用户名: 密码: 验证码:
还原性气氛下淮南煤灰行为特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入研究淮南煤中矿物组成、矿物粒度分布规律、还原性气氛下灰的行为特征和熔融机理,对于从根本上解决淮南煤在气化过程中与灰相关的各种技术和环境问题具有重要的作用,对于淮南煤的清洁、高效、经济利用具有重要意义。本论文利用计算机控制扫描电镜(CCSEM)、X射线衍射仪(XRD)、X射线荧光光谱(XRF)研究了淮南矿区煤样的矿物组成、煤灰的晶体矿物组成和化学组成以及矿物颗粒分布规律;在还原性气氛下,考查了利用助熔剂和配煤降低淮南煤灰熔融温度,改善粘温特性的影响规律,探讨了煤中矿物组成、晶体矿物组成与煤灰熔融温度的关系;利用傅立叶变换红外光谱仪(FT-IR)、XRD、CCSEM等现代分析测试手段,探讨了助熔剂和配煤对淮南煤灰的矿物组成变化规律和煤灰熔融过程的影响机理;利用FactSage热力学软件计算了还原性气氛下,随温度变化,煤灰液相生成量和矿物组成变化趋势、对高温下煤灰行为特征和煤灰熔融温度进行了预测。主要得到如下几个方面的结论。
     1.淮南煤中矿物组成和粒度组成分布规律
     (1)淮南煤中矿物主要由高岭石、蒙脱石、石英、黄铁矿、方解石、白云石、未知组成和其它微量矿物所组成。高岭石等粘土矿物和石英含量占矿物含量的60%以上,高岭石含量愈高的淮南煤,其煤灰熔融温度也呈现愈高的趋势。淮南煤与G3、B1和H煤三种外地煤(煤灰熔融温度小于1350℃)所含主要矿物组成种类基本相似,但含量差别很大,主要区别是淮南煤中高岭石和其它粘土矿物含量高。粘土矿物、黄铁矿、方解石和白云石含量对于煤灰熔融温度高低起决定性作用。
     (2)淮南煤中高岭石、石英矿物的粒度呈现双峰分布的规律,直接导致煤中矿物颗粒分布也呈双峰分布的趋势,矿物颗粒直径分别在10μm和100μm左右时达到最大值。蒙脱石、方解石和黄铁矿颗粒的分布呈现单峰分布的规律,黄铁矿在煤中主要以100μm大颗粒形式存在。矿物颗粒的大小和分布对煤气化过程中灰的化学行为、熔融特性和飞灰粘附特性会产生重要的影响。
     2.助熔剂与配煤对煤灰熔融温度的影响
     (1) ADC、ADF、ADN三种助熔剂均可不同程度的降低淮南煤灰熔融温度,三种助熔剂对淮南煤灰的助熔效果的排列顺序为ADN>ADF>ADC。ADC对HN115和HN119煤灰熔融温度的影响趋势相似,随助熔剂加量增加,煤灰熔融温度呈现先上升,迅速下降和上升的变化趋势,说明了ADC助熔剂助熔反应的复杂性。ADN助熔剂对淮南四种煤的助熔效果十分明显。ADN助熔剂的灰基添加量为4.55%时,可以使KL1煤灰熔融温度降到1380℃,满足Texaco液态排渣操作温度的要求,助熔效果相比其它淮南煤更为显著。随ADF添加量增加,四种淮南煤灰熔融温度均呈线性下降趋势。
     (2) H、G3、B1煤与淮南煤配合可以使淮南煤灰流动温度降低至1380℃以下,满足Texaco气化炉运行要求。三种煤对淮南煤配煤助熔效果排序为:B1>H>G3。随配煤比例的增加,除B1与HN106配煤灰流动温度呈现非线性变化趋势外,配煤后煤灰的流动温度的变化呈现线性下降的变化趋势。
     (3)利用多元线性回归原理,分别建立了助熔剂添加量、配煤比例与淮南煤灰熔融温度关系数学模型。
     3.助熔剂与配煤对煤灰粘温特性影响
     (1)淮南HN119与KL1煤灰粘度对温度变化的反应较敏感,随温度的降低,粘度迅速升高,属于“结晶渣”类型,不适合在液态排渣气化炉中使用。在相同温度下,B1和G3煤灰的粘度比淮南煤灰的粘度要低的多,B1煤的灰渣型为“近玻璃体”类型,G3煤为典型的“玻璃体渣”类型,较为适合在液态排渣气化炉中使用。
     (2)添加助熔剂和配煤都能有效降低淮南煤灰渣粘度。添加灰基8.7%ADN助熔剂时,可以使HN119煤灰在1380℃时粘度达到20Pa·s,其渣型由“结晶渣”转变为“近玻璃体渣”类型。60%KL1与40%B1煤相配,粘度达到25Pa·s时对应温度比KL1原煤降低250℃,且渣型也由“结晶渣”转变为“近玻璃体渣”类型。
     (3)三组粘度经验公式被用于预测配煤和添加助熔剂后淮南煤灰的粘温特性,并通过实测值与计算值的对比讨论了经验公式的适用性。
     4.高温煤灰化学行为和熔融机理研究
     (1) XRD与FTIR分析结果表明,还原性气氛下,当温度高于1350℃时,淮南煤灰主要含有莫来石和非晶态物质,升温过程中莫来石的形成是淮南煤灰熔融温度高的主要原因。
     (2)配煤可以有效降低淮南煤的熔融温度,配入低灰熔融温度煤后,高温下莫来石衍射峰强度下降,同时形成钙长石、铁橄榄石和铁尖晶石,它们与石英等矿物之间易发生低温共熔作用,形成低熔点的共晶体使得煤灰熔融温度降低。添加助熔剂ADC、ADF和ADN后,在高温、还原性气氛下,有效破坏了铝硅酸盐的结构,抑制了高温下莫来石的生成,同时钠长石、钙长石、铁橄榄石的含量逐渐增多,与煤灰中石英等矿物在高温下发生反应,形成低熔点的共晶体,从而降低熔融温度。
     5.利用FactSage热力学软件预测煤灰熔融过程
     (1) FactSage热力学软件可以预测还原性气氛下高温煤灰行为和煤灰熔融温度。对淮南原煤灰及淮南HN115(FT=1400℃)、HN106煤(FT>1600℃)添加ADC助熔剂后,进行了液相生成量计算,得出液相生成量为75-80%时,对应的温度与实测煤灰流动温度(FT)接近,可以很好的预测煤灰流动温度。
     (2)利用FactSage热力学软件计算的高温煤灰矿物的转化过程与XRD分析的结果相一致。FactSage热力学软件结合XRD分析测试技术,可以用于很好的预测矿物之间的反应、以及矿物的转变和熔渣的形成。可以用来定量预测在气化过程熔渣的形成过程。
     总之,本研究为高灰熔融性淮南煤在煤气化过程中的清洁、高效、合理利用提供了理论基础依据,对于解决煤炭利用过程中与灰有关的各种问题具有理论指导意义。
To solve the ash related problems of Huainan coal during the commercial gasification process,it is essential and significantly important to know the proportion and particle size distribution of mineral matter in coal and to understand and predict the mechanism of mineral transformation and the ash behaviour in reducing conditions.Understanding the properties of mineral and ash behaviour of Huainan coals will help in providing a better understanding of the factors that control their performance in gasifier and a clean,effective and economic way to use Huainan coal resources.Huainan coal samples and three other coal samples from Shangdong, Henan,Gansu province of China,were analyzed by Computer-controlled scanning electron microscope(CCSEM),X-ray diffraction(XRD) and X-ray fluorescence (XRF) for their mineralogical phases,particle size distribution and elemental composition respectively.Effect of coal blending and flux addition on ash fusion temperature(AFT) and slag viscosity were studied.The mineral transformation and ash behaviour were characterized by XRD,Fourier transform infrared spectroscopy (FTIR) and CCSEM coupled with a modified ash fusion tester.The liquid phase formation,mineral phase change and conversion were calculated by FactSage thermodynamics software.The main conclusions are shown as below.
