organic SDAs is one of the most important factors when synthesizing open-framework materials. Furthermore, the synthetic mechanism of such materials is a subject of current research, as it is not well understood. Additionally, there are several examples in literature in which small and rigid organic ligands are used to construct 3D hybrid zincophosphite frameworks. As compared to zincophosphites, there are only a few iron phosphites exist, which also plays an important role in the open-framework metal phosphites, due to both the complex magnetic properties and various valance of the iron element.
     The purpose of this doctoral dissertation is to synthesis and research of novel open-framework zinc phosphites and iron phosphites continuously and systematically by using hydrothermal and solvothermal methods.
     1. A new three-dimensional (3D) zincophosphite |Co(en)_3| [Zn_4(HPO_3)_5(H_2PO_3)] (1) has been solvothermally synthesized by using a racemic mixture of a chiral cobalt complex Co(en)_3Cl_3 as SDA. The structure of compound 1 consists of ZnO_4 tetrahedra and HPO_3 pseudo-tetrahedra, giving rise to a 3D structure with a 4.6.8-net and 10-MR channels. The metal complex molecules with both the△andΛenantiomers, sit in the 10-MR channels. Also there are left-handed and right-handed helical chains in the structure which have been templated by the SDA. The notable stereospecific correspondence between the metal complex and inorganic framework is attributed to the hydrogen bonding between the host framework and the guest molecules.
     2. A new layered zinc phosphate-phosphite |C_6H_(16)N_2| [Zn_4(PO_4)_2(HPO_3)_2]·H_2O (2) was hydrothermally synthesized by using a racemic mixture of a chiral organic template 2-methyl-5-pentanediamine (MPMD) as SDA. Compound 2 consists of Zn-centered units and P-centered units, giving rise to a layered structure with a 4-, 6-net. Both the△andΛenantiomers of the chiral template molecules stay between the adjacent layers. Compound 2 also contains the left-handed and right-handed helical chains in the layer which have been formed by hydrogen bonding between the host framework and the guest molecules.
     3. By employing 1,4-diazabicyclo[2.2.2]octane (DABCO) as pillared ligand, a new 3D hybrid zinc phosphite [Zn_3(C_6H_(12)N_2)_2(HPO_3)_3] (3) has been solvothermally prepared. Its structure is constructed of neutral zinc phosphite layers, which are composed of ZnO_3N tetrahedral, ZnO_3N_2 trigonal bipyramidal and HPO3 pseudo-tetrahedral. The inorganic layers pack in an ABAB sequence with the DABCO ligands as pillars, thus generating a 3D hybrid framework. It is worth noting that compound 3 exhibits 1D hexagonal 12-MR channels with extra-large pore (diameter about 1.0 nm×1.0 nm). Topological analysis shows that compound 3 is an unprecedented 3, 4, 5-connected network. The study of surface photovoltage spectroscopy (SPS) shows compound 3 possesses an unusual photoelectronic property. The photoluminescence spectra shows a main fluorescence peak at 411 nm, which can be assigned as ligand-to-metal charge transfer.
     4. Introducing the F~- anion as a mineralizer and the diethylenetriamine (DETA) molecule as SDA, a novel open-framework iron (III) phosphite |C_4N_3H_(14)|[Fe_3(HPO_3)_4F_2(H_2O)_2](4) has been hydrothermally synthesized. The structure of compound 4 consists of HPO_3 pseudo-tetrahedra and {Fe_3O_(14)F_2} trimer building units. The assembly of these building units generates a 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-MR channels and linked by hydrogen bonds. The M?ssbauer spectrum shows that this compound exhibits two crystallographically independent iron (III) atoms. The magnetic investigation shows the presence of antiferromagnetic interactions.
     5. By using the achiral organic amine 1,4-diazabicyclo[2.2.2]octane (DABCO) as the SDA and F- anion as a mineralizer, a new 3D iron phosphite |C_6H_(12)N_2|_(0.5)[Fe_(0.5)~IIIFe_(0.5)~II(H_2O)_2(HPO_3)F_(0.5)]·0.5H_2O(5) has been solvothermally synthesized. Compound 5 possesses multi-directional intersecting helical channels made from the {Fe_2P_2O_(12)F} secondary building units (SBUs), which are strictly made up of FeO_5F octahedra and HPO_3 pyramidal tetrahedral, and the DABCO molecules are located in the“free space”of the intersecting channels. The study of circular dichroism, M(o|¨)ssbauer spectrum and the magnetic susceptibility measurement of compound 5 are still in progress.
引文
[1]徐如人,庞文琴,分子筛与多孔材料化学,科学出版社,2004.
    [2] A. K. Cheetham, G. Férey, T. Loiseau, Open-Framework Inorganic Materials [J]. Angew. Chem. Int. Ed. 1999, 38, 3268.
    [3] T. Rojo, M. I. Arriortua, et al. Organically templated open-framework phosphites [J]. J. Mater. Chem., 2009, 19, 3793.