     1.The mineral composition and particle size distribution in Huainan coal samples
     The mineral phases,which vary with coal samples somewhat,generally include quartz,hematite,anhydrite,muscovite and anatase,implying the complicated behaviour of ashes though they were collected from Huainan coal deposits.The mineral matter was characterized by higher aluminosilicate clay minerals contents (more than 60%of the total mineral matter in coal) with quartz,which accounts for the higher ash flow temperatures(FT),frequently higher than1500℃.It is suggested that the higher the kaolinite in Huainan coals,the higher the AFT.Comparisons of the mineral contents of Huainan coal with that of G3,B1,and H coals(FT<1350℃) showed the mineral phases are similar while the mineral contents are quite different. Low content of kaolinite-type clays and high content of calcite,dolomite and pyrite in coals are beneficial to ash melting.The ash melting behavior of Huainan coal in reducing condition is to be controlled by the mineral phases,mainly by that of kaolinite,illite,pyrite and calcite,rather than by the average chemical composition of coal ash.
     The mineral grains in Huainan coals have bimodal size distribution in six typical Huainan coals as a result of the high contents of kaolinite and quartz show the bimodal particle size distribution.The diameter of mineral grains reaches peak maximum at about 10μm and 100μm respectively.The particle size of the montmorillonite,quartz and pyrite is in a single size unimodal distribution.The minerals composition and grains size distribution are extremely important and have an effect on the ash melting behavior,minerals transformation and fly ash deposit in the coal gasification process.
     2.Effects of fluxes and coal blending on the ash fusion temperature
     The AFT of four Huainan coal samples,HN113,HN115,HN119 and KL1,could be reduced at certain degree by adding fluxes of ADN,ADC,ADF(wt%,ash base). The fluxing action rank for Huainan coal samples was listed as ADN>ADF>ADC. The addition of CaO at around 8%increased the melting temperature of HN115 and HN119 coal ashes somewhat.With the increase of its addition,the melting temperature of ash initially decreased gradually,reaching its minimum value at the amount of CaO around 25%,and however increasing again with the further addition of CaO,indicating the complicated behaviors of mineral phase change.The flux of ADN had the most significant effect on the AFT of four Huainan coal samples, especially for KL1 coal samples.The FT of KL1 coal ash could be reduced to 1380℃with the addition of 4.55%ADN,which fulfils the requirement of Texaco gasification process.With the addition of ADF,the ash fusion temperature of four coal samples showed a linear decrease tendency.
     The FT of Huainan coal ash samples could be decreased to less than 1380℃by blending with G3,B1 and H coals respectively.The effect for lowering the ash fusion temperature of coal blends was listed as the sequence B1>H>G3.With the exception of HN106 coal blended with B1,the ash flow temperature of blended coal showed linear decrease with the increase of blending ratio of G3,B1 and H coal.
     The mathematical model of ash FT with blending ratio and the adding amount of fluxes were established by the principle of multiple linear regressions respectively.
     3.Effects of fluxes and coal blending on the viscosity-temperature properties of Huainan coal ash
     The slag viscosity of HN119,KL1 coal increased sharply with the decline of temperature,which implies a crystalline slag(short slag) at high temperature and is not suitable to be used in Texaco and Shell gasifier.The slag viscosity of G3 and B1 coal is much less than that of Huainan coal ash at the same temperature.The slag viscosity-temperature plot showed a typical glass slag(long slag) for G3 coal and a glass like slag for Blcoal,which is suitable for the operation of Texaco and Shell gasifier.
     The slag viscosity of Huainan coal could be effectively decreased by coal blending and flux addition.The slag viscosity of HN119 coal by adding 8.7%ADN (ash base,wt%) reached to 20Pa·s at 1380℃.Meanwhile the slag type changes from crystalline slag to glass like slag.The slag viscosity of 60%KL1 coal blended with 40%B1 coal reached to 25Pa·s at the temperature less 250℃than that of the parent KL1 coal.In the mean time,the slag type changes to glass like slag type.
     The slag viscosity was calculated through three empirical formulas for coal blending and fluxes addition.The fitness between the results calculated by empirical formulas and the tested results was also discussed.
     4.Ash behaviour and melting mechanism of Huainan coal at high temperature
     The minerals transformation and ash behaviour were characterized by XRD and FTIR.The results showed that the main components at 1350℃in the slag of Huainan coal were mullite and glass phase.The formed mullite phase,which caused the high ash melting temperature of Huainan coals,reached to maximum at 1250℃,but showed a tendency of slow decline when the temperature was over 1250℃. Differences in peak intensity of mullite and anorthite reflected differences in phase concentration of the quenched slag fractions,which contributed to the differences of ash melting temperature.
     The intensity of mullite formed at high temperature was declined by blended with low AFT coals.Meanwhile the formed anorthite(CaO·Al_2O_3·2SiO_2),hercynite (FeO·Al_2O_3) and hematite phases reacted with quartz to form a low-melting eutectic mixture.The structure of main aluminosilicate phases in Huainan coals was broken at high temperature by adding flux of ADC,ADN and ADF under reducing atmospheres. The formation of mullite was restrained while albite,anorthite,hercynite phases increased gradually and reacted with quartz to form a low-melting eutectic mixture which lowered the AFT of Huainan coals.
     5.Prediction of Ash behaviour of Huainan coal by FactSage Thermodynamics software
     FactSage has been an invaluable tool to predict the ash behavior and AFT at high temperature under reducing atmosphere.It had demonstrated a good agreement between the liquid phase formation of Huainan coal ashes as the function of temperature and the tested AFT.The predicted FT,at which the calculated weight percentage of liquid phase reaches to about 75~80%for Huainan coal ash samples, was quite fit for the tested FT.The maximum temperature difference between the tested FT and the predicted FT is less than 74℃,which is within acceptable range.It could be concluded that FactSage in combination with XRD is a new tool to predict the reactions occurring between minerals,as well as the mineral transformation and slag formation.This is probably an improved way to interpret melting properties of mineral matter in coal and assist in quantifying slag formation in gasifier operation.
     In a word,this paper will provide the fundamental knowledge of Huainan coal for the purpose of utilizing Huainan coal in a clean and efficiency way.It will help us to better understand the ash behaviour of coal in reducing condition and solve the ash related problems in coal utilization process.
引文
[1]范维唐,杜铭华.中国煤化工的现状及展望[J].煤化工,2005(1):1-5
    [2]钱伯章.加快发展洁净煤技术[J].煤化工,2002(4):3-6
    [3]李璞,段慕松.洁净煤技术发展概况[J].洁净煤技术,2005(4):11-13
    [4]吴春来.21 世纪我国煤炭综合利用趋势浅析[J].煤化工,2000(4):3-5
    [5]何金祥.2003年我国化石能源消费结构与世界其它国家的比较[R/OL].国土资源部信息中心.http://www.lrn.cn/bookscollection/magazines/maginfo/2004maginfo2004_11/200611/t20061117 3115.htm
    [6]周凤起.中国石油供需展望及对策建议[J].国际石油经济,2001(5):5-8
    [7]范维唐.跨世纪煤炭工业新技术[M].北京:煤炭工业出版社,1997
    [1]于广锁.气流床煤气化的技术现状和发展趋势[J].世界科学,2005(1):33-34
    [2]夏鲲鹏,陈汉平,王贤华,等.气流床煤气化技术的现状及发展[J].煤炭转化,2005(4):69-73
    [3]Stewart J.C.,Gary J.S.,Wimer J.G.Gasification marketsand technologies-present and future[R/OL].US Department of Energy Report,2002.http://www.netl.doe.gov/coalpower /gasification/pubs/pdf/Gasification-Technologies.pdf
    [4]Neville A.H.,Holt-EPRI.Coal gasification research,development and demonstration needs and opportunities[C/OL].Presented at the Gasification Technologies Conference,San Francisco,2001.http://www.gasification.org/Docs/Conferences/2001/GTC01052.pdf
    [5]Sadao W.,Eiki S.Operational experience at the 150t/d EAGLE gasification pilot plant[C/OL].Presented at the Gasification Technologies Conference,San Francisco,2003.http://w ww.gasification.org
    [6]韩启元,许世森.大规模煤气化技术的开发与进展[J].热力发电,2008,37(1):4-9
    [7]吴枫,阎承信.关于Shell气化法原料用煤的探讨[J].大氮肥,2002,25(5):313-317
    [8]李志远,张大晶,宋甜甜.壳牌煤粉加压气化技术[J].燃料与化工,2003,22(9):998-1000
    [9]Zuideveld P.,Graaf J.Overview of Shell global solutions' world wide gasification developments[C/OL].Gasification Technologies Conference,San Francisco,California,USA,October12-15,2003.http://www.gasification.org/Docs/Conferences/2003/02ZUID.pdf
    [10]郑振安.煤种特性对壳牌煤气化装置设计和操作的影响[J].化肥设计,2003,41(6):15-19
    [11]汤中文.干法粉煤气化技术进展及工艺影响因素[J].大氮肥,2003,26(3):149-152
    [12]Kanaar M..Operation and Performance Update-Nu on Power Buggenum IGCC[C/OL].2002 Gasification Technology Conference.San Francisco,California,USA.Oct28,2002.http://www.clean-energy.us/document.asp?document=177
    [13]Hurst H.J,Elliott L.,Patterson J.H.Evaluation of the slagging characteristics of Australian bituminous coals for use in slagging gasifiers[C/OL].Proc.Pittsburgh Coal Conference,Pittsburgh,Septemher1998,PaperNo.10-5
    [14]Patterson J.H,Harris D.J.Coal quality issues for Australian bituminous coals in IGCC technologies[C/OL].Proc.Pittsburgh Coal Conference,Pittsburgh,September1998,PaperNo.10-4
    [15]Patterson J.H.,Hurst H.J.Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J].Fuel,2000,79(13):1671-1678
    [16]Patterson J.H.,Hurst H.J.,Quintanar A.,et al.Evaluation of the slag flow characteristics of Australian bituminous coals in slagging gasifiers[R].Final Report,ACARP ProjectC705-2,August 2000
    [17]Hurst H.J,Novak F.,Patterson J.H.Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes[J].Fuel,1999,78(15),1831-1840
    [18]徐京磐,鲍礼堂.流化床和气流床气化技术综述(下)[J].小氮肥设计技术,2002,23(2):11
    [19]李仲来.煤气化技术综述[J].小氮肥设计技术,2002,23(3):7-17
    [20]黄戒介,房倚天,王洋.现代煤气化技术的开发与进展[J].燃料化学学报,2002,30(5):385-391
    [21]高聚中,韩伯奇.水煤浆加压气化煤种评价模型[J].煤化工,1998(2):17-23
    [22]许波.德士古气化装置运行问题探讨[J].煤化工,1999(4):52-56
    [23]张继臻,种学峰.煤质对Texaco气化装置的影响及其选择[J].化肥工业,2002,29(3-4):16-20
    [24]王旭宾.德士古煤气化装置运行状况及问题的探讨[J].煤气与热力,1997,17(6):6-9