    [4] A. F. Cronstedt, K. Vetenskaps, Acad Handle Stockholm, 1756, 17, 120.
    [5] R. M. Barrer, et al. Molecular Sieves, Society of Zeolites Industry, London, 1968, 39.
    [6] S. T. Wilson, Flanigen, et al. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids [J]. J. Am. Chem. Soc., 1982, 104, 1146.
    [7]徐如人,庞文琴,无机合成与制备化学,高等教育出版社,2001.
    [8] http://izasc.ethz.ch/fmi/xsl/IZA-SC/ft.xsl
    [9] R. M. Milton, USPat. 1959, 2, 882, 243.b
    [10] D. M. Breck, USPat. 1964, 3, 130, 007.
    [11] D. M. Breck, USPat. 1965, 3, 216, 789.
    [12] L. B. Sand, USPat. 1969, 3, 436, 174.
    [13] R. M. Barrer, P. J. Denny, Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates [J]. J. Chem. Soc., 1961, 971.
    [14] M. Taramasso, B. Notari, et al. Proc. 5th Inter. Conf. on Zeolites, 1980, 40.
    [15] F. Schuth, W. Schmidt, et al. Microporous and Mesoporous Materials [J]. Adv. Mater., 2002, 14, 629.
    [16] Q. Huo, R. Xu, et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20 [J]. J. Chem. Soc. Chem.,1992, 875.
    [17] M. E. Davis, et al., A molecular sieve with eighteen-membered rings [J]. Nature, 1988, 331, 698.
    [18] H. H. Xing, J. H. Yu, Cotemplating Ionothermal Synthesis of a New Open-Framework Aluminophosphate with Unique Al/P Ratio of 6/7 [J]. Chem. Mater., 2008, 20, 4179.
    [19] X. W. Song, J. H. Yu, et al. Heteroatom- Stabilized Chiral Framework of Aluminophosphate Molecular Sieves [J]. Angew. Chem. Int. Ed., 2009, 48, 314.
    [20] G. Y. Yang, S. C. Sevov, Zinc Phosphate with Gigantic Pores of 24 Tetrahedra [J]. J. Am. Chem. Soc., 1999, 121, 8389.
    [21] Z. E. Lin, G. Y. Yang, et al. Synthesis and structure of a novel open-framework zincophosphate with intersecting three-dimensional helical channels [J]. J. Chem. Soc., Dalton Trans., 2002, 4527.
    [22] R. Singh, P. K. Dutta, et al. The directing role of 1,4-diazabicyclo[2,2,2]octane (DABCO)-phosphate unit in synthesis of zincophosphate faujasite (ZnPO-X) [J]. Micropor. Mesopor. Mater., 2004, 71, 149.
    [23] Y. C. Liao, S. L. Wang, et al. A Zeolitic Organo Metallophosphate Hybrid Material with Bimodal Porosity [J]. J. Am. Chem. Soc., 2004, 126, 1320.
    [24] S. H. Huang,, S. L. Wang, et al. Network Topology of a Hybrid Organic Zinc Phosphate with Bimodal Porosity and Hydrogen Adsorption [J]. Angew. Chem. Int. Ed., 2009, 48, 6124.
    [25] M. E. Estermann, C. Boelocher, et al. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. Nature, 1991, 352, 320.
    [26] C. H. Lin, S. L. Wang, K. H. Lii. [Ga_2(DETA)(PO_4)_2]·2H_2O (DETA = Diethylenetriamine): A Novel Porous Gallium Phosphate Containing 24-Ring Channels [J]. J. Am. Chem. Soc., 2001, 123, 4649.
    [27] R. I. Walton, F. Millange, T. Loiseau, et al. Crystallization of a Large-Pore Three-Dimensional Gallium Fluorophosphate under Mild Conditions [J]. Angew. Chem. Inter. Ed., 2000, 39, 4552.
    [28] T. Loiseau, G. Férey, Oxyfluorinated Microporous Compounds: VII. Synthesis and Crystal Structure of ULM-5, a New Fluorinated Gallophosphate Ga_(16)(PO_4)_(14)HPO_4)_2(OH)_2F_7·[H_3N(CH_2)6NH_3]_4·6H_2O with 16-Membered Rings and Both Bonding and Encapsulated F1 [J]. J. Solid State Chem., 1994, 111, 427.
    [29] C. Sassoye, F. Taulelle, et al. A new open-framework fluorinated gallium phosphate with large 18-ring channels (MIL-31) [J]. Chem. Commun., 2000, 943.
    [30] S. S. Dhingra, R. C. Haushalter, Hydrothermal synthesis and crystal structure of H3NCH2CH2NH3[In_2(HPO_4)_4]. A novel octahedral–tetrahedral framework indium phosphate with occluded organic cations [J]. J. Chem. Soc., Chem. Common.,1993, 1665.