    [25]陈政.淮南煤用于德士古水煤浆加压气化技术研究[J].安徽化工,2006(3):31-33
    [26]李寒旭,陈方林.提高低变质程度煤成浆性能的研究[J].煤炭科学技术,2002,30(4):1-5
    [27]姚多喜,支霞臣,郑宝山.煤中矿物质在燃烧过程中的演化特征[J].矿业安全与环保,2002,29(3):4-6
    [28]Raask E..Mineral Impurities in Coal Combustion[M].Hemisphere,Washington,1984,9-22
    [29]Wells J.J.,Wigley F,Foster D.J.The nature of mineral matter in a coal and the effect sonerosive and abrasive behaviour[J].Fuel Processing Technology,2005,86(5):535-550
    [30]Stella K.,Bruce L.,Chadwick.Screening of potential minera additives for use as fouling prev -entatives in Victorian brown coal combustion[J].Fuel,1999,78(7):845-855
    [31]Yan L.,Gupta R.P,Wall T.F..A mathematical model of ash formation during pulverized coal combustion[J].Fuel,2002,81(3):337-344
    [32]RyoYoshiie,Makoto Nishimura,Hiroshi Moritomi.Influence of ash composition on heavy metal emissions in ash melting process[J].Fuel,2002,81(10):1335-1340
    [33]王泉清,曾蒲君.高岭石对神木煤灰熔融性的影响[J].煤化工,1997(3):40-45
    [34]李宝霞,张济宇.煤灰渣熔融特性的研究进展[J].现代化工,2005,25(5):22-28
    [35]Ninomiya Y.,Sato A.Ash melting behavior under coal gasification conditions[J].Energy Convers.Magmt,1997,38:1405-1412
    [36]康虹,吴国光,李建亮.煤灰熔融性的研究进展[J].能源技术与管理,2008(2):75-77
    [37]Reiter F.M.How Sulfur Content of Coal Relates to Ash Fusion Characteristics[J].Power Eng,1955,59(5):98-100
    [38]刘天新,张敬运,张自劭.煤炭检测新方法与动力配煤[M].北京:中国物资出版社,1992:78-79
    [39]姚星一,王文森.灰熔融温度计算公式的研究[J].燃料学报,1959,4(3):216
    [40]Winegartner E.C.,Rhoides B.T.An empirical study of the relation of chemical properties to ash fusion temperatures[J].Trans ASMEJ Eng Power,1975,97(3):395
    [41]Sondreal E.A.,Ellman R.C..Laboratory determination of factors affecting storage of North Dakota lignite[R].US Bureau of Mines Report GFERC/R1-75-1,1975
    [42]Vincent R.G.Prediction of ash fusion temperature from ash composition for some New Zealand coals[J].Fuel,1987,66(9):1230-1239
    [43]平户瑞穗,二宫善彦.助熔剂对煤灰熔融行为的影响[J].燃料协会志,1988,68(5):393
    [44]Unuma H.,Takeda Sh.,Tsurue T.,et al.Studies of the fusibility of coal ash[J].Fuel,1986,65(11):1505-1510
    [45]Yin Chungen,Luo Zhongyang,Ni Mingjiang.,et al.Predicting coal ash fusion temperature with a back-propagation neural network model[J].Fuel,1998,77(15):1777-1782
    [46]Liu Y.P.,Wu M.G.,Qian J.X.Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network[J].Thermochimica Acta,2007,454:64-68
    [47]G(u|¨)lhan(O|¨)zbayoglu,M.Evren(O|¨)zbayoglu.A new approach for the prediction of ash fusion temperatures:A case study using Turkish lignites[J].Fuel,2006,85(4):545-552
    [48]张德祥,龙永华,高晋生,等.煤灰中矿物的化学组成与灰熔融性的关系[J].华东理工大学学报,2003,29(6):590-594
    [49]Sadriye K(u|¨)(?)(u|¨)kbayrak,Ayseg(u|¨)l Ersoy-Herigboyu,Hanzade Haykin-A(?)ma,et al.Investigation of the relation between chemical composition and ash fusion temperatures for some Turkish lignites[J].Fuel Science and Technology International,1993,11(9):1231-1249
    [50]王泉清,曾蒲君.煤灰熔融性的研究现状与分析[J].煤炭转化,1997,20(2):33
    [51]刘新兵,陈茺.煤灰熔融性研究[J].煤化工,1995,23(2):48-52
    [52]武瑞叶.神东矿区煤灰成分和煤灰熔融性变化规律浅析[J].陕西煤炭,2003(4):36-38
    [53]孙亦碌.煤中矿物杂质对锅炉的危害IM].北京:水利电力出版社,1994:123-126
    [54]杨建国.影响测定煤灰熔融性主要因素[J].中国煤炭工业,2007:42
    [55]焦发存.配煤对煤灰熔融特性和灰渣粘度影响的实验研究[D].淮南:安徽理工大学研究生处,2006:3-6
    [56]郝丽芬,李东雄,靳智平.灰成分与灰熔融性关系的研究[J].电力学报,2006,21(3):294-297
    [57]Goni Ch.,Helle S,Garcia X.,et al.Coal blend combustion fusibility ranking from mineral matter composition[J].Fuel,2003,82(15-17):2087-2095
    [58]Vassilev S.V.,Kitano K.,Takeda S.Influence of mineral and chemical composition of coal ashes on their fusibility[J].Fuel Processing Technology,1995,4(5):27
    [59]钱觉时,吴传明,王智.粉煤灰的矿物组成(上)[J].粉煤灰综合利用,2001(1):26-31
    [60]李帆,邱建荣,郑瑛.煤燃烧过程矿物行为研究[J].工程热物理学报,1999,20(2):259
    [61]康虹,吴国光,李建亮.煤灰熔融性的研究进展[J].能源技术与管理,2008(2):75-77
    [62]川井隆夫,柴田次进.[J].水翟会志,1985,30(5):325
    [63]Kahraman H.,Reifenstein A.,ACIRL..et al.Mineralogical changes in selected Australian and overseas coals in boiler simulation test and improved ash fusion test[R].18~(th) Annual International Pittsburgh Coal Conference,2001,70(6):746-762
    [64]Wall T.F.False deformation temperature for ash fusibility associated with the conditions for ash preparation[J].Fuel,1999,78(9):1057-1063
    [65]Tomeczek J.,Palugniok H.Kinetics of mineral matter transformation during coal combustion[J].Fuel,2002,81(10):1251-1258
    [66]Zhang L.,Sato A.,Ninomiya Y.CCSEM analysis of ash from combusition of coal added with limestone[J].Fuel,2002,81(11-12):1499-1508
    [67]Liu Y.H.,Gupta R.,Elliott L.,et al.Thermomechanical analysis of laboratory ash,combustion ash and deposits from coal combustion[J].Fuel Processing Technology,2007,88(11-12):1099-1107
    [68]李帆,邱建荣,柳朝晖,等.煤灰助熔剂对灰熔融温度影响的研究[J].武汉城市建设学院学 报,1997,14(1):23-27
    [69]李帆,邱建荣,柳朝晖,等.混煤煤灰中矿物质行为对煤灰熔融特性的影响[J].华中理工大学学报,1997,25(9):41-43
    [70]何孝军,郑明东.煤灰熔融性的测定评述[J].华东冶金学院学报,1997,17(4):212-215
    [71]李帆,邱建荣.混煤煤灰熔融特性及矿物质形态的研究[J].工程热物理学报,1988,19(1):112-116
    [72]Ma Zh.H.,Iman F.,Lu P.A comprehensive slagging and fouling prediction tool for coal-fired boilers and its validation/application[J].Fuel Processing Technology,2007,88(11-12):1035-1043
    [73]李寒旭,陈方林.配煤降低高灰熔融性淮南煤灰熔融温度的研究[J].煤炭学报,2002,27(5):529-533.
    [74]龙永华,高晋生.提高煤灰熔融温度及其机理的研究[J].工业锅炉,2004(4):12-16
    [75]Su S.Slagging propensities of blended coals[J].Fuel,2001,80(9):1351-1360
    [76]Seggiani M.Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J].Fuel,1999,78(9):1121-1125
    [77]Bryant G.W.The Use of Thermo-mechanical Analysis To Quantify the Flux Additions Necessary for Slag Flow in Slagging Gasifiers Fired with Coal[J].Energy and Fuels,1998,12(2):257-261
    [78]Gupta S.K.The effect of potassium on the fusibility of coal ashes with high silica and alumina levels[J].Fuel,1998,77(11):1195-1201
    [79]任小荀,段盼盼,佟桂林.添加助熔剂降低煤灰熔融温度及灰粘度的研究[J].煤化工,1991,(2):31-39
    [80]段盼盼,任小苟.钙系助熔剂对煤灰熔融特性影响的研究[J].煤气与热力,1987,(4):3-9
    [81]Huggins F.E,Kosmack D.A.,Huffman G..P.,et al.Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J].Fuel,1981,60(7):577-584
    [82]Han-xu LI,Xiao-sheng QIU,Yong-xin TANG.Ash melting behavior by Fourier transform infrared spectroscopy[J].Journal of China University of Mining and Technology,2008,18(2):245-249
    [83]Huffman G.P,Huggins F.E,Dunmyre G.R.Investigation of the high temperature behavior of coal ash in reducing and oxidizing atmospheres[J].Fuel,1981,60(7):585-597
    [84]李帆,邱建荣,郑楚光.煤中矿物质对煤灰熔融温度影响的三元相图分析[J].华中理工大学学报,1996,24(10):96-99
    [85]Gupta S.K.,Wall T.F.,Creelman R.A.,et al.Ash fusion temperature and transformations of ash particles to slag[J].ACS Division of Fuel Chemistry Preprints,1996,41(2):647-651
    [86]Evgueni J.,Sergei D.,Peterc H..Thermodynamic modeling of the system Al_2O_3-SiO_2-CaO-FeO-Fe_2O_3 to predict the flux requirements for coal ash slags[J].Fuel,1998,77(2):77-84
    [87]岑可法,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].科学出版社,1994:51
    [88]刘文鹏,张庆礼,殷绍唐,等.粘度测量方法进展[J].人工晶体学报,2007,36(2):381-385
    [89]陈惠钊,吕仲芝.升球法高温粘度测量影响因素的研究[J].分析仪器,1997(1):48-51
    [90]陈惠钊.粘度测量[M].北京:中国计量出版社,1994
    [91]Hurst H.J.,Novak F.,Patterson J.H.Viscosity measurements and empirical predictions for some model gasifier slags[J].Fuel,1999,78(4):439-444
    [92]Kondratiev A.,Jak E.Predicting coal ash slag flow characteristics(viscosity model for the Al_2O_3-CaO-'FeO'-SiO_2system)[J].Fuel,2001,80(14):1989-2000
    [93]Oh M.S.,Brooker D.D.,Depaze F.,et al.Effect of crystalline phase formation on coal slag viscosity[J].Fuel processing technology,1995,44(1-3):191-199
    [94]Vargas S.,Frandsen F.J.,Dam-Johansen K.Rheological properties of high-temperature melt of coal ashes and other silicates[R].Progress in energy and combustion science,2001,27:237-429
    [95]李金锡,张鉴,Georges Urbain.MnO-SiO_2,MgO-SiO_2和CaO-Al_2O_3-SiO_2熔渣粘度的计算模型[J].北京科技大学学报,1999,21(3):237-240
    [96]熊友辉,孙学信.基于熔体结构的高温灰渣粘度模型[J].华中理工大学学报,1998,26(10):79-81
    [97]李如璧,徐培苍,孙建华.三元系硅酸盐熔体分子网络构象的高温拉曼光谱研究[J].常州技术师范学院学报,2002,8(2):1-6
    [98]Oiordano D.,Dingwell D.B.,Romano C.Viscosity of a teide phonolite in the welding interval[J].J Volcanol Geotherm Res,2000,103(1-4):239-245
    [99]徐培苍,李如璧,尤静林.高温硅酸盐熔体粘度与网络分数维值的相关性研究[J].地球化学,2005,34(3):291-296
    [100]Seetharaman L.,Du S.C.Estimation of viscosities of binary metallic melts using Gibbs energy of mixing[J].Metall Mater Trans,1994,25:589
    [101]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2001,10:166-173
    [102]Patterson J.H.,Hurst H.J.,Quintanar A..et al.The slag flow characteristics of Australian bituminous coals in entrained-flow slaging gasifiers[J].18~(th) Annual International Pittsburgh Coal Conference(Pittsburgh),2001:1686-1708
    [103]王习东,包宏,李文超.一种新的多元金属熔体粘度预报模型[J].金属学报,2001,37(1):52-56
    [104]许世森,王保民,李广宁,等.一种预测煤灰粘温特性的数学模型[J].热力发电,2007(7):5-8
    [105]王永强,张招崇,徐培苍,等.硅酸盐熔体结构的研究进展和问题[J].地球科学进展,1999,14(2):168-171
    [106]Yan L.,Gupta R.P.,Wall T.F.The implication of mineral coal essence behavior on ash formation and ash deposition during pulverized coal combustion[J].Fuel,2001,80(9):1333-1340
    [107]Rhinehart R.R.,Attar A.A.Ash fusion temperature:a thermo dynamically-based model[J].Am.Soc.Mech.Eng,Petroleum Division,1987,8:97-101
    [108]Qiu J.R.,Li F.,Zheng Ch.G.Mineral transformation during combustion of coal blends[J].Int.J.EnergyRes,1999,23:453-463
    [109]Jak E,Degterov S.,Zhao B.,et al.Coupled experimental and thermodynamic modeling studies for metallurgical melting and coal combustion systems[J].Metallurgical And Materials Transactions B,2000,31(4):621-630
    [110]Bale C.W.,Chartrand P.,Degterov S.A.FactSage thermochemical software and databases [J].Calphad,2002,26:189-228