    [31] S. L. Yang, H. Zhang, et al. Synthesis, crystal structure and optical properties of an indium phosphate K_3In_3P_4O_(16) [J]. J. Solid State Chem., 2009, 182, 855.
    [32] K. H. Lii, RbIn(OH)PO_4: an indium(III) phosphate containing spirals of corner-sharing InO6 octahedra [J]. J. Chem. Soc., Dalton Trans., 1996, 6, 815.
    [33] I. D. Williams, W. Pang, et al. A Metal-Rich Fluorinated Indium Phosphate, 4[NH_3(CH_2)_3NH_3]·3[H_3O]·[In_9(PO_4)_6(HPO_4)_2F_(16)]·3H_2O, with 14-Membered Ring Channels [J]. Chem. Mater., 1998, 10, 773.
    [34] A. Thirumurugan, S. Natarajan, Synthesis and structure of a new three-dimensional indium phosphate with 16-membered one-dimensional channels [J]. Dalton Trans., 2003, 3387.
    [35] S. Y. Mao, J. T. Zhao, et al. Hydrothermal Synthesis and Crystal Structure of the First Ammonium Indium(III) Phosphate NH_4In(OH)PO_4 with Spiral Chains of InO_4(OH)_2 [J]. J. Solid State Chem., 2002, 165, 209.
    [36] Y. Du, R. R. Xu, et al. [Co(en)_3][In_2(HPO_4)_6(HPO_4)_3]·H_2O: A New Layered Indium Phosphate Templated by Cobalt Complex [J]. J. Solid State Chem., 2004, 177, 3032.
    [37]刘成站,微孔亚磷酸铟和磷酸铟晶体的水热合成研究[J].吉林大学博士论文, 2007.
    [38] K. H. Lii, et al. Syntheses and Structures of Organically Templated Iron Phosphates [J]. Chem. Mater., 1998, 10, 2599.
    [39] M. Cavellec, G. Férey, et al. Hydrothermal Synthesis, Structure, and Magnetic Properties of a Novel Monodimensional Iron Phosphate: [FeF(HPO_4)_2,N_2C_3H_(12),(H_2O)_x] (x≈0.20) (ULM-14) [J]. Inorg. Chem., 1997, 36, 2187.
    [40] M. Cavellec, G. Férey, et al. Hydrothermal synthesis, structure and magnetic properties of [Fe_3(PO_4)_3F_2, H_3N(CH_2)_4NH_3]: The analog of the three-dimensional gallophosphate structure-type ULM-3 [J]. J. Magn. Mater., 1996, 163,173.
    [41] M. Cavellec, J. M. Greneche, G. Férey, Oxyfluorinated open framework compounds. XVIII Dehydration of single crystals of the iron phosphate ULM-12 or [Fe_4(PO_4)_4F_3(H_2O)_3,N_2C_6H_(14)] with an open structure, structural determination and magnetic study of the dehydrated phase(ULM-19) [J]. Micropor. Mesopor. Mater., 1998, 20,45.
    [42] Y. Ke, G. He, J. Li, S. Lu, A new mixed divalent metal phosphate with zeolite thomsonite framework topology [J]. New J. Chem., 2001, 25, 1627.
    [43] S. Natarajan, S. Neeraj, C. N. R. Rao, Three-Dimensional Open-Framework Cobalt(II) Phosphates by Novel Routes [J]. Inorg. Chem., 2000, 39, 1426.
    [44] N. Guillou, G. Férey, et al. Synthesis and ab initio structural determination of a new pillared nickel diphosphonate: VSB-6 or Ni_(5.4)(OH,F)_4[O_3P(CH_2)_3PO_3]_2(H_2O)_(1.4)·1.2H_3O [J]. Solid State Sci., 2002, 4, 1179.
    [45] Q. Gao, G. Férey, et al. Structure and Magnetism of VSB-2, -3 and -4 or Ni_4(O_3P(CH_2)PO_3)_2·(H_2O)n (n = 3, 2, 0), the First Ferromagnetic Nickel(II) Diphosphonates: Increase of Dimensionality and Multiple Coordination Changes during a Quasi Topotactic Dehydration [J]. Chem. Mater., 1999, 11, 2937.
    [46] K. O. Kongshaug, K. P. Lillerud, et al. The Synthesis and Characterization of a New Manganese Phosphate Templated by Piperazine [J]. J. Solid State Chem., 2001, 156,32.
    [47] A. M. Chippindale, A. V. Powell, et al. Synthesis and characterisation of a layered organically-templated manganese phosphate, [Mn_2(HPO_4)_3]·(NH_3(CH_2)_2NH_3)_(3/2)·H_2PO_4, and its reaction with water [J]. J. Mater. Chem., 2001, 11, 3172.
    [48] V. Soghomonian, J. Zubieta, et al. An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH_3)_2NH_2]K_4[V_(10)O_(10)(H_2O)_2(OH)_4(PO_4)_7]·4H_2O [J]. Science, 1993, 259, 1596.