    [111]Vandyk J.C.,Waanders F.B.,Hack K.Behaviour of calcium-containing minerals in the mechanism towards in situ CO_2 capture during gasification[J].Fuel,2008,87(12):2388-2393
    [112]Vandyk J.C,Waanders F.B,Benson S.A.,et al.Viscosity predictions of the slag composition of gasified coal,utilizing FactSage equilibrium modelling[J].Fuel,2009,88(1):67-74
    [113]刘怀雪,谢礼国.安徽省煤炭资源[J].安徽地质,2002,12(2):120-123
    [114]章云根.淮南煤田构造煤发育特征分析[J].能源技术与管理,2005(3):5-7
    [115]黄文辉,杨起,彭苏萍,等.淮南二叠纪煤及其燃烧产物地球化学特征[J].地球科学-中国地质大学学报,2001,26(5):501-507
    [116]翁善勇,杨建国,曹之传,等.淮南煤的燃烧特性及其在电站锅炉应用前景研究[J].热力发电,2006(02):21-23
    [117]童柳华,严家平,唐修义.淮南煤中微量元素及分布特征[J].矿业安全与环保,2004,31:94-96
    [118]赵志根,唐修义,李宝芳.淮南矿区煤的稀土元素地球化[J].沉积学报,2000,18(3):453-458
    [119]梁鹏,王志锋,董众兵,等.固体热载体热解淮南煤实验研究[J].燃料化学学报,2005, 33(3):257-262
    [1]Zygarlicke C. J., Steadman E. N. Advanced SEM techniques to characterize coal minerals[J]. scanning electron microns, 1990,4(3): 579-590
    
    [2] Stefan Bernstein, Dirk Frei, Roger K. McLimans, et al. Application of CCSEM to heavy mineral deposits: Source of high-Tiilmenite sand deposits of South Kerala beaches, SW India[J].Journal of Geochemical Exploration, 2008, 96(1): 25-42
    
    [3]Yamashita T, Tominaga H., Asahiro N. Modeling of ash formation behavior during pulverized coal combustion[J]. IFRF Combustion Journal,2000,8:1-17
    
    [4] Unuma H., Takeda Sh., Tsurue T, et al. Studies of the fusibility of coal ash[J]. Fuel,1986,65(11): 1505-1510
    
    [5]Ward C. R. Analysis and significance of mineral matter in coal seams[J]. International Journal of Coal Geology, 2002,50(1-4): 135-168
    
    [6]Gonia Ch., Helleb S., Garciac X., et al. Coal blend combustion: fusibility ranking from mineral matter composition[J]. Fuel, 2003,82(15-17):2087-2095
    
    [7]Maitra S., Das S., Das A. K., et al. Effect of heat treatment on properties of steam cured fly ash-lime compacts[J]. Bulletin of Materials Science, 2005,28(7): 697-702
    
    [8]Ram M. M., Prasad P S. R. FTIR investigation on the fluid inclusions in quartz veins of the Penakacherla Schist Belt[J]. Current Science, 2002,83(6):755-760
    [9]Ahmed M.A.,Blesa M.J.,Juan R.,et al.Characterization of an Egyptian coal by Mossbauer and FT-IR spectroscopy[J].Fuel,2003,82(14):1825-1829
    [10]Alessio A.D.,Vergamini P.,Benedetti E.FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum[J].Fuel,2000,79(10):1215-1220
    [11]黄瀛华,王增辉,杭月珍.煤化学及工艺学实验[M].华东化工学院出版社,1988:9
    [12]Bale C.W.,Chartr P.,Degterov S.A.,et al.FactSage thermochemical software and databases[J].Calphad,2002,26(2):189-228
    [1]Wells J.J.,Wigley F.,Foster D.J.The nature of mineral matter in a coal and the effects on erosive and abrasive behaviour[J].Fuel Processing Technology,2005,86(5):535-550
    [2]Vincent R.G.Prediction of ash fusion temperature from ash composition for some New Zealand coal[J].Fuel,1987,66(9):1230-1239
    [3]Kucukbayrak S.,Ersoy M.A.,Haykiri A.H.Investigation of the relation between chemical composition and ash fusion temperatures for some Turkish lignites[J].Fuel Science and Technology International,1993,11(9):1231-1249
    [4]Llyod W.G.,Riley J.T.,Zhon S.Ash fusion temperatures under oxidizing conditions[J].Energy Fuels,1993,7(4):490-494
    [5]Seggiani M.Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J].Fuel,1999,78(9):1121-1125
    [6]Yin C,Luo Z,Ni M.Predicting coal ash fusion temperature with a back-propagation neural network model[J].Fuel,1998,77(15):1777-1782
    [7]Huffman G.P.,Huggins F.E.,Dunmyre G.R.Investigation of the high temperature behavior of coal ash in reducing and oxidizing atmospheres[J].Fuel,1981,60(7):585-597
    [8]Goni Ch.,Helle S.,Garcia X.,et al.Coal blend combustion:fusibility ranking from mineral matter composition[J].Fuel,2003,82(16):2087-2095
    [9]Ward C.R.Coal Geology and Coal Technology[R].Melbourne:Blackwell Publisher,1984
    [10]Gupta R.,Wall T.F.,Baxter L.A.The impact of mineral impurities in solid fuel combustion[R].New York:Plenum Publisher,1999
    [11]Kondratiev A.,Jak E.Predicting coal ash slag flow characteristics[J].Fuel,2001,80(14):1989-2000
    [12]Patterson J.H.,Hurst H.J.Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J].Fuel,2000,79(14):1671-1678
    [13]Qiu J.R,Li F.,Zheng Y.The influences of mineral behaviour on blended coal ash fusion characteristics[J].Fuel,1999,78(8):963-969
    [14]Qiu J.R.,Li F.,Zheng C.G.Mineral transformation during combustion of coal blends[J].International journal of energy research,1999,23(5):453-463