    [49] Y. Liu, W. Pang, et al. Hydrothermal Synthesis and Characterization of Two New Three-Dimensional Titanium Phosphates [J]. Chem. Mater., 2001, 13, 2017.
    [50] V. Soghomonian, J. Zubieta, et al. Vanadium Phosphate Framework Solid Constructed of Octahedra, Square Pyramids, and Tetrahedra with a Cavity Diameter of 18.4 ? [J]. Angew. Chem. Int. Ed., 1993, 32, 610.
    [51] V. Soghomonian, J. Zubieta, et al. A square-pyramidal tetrahedral vanadium phosphate framework solid incorporating propanediammonium dications. The structural characterization of (H3NCH2CH2CH2NH3)K[(VO)3(PO4)3] [J]. Chem. Mater., 1993, 5, 1595.
    [52] Y. Liu, W. Pang, et al. Hydrothermal Synthesis and Structural Characterization of Three Organically Templated Titanium Phosphates: Ti_2(HPO_4)_2(PO_4)_2·C_2N_2H_(10), Ti_3(H_2PO_4)(HPO_4)_(3.5)(PO_4)_2·C_2N_2H_(10), and Ti_7(HPO_4)_6(PO_4)_6·C_3N_2H_(12) [J]. Chem. Mater., 2002, 14, 1555.
    [53] R. Murugavel, C. N. R. Rao, et al. Metal Complexes of Organophosphate Esters and Open-Framework Metal Phosphates: Synthesis, Structure, Transformations, and Applications [J]. Chem. Rev., 2008, 108, 3549
    [54] M. Shieh, A. Clearfield, et al. New low-dimensional zinc compounds containing zinc-oxygen-phosphorus frameworks: two-layered inorganic phosphites and a polymeric organic phosphinate [J]. Inorg. Chem., 1990, 29, 958.
    [55] G. Bonavia, D. Rose, J. Zubieta, et al. Hydrothermal Synthesis and Characterization of Two- and Three-Dimensional Solids of the Oxovanadium(IV)-Phosphite System. The Structures of [HN(Me)(CH_2CH_2)_2N(Me)H][(VO)_4(OH)_2(HPO_3)_4], [H_2N(CH_2CH_2)_2NH_2] [(VO)_3(HPO_3)_4(H_2O)_2], and [VO(HPO_3)(H_2O)] [J]. Chem. Mater., 1995, 7, 1995.
    [56] W. T. A. Harrison, T. M. Nenoff, et al. New Framework Connectivity Patterns in Templated Networks: The Creatinine Zinc Phosphites C4N_3OH_7·ZnHPO_3, C_4N_3OH_7·Zn(H_2O)HPO_3, and (C_4N_3OH_7)_2·ZnHPO_3·H_2O [J]. Inorg. Chem., 2003, 42, 1493.
    [57] L. E. Gordon, W. T. A. Harrison, Amino Acid Templating of Inorganic Networks: Synthesis and Structureof L-Asparagine Zinc Phosphite, C4N2O3H8 ZnHPO3 [J]. Inorg. Chem., 2004, 43, 1808.
    [58] J. A. Rodgers, W. T. A. Harrison, Ethylenediamine zinc hydrogen phosphite,[H_2N(CH_2)_2NH_2]_(0.5)·ZnHPO_3, containing two independent, interpenetrating, mixed inorganic/organic networks [J]. Chem. Commun., 2000, 2385.
    [59] L. E. Gordon,W. T. A. Harrison, M. L. F. Phillips,β-[H_2N(CH_2)_2NH_2]_(0.5)[ZnHPO_3] a second modification of ethylenediamine zinc hydrogen phoshite [J]. Acta Cryst., 2004, C_60, m637.
    [60] A. Kirkpatrick, W. T. A. Harrison, Two zincophosphite frameworks templated by 1,4-diaminobenzene:syntheses and structures of C_6N_2H10·Zn(HPO_3)_2and (C_6N_2H_8)0.5·ZnHPO_3 [J]. Solid State Sci., 2004, 6, 593.
    [61] W. T. A. Harrison, H_3N(CH_2)_3NH_3·Zn(HPO)_3 containing four-ring chains of ZnO_24 tetrahedra and HPO_3 pseudo pyramids [J]. Int. J. Inorg. Mater., 2001, 3, 187.
    [62] M. L. F. Phillips, W. T. A. Harrison, et al. Variations on the (3,4)-Net Motif in Organo-Zincophosphite Chemistry: Syntheses and Structures of (CN_3H_6)_2·Zn_3(HPO_3)_4·H_2O and H_3N(CH_2)_3NH_3·Zn_3(HPO_3)_4·H_2O [J]. J. Solid State Chem., 2002, 167, 337.
    [63] W. T. A. Harrison, T. M. Nenoff, et al. (CN_4H_7)_2·Zn_3(HPO_3)_4, a three-dimensional framework zincophosphite: an example of template–template co-operation? [J]. Int. J. Inorg. Mater., 2001, 3, 1033.
    [64] W. T. A. Harrison, (NC_5H_(12))_2·Zn_3(HPO_3)_4: A Low-Density Framework Built Up froma Fully Connected (3, 4) Net of ZnO_4 Tetrahedra and HPO_3 Pseudo Pyramids [J]. J. Solid State Chem., 2001, 160, 4.
    [65] J. Liang, R. R. Xu, et al. Synthesis and structure of a new layered zinc phosphite (C_5H_6N_2)Zn(HPO_3) containing helical chains [J]. Chem. Commun., 2003, 882.
    [66] J. X. Pan, G. Y. Yang, et al. Synthesis and characterization of a new inorganic–organic hybrid open-framework zinc phosphite: (C_6N_3H_(12))_2·Zn5(HPO_3)6 [J]. Microp. Mesop. Mater., 2004, 75, 129.
    [67] L. Liu, W. Pang, et al. Syntheses and structures of two chiral zincophosphite compounds: [Zn(C_8H_8N_2)(HPO_3)] and (C_6H_(13)N_2)[Zn_3(C_6H_(12)N_2)(HPO_3)_3(H_2PO_3)] [J]. Dalton Trans., 2008, 2009.
    [68] Z. J. Dong, R. R. Xu, et al. [Zn(HPO_3)(C_(11)N_2O_2H_(12))] and [Zn_3(H_2O)(PO_24) (HPO_24)(C_6H_9N_3O_2)_2(C_6H_8N_3O_2)]: homochiral zinc phosphite/phosphate networks with biofunctional amino acids [J]. Dalton Trans., 2010, 39, 5439.
    [69] J. Liang, R. R. Xu, et al. [(C_4H_(12)N)_2][Zn_3(HPO_3)_4]: An Open-Framework Zinc Phosphite Containing Extra-Large 24-RingChannels [J]. Angew. Chem. Int. Ed., 2006, 45, 2546.
    [70] J. Y. Li, R. R. Xu, et al. Computational simulation study towards the synthesis of extra-large microporous materials [J]. Microp. Mesop. Mater., 2007, 101, 406.
    [71] J. Y. Li, R. R. Xu, et al. Template-Designed Syntheses of Open-Framework Zinc Phosphites with Extra-Large 24-Ring Channels [J]. Cryst. Growth & Des., 2008, 8, 2318.
    [72] J. Liang, R. Xu, et al. Synthesis and characterization of two new open-framework zinc phosphites [M(C_6N4H18)][Zn_3(HPO_3)_4] (M = Ni, Co) with multi-directional intersecting 12-membered ring channels [J]. J. Solid State Chem., 2005, 178, 2673.
    [73] J. Liang, R. Xu, et al. [Ni(C_6N_2H_(14))_2][Zn4(H_2O)(HPO_3)_5]: A new open-framework zinc phosphite with intersecting 8-, 12- and 16-ring channels [J]. J. Solid State Chem., 2006, 179, 1977.
    [74] Z. Lin, G. Yang, et al. Synthesis and characterization of a novel open- framework nickel-zinc phosphite with intersecting three-dimensional 16-ring channels [J]. J. Mater. Chem., 2004, 14, 1652.
    [75] Z. Lin, G. Yang, et al. A Novel Open-Framework Zinc Phosphite, Zn_3(HPO_3)_4·Ni(en)_2(H_2O)_2, Templated by a Transition-Metal Complex [J]. Eur. J. Inorg. Chem., 2004, 953.
    [76] Y. Lai, K. Lii, S. Wang, 26-Ring-Channel Structure Constructed from Bimetal Phosphite Helical Chains [J]. J. Am. Chem. Soc., 2007, 129, 5350.
    [77] L. Liu, W. Q. Pang, et al. [Zn_2(HPO_3)_2(H_2PO_3)][C_3H5N_2] and [Zn_2(HPO_3)_3][C_4H_7N_2]_2·2H_2O: Two new layered zinc phosphites with double 12-membered rings templated by imidazole and 2-methylimidazole [J]. J. Solid State Chem., 2006, 179, 1311.
    [78]刘丽,水热/溶剂热体系中新型亚磷酸锌无机微孔晶体的合成研究[J].吉林大学博士论文,2006.
    [79] Z. Lin, S. Dehnen, et al.Flux synthesis of three-dimensional open-framework zinc phosphate and manganese phosphite-oxalate with 12-ring channels [J]. Microp. Mesop. Mater., 2009, 126, 95.
    [80] Z. Lin, T. Okubo, et al. A New Organically Templated Zinc Phosphite Synthesized in Phosphorous Acid Flux and Its Hydrothermal Analogue [J]. Cryst. Growth & Des., 2006, 6, 2435.