    [15]孙文娟,李寒旭.红外光谱分析淮南煤灰中矿物组成[J].应用化工,2005,34(10):644-646
    [16]Ojima J.Determining of crystalline silica in respirable dust samples by infrared spectrophotometry in the presence of interferences[J].Journal of Occupational Health,2003,45(2):96-103
    [17]李慧,李寒旭,焦发存.红外光谱分析助熔剂对煤灰熔融性的影响[J].现代仪器,2006,(1):15-18
    [18]刘桂建,王俊新.煤中矿物质及其燃烧后的变化分[J].燃料化学学报,2003,31(3):215-219
    [19]Zygarlicke C.J.,Steadman E.N.Advanced SEM techniques to characterize coal minerals[J].Scanning Microse.Int,1990,4(2):579-590
    [20]Benson S.A.,Hurley J.P.,Zygarlicke C.J.,et al.Predicting ash behavior in utility boilers[J].Energy and Fuels,1993,7(6):746-754
    [21]Yan L.CCSEM analysis of minerals in pulverized coal and ash formation modeling[R].Australia:University of Newcastle,2000
    [1]叶鼎铨.制造玻璃的高效助熔剂—锂矿物和碳酸锂[J].玻璃纤维,2000(2):42-44
    [2]Ninomiya Y.,Sato A.Ash Melting Behavior under Coal Gasification Conditions[J].Energy Converse,1997,38(10-13):1405-1412
    [3]Hurst H.J.Evaluation of the slagging characteristics of Australian bituminous coals for use in slagging gasifier[R].15th Annu.Int.Pittsburgh coal conf(Pittsburgh),1998:421-439
    [4]李帆,郑瑛.煤灰助熔剂对灰熔融温度影响的研究[J].武汉城市建设学院学报,1997,14(1):23-27
    [5]许志琴,于戈文,董众兵,等.助熔剂对高灰熔融温度煤影响的实验研究[J].煤炭转化,2005,3(28):22-25
    [6]糜裕宏,李寒旭.添加助熔剂降低高灰熔性淮南煤灰熔融温度[J].安徽理工大学学报2003,23(3):61-63
    [7]LI H.X.,QIU X.S.,TANG Y.X.Ash melting behavior by Fourier transforms infrared spectroscopy[J].Journal of China University of Mining and Technology,2008,18(2):245-249
    [8]李慧,焦发存,李寒旭.助熔剂对煤灰熔融性影响的研究[J].煤炭科学技术,2007,35(1):82-84
    [9]孙亦碌.煤中矿物杂质对锅炉的危害[M].北京:水利电力出版社,1994:123-126
    [1]高聚中,韩伯奇.水煤浆加压气化煤种评价模型[J].煤化工,1998(2):17-23
    [2]许波.德士古气化装置运行问题探讨[J].煤化工,1999(4):52-56
    [3]陈文敏,张自劭,陈怀珍.动力配煤[M].北京:煤炭工业出版社,1999:10
    [4]李荫重,余洁.动力配煤燃烧性能的探讨[J].煤炭科学技术,1997,25(8):38-40
    [5]戴和武,马淑英,李连仲,等.动力配煤是燃料煤优化利用的发展方向[J].煤炭加工与综合利用,1997(5):50-53
    [6]陈鹏.动力配煤技术基础[J].煤炭学报,1997,22(5):449-454
    [7]秦俊杰,陈鹏.炼焦配煤优化[J].洁净煤技术,1997,3(3):46-48
    [8]刘天新,张敬运,张自邵.煤炭检测新方法与动力配煤[M].北京:中国物资出版社,1992
    [9]Artos V.,Scaroni A.W.TGA and drop-tube studies of the combustion of coal blends[J].Fuel,1993,72(7):927-933
    [10]姚强,岑可法,施正伦,等.多煤种配煤特性的试验研究[J].动力工程,1997,17(2):16-20
    [11]汤龙华,周俊虎,曹道卿,等.非线性最优化动力配煤技术的研究[J].煤炭学报,1997,22(5):455-459
    [12]殷春根,周俊虎,骆仲泱,等.人工神经网络方法在优化动力配煤中的应用研究[J].煤炭学报,1997,22(4):343-348
    [13]许建豪,张忠孝,潘金荣.动力配煤的研究与计算[J].选煤技术,2005(3):6-8
    [14]范华挺.电厂配煤技术原则及煤质特性参数的计算[J].煤质技术,2006(5):15-17
    [15]罗卫红.优化配煤应用于燃煤电厂的燃烧试验研究[J].动力工程,2003,23(6):2836-2839
    [16]王俊广,周尽晖.无烟煤在配煤炼焦中的性质研究[J].燃料与化工,2007,38(1):1-4
    [17]杨建国,刘志,赵虹,等.配煤煤灰内矿物质转变过程与熔融特性规律[J].中国电机工程学报,2008,28(14):61-65
    [18]康虹,吴国光,李建亮.煤灰熔融性的研究进展[J].能源技术与管理,2008(2):75-77
    [19]袁善录,戴爱军.配煤对灰熔融温度和煤成浆性能的影响[J].煤炭转化,2008,31(1):30-32
    [20]刘志,杨建国,赵虹.配煤煤灰熔融特性的热分析研究[J].电站系统工程,2006,22(5):4-6
    [21]张海滨,吴铿,周翔,等.煤粉特性及配煤的研究[J].中国冶金,2008,18(8):1-3
    [1]熊友辉,孙学信.动力用煤熔体结构特性及其计算研究[J].煤炭转化,1996,19(40):85-91
    [2]熊友辉,孙学信.基于熔体结构的高温灰渣粘度模[J].华中理工大学学报,1998,26(10):79-81
    [3]李如璧,徐培苍.二元硅铝酸盐熔体化学组成对熔体结构的影响[J].材料导报,2003,17(9):81-83
    [4]陈鹏.中国煤炭性质、分类和利用[M].化学工业出版社,2001:166-173
    [5]孙亦禄.煤中矿物杂质对锅炉的危害[M].水利电力出版社,1994:130-139
    [6]Arvelakis S.,Frandsen F.J,Folkedahl B.,et al.Viscosity of ashes from energy production and municipal solid waste handling:a comparative study between two different experimental setups[J].Energy and Fuels,2008,22:2948-2954
    [7]Vargas S.,Frandsen F.J.,Dam-Johansen K..Rheological properties of high-temperature melt of coal ashes and other silicates[J].Process in energy and combustion science,2001,27:237-429
    [8]Bryant G.W.Use of thermomechanical analysis to quantify the flux additions necessary for slag flow in slagging gasifiers fired with coal[J].Engery and Fuels,1998,12(2):257-261
    [9]Oh M.S.,Brooker D.D.,Depaze E,et al.Effect of crystalline phase formation on coal slag viscosity[J].Fuel processing technology,1995,44(1-3):191 -199
    [10]Christina G.,Vassileva S.V.Behaviour of inorganic matter during heating of Bulgarian coals 1.Lignites coals[J].Fuel Processing Technology,2005,86:1297-1333
    [1]Ward C.R.,Coal G.Coal Technology[M].Melbourne:Blackwell Publisher,1984
    [2]Gupta R,Wall T.F,Baxter L.A.,et al.The impact of mineral impurities in solid fuel combustion[M].New York:Plenum Publisher,1999
    [3]Kondratiev A,Jak E.Predicting coal ash slag flow characteristics[J].Fuel,2001,80(14):1989-2000
    [4]Patterson J.H.,Hurst H.J.Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J].Fuel,2000,79(13):1671-1678
    [5]Ninomiya Y.,Sato A.Ash melting behavior under coal gasification conditions[J].Energy Convers and Management,1997,38(10-13):1405-1412
    [6]Qiu J.R,Li F.,Zheng Y.,et al.The influences of mineral behavior on blended coal ash fusion characteristics[J].Fuel,1999,78(8):963-969
    [7]Wellsa J.J,Wigleya F.,Fosterb D.J.,et al.The nature of mineral matter in a coal and the effects on erosive and abrasive behavior[J].Fuel Processing Technology,2005,86(5):535-550
    [8]Qiu J.R.,Li F.,Zheng C.G.Mineral transformation during combustion of coal blends[J].Int.J.Energy Res,1999,23(5):453-463
    [9]Yamashita T.,Tominaga H.,Asahiro N.Modeling of ash formation behavior during pulverized coal combustion[J].IFRF Combustion Journal,2000,8:1-17
    [10]Hidero U.,Shohei T.,Takashi T.,et al.Studies of the fusibility of coal ash[J].Fuel,1986,65(11):1505-1510
    [11]Ward C.R.Analysis and significance of mineral matter in coal seams[J].International Journal of Coal Geology,2002,50(1-4):135-168
    [12]Gonia C.,Helleb S.,Garciac X.,et al.Coal blend combustion:fusibility ranking from mineralmatter composition[J].Fuel,2003,82(15-17):2087-2095
    [1]Jak E.,Hayes P.C.Thermodynamic modeling of the coal ash systems in black coal utilization[C].In:Proceedings of 18th Pittsburgh Coal Conference 2001,Newcastle,Australia
    [2]Ninomiya Y.,Sato A.Ash melting behavior under coal gasification conditions[J].Energy Conversion and management,1997,38:1405-1412
    [3]Yamashita T.,Tominaga H.,Asahiro N.Modeling of ash formation behavior during pulverized coal combustion[J].The IFRF Combustion Joural,2000,8:1-17
    [4]Patterson J.H.,Hurst H.J.Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J].Fuel,2000,79(13):1671-1678
    [5]Skrifvars B.J.,Lauren T.,Hupa M.,et al.Ash behaviour in a pulverized wood fired boiler-A case study[J].Fuel,2004,83(10):1371-1379
    [6]Gray V.R.Prediction of ash fusion temperature from ash composition for some New Zealand coals[J].Fuel,1987,66(9):1230-1239
    [7]Kucukbayrak S,Ersoy M.A.,Haykiri A.H.,et al.Investigation of the relation between chemical composition and ash fusion temperatures for some Turkish iignites[J].Fuel Science and Technology International.1993,11:1231-1249
    [8]Llyod W.G.,Riley J.T,Zhon S.,et al.Ash fusion temperatures under oxidizing conditions[J].Energy and Fuels,1995,7:490-494
    [9]Seggiani M.Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J].Fuel,1999,78(9):1121-1125
    [10]Yin C.,Luo Z.,Ni M.,et al.Predicting coal ash fusion temperature with a back-propagation neural network model[J].Fuel,1998,77(15):1777-1782
    [11]Huggins F.E.,Kosmack D.A.,Huffman G.P.Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J].Fuel,1981,60(7):577-584
    [12]Huffman G.P.,Huggins F.E.,Dunmyre G.R.Investigation of the high temperature behavior of coal ash in reducing and oxidizing atmospheres[J].Fuel,1981,60(7):585-597
    [13]Goni C.,Helle S.,Garcia X.,et al.Coal blend combustion:Fusibility ranking from mineral matter composition[J].Fuel,2003,82(15-17):2087-2095
    [14]Yan L,Gupta R.P,Wall T.F,et al.The implication of mineral coalescence behavior on ash formation and ash deposition during pulverized coal combustion[J].Fuel,2001,80(9):1333-1340
    [15]Yin C.G.,Luo Z.,Ni M.J.,et al.Predicting coal ash fusion temperature with a back propagation neural network mode[J].Fuel,1998,77(15):1777-1782
    [16]Rhinehart R.R.,Attar A.A.Ash fusion temperature:A thermodynamically-based model[J].American Society of Mechanical Engineers Petroleum Division,1987,8:97-101
    [17]Kondratiev A,Jak E.Predicting coal ash slag flow characteristics[J].Fuel,2001,80(14):1989-2000
    [18]Qiu J.R.,Li F.,Zheng C.G.Mineral transformation during combustion of coal blends[J].International Journal of Energy Research,1999,23:453-463
    [19]Jak E.,Degterov S.,Zhao B.,et al.Coupled experimental and thermodynamic modelling studies for metallurgical smelting and coal combustion systems[J].Metal Trans,2000,31B:621-630
    [20]Bale C.W.,Chartrand P.,Degterov S.A.FactSage thermo chemical software and databases[J].Calphad,2002,26(2):189-228.
    [21]Li Hanxu,Ninomiya,Dong Zhongbing,et al.Application of the Factsage to predict the ash melting behavior in reducing conditions[J].Chinese Journal of chemical Engineering.2006,14:784-789
    [22]曹战民.宋晓艳.乔芝郁.热力学模拟计算软件Factsage及其应用[J].稀有金属,2008,32(2):216-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700