    [81] Z. Lin, S. Dehnen, et al. Flux synthesis of (3,4)-connected zinc phosphites with different framework topologies [J]. J. Solid State Chem., 2009, 182, 3143.
    [82] Z. Lin, S. Dehnen, et al. Transformation of a Layered Zinc Phosphite to a Three-Dimensional Open-Framework Structure with Intersecting 16- and 12-Ring Channels [J]. Inorg. Chem., 2009, 48, 3517.
    [83] S. Fernandez, T. Rojo, et al. Two New Three-Dimensional Vanadium(III) and Iron(III) Phosphites Templated by Ethylenediamine: (C_2H10N_2)0.5[M(HPO_3)_2]. Ab Initio Structure Determination, Spectroscopic, and Magnetic Properties [J]. Chem. Mater., 2002, 14, 2300.
    [84] U. Chung, T. Rojo, et al. Structural, Thermal, Spectroscopic, Specific-Heat, and Magnetic Studies of (C_5H18N_3)[Fe3(HPO_3)6] 3H_2O: A New Organically Templated Iron(III) Phosphite with a Pillared Structure Formed by the Interpenetration of Two Subnets [J]. Inorg. Chem., 2006, 45, 8965.
    [85] S. Mandal, S. Natarajan, Open-Framework Structures of Transition-Metal compounds [J]. Angew. Chem. Int. Ed., 2008, 47, 4798.
    [86] S. F. Armas, T. Rojo, et al. (C_4N_2H_(12))[FeII0.86FeIII1.14(HPO_3)1.39(HPO_4)0.47 (PO_4)0.14F_3] : A Fluoro–Phosphite–Hydrogenphosphate–Phosphate Iron (II,III) Mixed-Valence Organically Templated Compound [J]. Angew.Chem. Int. Ed., 2004, 43,977.
    [87] S. F. Armas, T. Rojo, et al. A new organically templated monodimensional mixed valence(FeII/FeIII) phosphite: (C_4H_(12)N_2) [FeIIFeIII(HPO_3)_2F_3]Solvothermal synthesis, crystal structure, spectroscopic and magnetic properties [J]. Mater. Res. Bull., 2007, 42, 544.
    [88] S. F. Armas, T. Rojo, et al. Parametrization of the Magnetic Behavior of the Triangular Spin LadderChains Organically Templated: (C_2N_2H10)[M(HPO_3)F_3](MIII=Fe, Cr, andV). Crystal Structure and Thermal and Spectroscopic Properties of the Iron(III) Phase [J]. Inorg. Chem., 2006, 45, 3240.
    [89] S. Mandal, S. Natarajan, et al. The First One-Dimensional Iron Phosphite Phosphate, [FeIII(2,2′-bipyridine)(HPO_3)(H_2PO_4)]: Synthesis, Structure, and Magnetic Properties [J]. Chem. Mater., 2005, 17, 638.
    [90] S. Mandal, S. Natarajan, et al. Synthesis, structure and magnetic properties of a new one-dimensional iron phosphite, [FeIII(1,10-phenanthroline)(HPO_3) (H_2PO_3)] [J]. Curr. Sci., 2005, 89, 1899.
    [91] W. T. A. Harrison, (CN_3H_6)_2·(VO)_3(H_2O)_3(HPO_3)_4·3H_2O, a guanidinium vanadium phosphite hydrate based on a (3,4) connected net: an“Orthogonal Templating”effect? [J]. Solid State Sci., 2003, 5, 297.
    [92] X. M. Jing, Y. L. Liu, et al. Hydrothermal synthesis and characterization of two novel three-dimensional vanadium phosphites: |(C10H10N_2)|[V2IV O_2(HPO_3)_2(H_2PO_3)_2] and |(C_4H16N_3)|[V2IVVIIIO_2F2(HPO_3)_4] [J]. Micro. Meso. Mater., 2008, 116, 101.
    [93] S. Fernandez. T. Rojo, et al. A New Layered Inorganic Organic Hybrid Manganese(II) Phosphite: (C_2H10N_2)[Mn3(HPO_3)_4]. Hydrothermal Synthesis, Crystal Structure, and Spectroscopic and Magnetic Properties [J]. Chem. Mater., 2000, 12, 2092.
    [94] U. C. Chuang, T. Rojo, et al. Mn(HPO_3): A new manganese (II) phosphite with a condensed structure [J]. J. Solid State Chem., 2005, 178, 2913.
    [95] L. Zhao, R. R. Xu, et al. H_3O[Co8(HPO_3)9(CH_3OH)_3]·2H_2O: An Open-Framework Cobalt Phosphite Containing Extra-Large 18-Ring Channels [J]. Chem. Mater., 2008, 20, 17.
    [96]刘宪春,具有开放骨架结构的亚磷酸钴(II)的溶剂热合成与性质研究,东北师范大学硕士论文,2009.
    [97] S. Fernandez, T. Rojo, et al. (C_2H10N_2)[Cr(HPO_3)F_3]: The First Organically Templated Fluorochromium(III) Phosphite [J]. Angew. Chem. Int. Ed., 2002, 41, 3683.
    [98] H. Z. Xing, J. H. Yu, et al. Ionothermal Synthesis of Extra-Large-Pore Open-Framework Nickel Phosphite 5H_3O·[Ni8(HPO_3)9Cl3]·1.5H_2O : MagneticAnisotropy of the Antiferromagnet [J]. Angew. Chem. Int. Ed., 2010, 49, 2328.
    [99] D. B. Xiong, J. T. Zhao, et al. Synthesis, structure and luminescence property of two lanthanum phosphite hydrates: La2(H_2O)x(HPO_3)_3 (x = 1, 2) [J]. J. Solid State Chem., 2006, 179, 2538.
    [100] N. Li, S. Xiang, et al. Hydrothermal synthesis and crystal structure of two novel aluminophosphites containing infinite Al–O–Al chains [J]. J. Mater. Chem., 2002, 12, 1397.
    [101] N. Li, N. Guan, et al. Capturing an Aluminophosphite Intermediate in the New Route of Synthesizing Zeolite-like Aluminophosphates [J]. Chem. Mater. 2006, 18, 975.
    [102] A. Lu, H. Wang, et al. Novel Large Aluminophosphite Cage Unit as the Building Blocks To Form a Framework Structure Containing Multidimensional 12-Ring Channels [J]. Chem. Mater., 2007, 19, 4142.
    [103] W. S. Fu, S. H. Feng, et al. The First Organically Templated Beryllium Phosphite [NH_3(CH_2)_3NH_3]·Be_3(HPO_3)_4: Hydrothermal Synthesis and X-ray Crystal Structure [J]. Cryst. Growth & Des., 2004, 4, 297.
    [104]杨玉林,稀反应体系下开放骨架结构的磷酸镓(亚磷酸镓)微孔晶体的水热合成研究[J].吉林大学博士论文,2004.
    [105] L. Wang, T. Y. Song, et al. (H_3NC_2H_4NH_3)[In(OH)_3(HPO_3)]: the first organically templated indium phosphate [J]. Inorg. Chem. Commun., 2005, 8, 271.
    [106] L. Wang, S. H. Shi, et al. Synthesis and characterization of two new organically templated indium phosphites built from one-dimensional ladders [J]. Micro. Meso. Mater., 2006, 96, 287.
    [107] J. X. Jiang, A. Corma, et al. Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures [J]. Angew. Chem. Int. Ed., 2010, 49, 3120.
    [108] J. H. Yu, R. R. Xu, Chiral Zeolitic Materials: Structural Insights and Synthetic Challenges [J]. J. Mater. Chem., 2008, 34, 4005-4112
    [109] A. M. Chippindale, A. R. Cowley, et al. Synthesis and Characterization of a Large-Pore, Open-Framework Gallium Phosphate, [NH_3(CH_2)_4NH_3]_2 [Ga_4(HPO_4)_2(PO_4)_3(OH)_3]·yH_2O (y~5.4), and Its Vanadium–Gallium Phosphate Analogue, [NH_3(CH_2)_4NH_3]_2[Ga_(4-x)V_x(HPO_4)_2(PO_4)_3 (OH)_3]·yH_2O (x~0.4, y~6) [J]. J. Solid State Chem., 1999, 145, 379.
    [110] T. E. Gier, G. D. Stucky, et al. synthesis and organization of zeolite-like materials with three-dimensional helical pores [J]. Nature, 1998, 395, 154.
    [111]邢宏珠,无机开放骨架化合物的离子热合成[J].吉林大学博士论文,2010.
    [1] J. H. Yu, R. R. Xu, J. Mater. Chem., 2008, 34, 4005.
    [2]王宇,吉林大学博士论文,2004.
    [3] R. Murugavel, A. Choudhury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao, Chem. Rev., 2008, 108, 3549.
    [4] J. Liang, Y. Wang, J. Yu, Y. Li,R. Xu, Chem. Common., 2003, 882
    [5] J. X. Pan, S. T. Zheng, G. Y. Yang, Microp. Mesop. Mater., 2004, 75, 129.
    [6] Z. Dong, L. Zhao, Z. Liang, P. Chen, Y. Yan, J. Li, J. Yu, R. R. Xu, Dalton Trans., 2010, 39, 5439.
    [7] L. Liu, L. R. Zhang, X. F. Wang, G. H. Li, Y. L. Liu, W. Q. Pang, Dalton Trans., 2008, 2009.
    [8] T. Rojo, J. L. Mesa, J. Lago, B. Bazan, J. L. Pizarrob, M. I. Arriortuab, J. Mater. Chem., 2009, 19, 3793.
    [9] J. Liang, J. Li, J. Yu, Q. Pan, Q. Fang, R. Xu, J. Solid State Chem., 2005, 178, 2673.
    [10] Z. Lin, J. Zhang, S. T. Zheng, G. Y. Yang, J. Mater. Chem., 2004, 14, 1652.
    [11] J. Liang, R. Xu, et al. J. Solid State Chem., 2006, 179, 1977.
    [12] Z. Lin, J. Zhang, S. T. Zheng, G. Y. Yang, Eur. J. Inorg. Chem., 2004, 953.
    [13] S. Mandal, S. Natarajan, Angew. Chem. Int. Ed., 2008, 47, 4798.
    [14] SMART and SAINT (software package), Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
    [15] G. M. Sheldrick, SHELXTL-NT, Version 5.1, Bruker AXS Inc., Madison, WI, 1997.
    [16] X. Chen, Y. Wang, J. Yu, Y. Zou, R. Xu, J. Solid State Chem., 2004, 177, 2518.
    [1] J. X. Jiang, J .H. Yu, A. Corma, Angew. Chem. Int. Ed., 2010, 49, 3120.
    [2] R. Murugavel, A. Choudhury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao, Chem. Rev., 2008, 108, 3549.
    [3] Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc., 2004, 126, 1320.
    [4] S. H. Huang,, C. H. Lin, W. C. Wu, S. L. Wang, Angew. Chem. Int. Ed., 2009, 48, 6124.
    [5] T. Rojo, J. L. Mesa, J. Lago, B. Bazan, J. L. Pizarrob, M. I. Arriortuab, J. Mater. Chem., 2009, 19, 3793.
    [6] S. Mandal, S. Natarajan, Angew. Chem. Int. Ed., 2008, 47, 4798.
    [7]李莉,吉林大学博士论文,2007.
    [8] Y. Lai, K. Lii, S. Wang, J. Am. Chem. Soc., 2007, 129, 5350.
    [9] D. N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed., 2004, 43, 5033.
    [10] Z. Q. Wang, S. M. Cohen, J. Am. Chem. Soc., 2009, 131, 16675.
    [11] O. D. Friedrichs, M. OKeeffe, Acta Crystallogr. Sect. A, 2003, 59, 351.
    [12] Y. Lin, D. Wang, Q. Zhao, M. Yang, Q. Zhang, J. Phys. Chem. B, 2004, 108, 3202.
    [13] M. Hirai, A. Kumar, J.Vac. Sci & Tech., 2007, 25, 1534.
    [14] Z. Lin, J. Zhang, S. T. Zheng, G. Y. Yang, et al. Microp. Mesop. Mater., 2004, 68, 65.
    [15] G. Y. Yang, S. C. Sevov, J. Am. Chem. Soc., 1999, 121, 8389.
    [16] L. Wang, , Z. Shi, W. Fu, G. Li, D. Zhang, W. Dong, Z. Dai, X. Chen, S. Feng, J. Solid State Chem., 2004, 174, 80.
    [17] Y. Yang, Y. Zhao, J. Yu, Y. Zhou., N. Pang., H. Sua, S. Pang, Z. Anorg. Allg. Chem., 2008, 634, 1780.
    [18] L. Liu, L. R. Zhang, X. F. Wang, G. H. Li, Y. L. Liu, W. Q. Pang, Dalton Trans., 2008, 2009.
    [19] R. Singh, J. Jr. Doolittle, P. K. Dutta, Micropor. Mesopor. Mater., 2004, 71, 149.
    [1] R. Murugavel, A. Choudhury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao, Chem. Rev., 2008, 108, 3549.
    [2] K. H. Lii, Y. F. Huang, V. Zima, C.Y. Huang, H. M. Lin, Y. C. Jiang, Chem. Mater., 1998, 10, 2599.
    [3] T. Rojo, J. L. Mesa, J. Lago, B. Bazan, J. L. Pizarrob, M. I. Arriortuab, J. Mater. Chem., 2009, 19, 3793.
    [4] S. Mandal, S. Natarajan, Angew. Chem. Int. Ed., 2008, 47, 4798.
    [5] F. Menil,. J. Phys. Chem. Solids, 1985, 46, 763.
    [6] V. A. Morozov, B. I Lazoryak, A. P. Malakho, K. V. Pokholok, S. N. Polyakov, T. P.Terekhina, J. Solid State Chem., 2001, 160, 377.
    [7] J. Kreitlow, J. Litterst, S. Sullow, B. Pilawa, Hyperfine Interact, 2006, 168, 1197.
    [8] R. Carlin, Magnetochemistry, Springer-Verlag, Berlin, Heidelberg, 1986.
    [9]梁静,吉林大学博士论文,2006.
    [10] W. K. Li, G. D. Zhou, T. Mak, Advanced Inorganic Structural Chemistry, Oxford University Press, Beijing, 2008.
    [11] O. D. Friedrichs, M. OKeeffe, Acta Crystallogr. Sect. A, 2003, 59, 351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700