用户名: 密码: 验证码:
低温溶剂热法合成单分散CdS_xSe_(1-x)与ZrSiO_4色料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异晶包裹型硫硒化镉-硅酸锆色料(CdS_xSe_(1-x)@ZrSiO_4)以其从黄色至红色鲜艳丰富的色彩变化与极强着色力等特性,在高温装饰颜料行业中一直扮演着重要角色。调整色料中硫、硒元素至适宜比例,即可获得鲜艳的大红包裹色料。这类色料有着无与伦比的装饰效果,长期以来便成了其他红色色料的参照标准。更兼大红色调本身内涵丰富、底蕴充足,让爱美之人对这类色料多心向往之。这类品性特殊的色料即为本课题的主要研究对象,虽然已经实现生产化生产,但依然存在着制备温度较高、色剂包裹率低、硒源析出、色料粒径分布过广、呈色不稳定、生产工艺复杂难控等诸多问题。另一方面,时下正在迅速发展的陶瓷喷墨打印行业,极度缺乏可应用的高温大红色料,这一不足限制了喷墨装饰色调的选择空间;而适合喷墨打印要求且耐温性好的CdS_xSe_(1-x)@ZrSiO_4大红色料,正是陶瓷喷墨行业乃至整个陶瓷装饰行业迫切需求的产品。
     基于上述现状与行业对色料需求,本课题对溶剂热法合成CdS_xSe_(1-x)@ZrSiO_4大红色料进行了较为深入的研究,主要内容涉及到以下几个方面:色剂与色料的合成原料选择,溶剂热法合成单分散色剂CdS与CdS_xSe_(1-x),低温水热法合成ZrSiO_4的反应温度、时间、pH值与替代原料等影响因素在制备包裹体过程中的控制,以及在此基础上大红色料的水热合成。为实现硅酸锆对色剂的包裹,笔者对水热合成硅酸锆工艺、产物形貌与生成机理进行了较为详尽的探讨,并针对包裹体的定向生长问题,提出了水热与预烧处理解决方案。最后,结合单分散色料在共沉淀法制备大红色料中的优势,建立了基于CdS_xSe_(1-x)@ZrSiO_4色料的异晶包裹模型,从理论上计算出不同条件下的色剂包裹率。
     单分散色剂的合成是成品色料具备单分散特征的前提条件。通过120-180℃溶剂热反应法,本研究制备出单分散或准单分散且粒径在200-900nm范围内的亚微米CdS色剂,单分散性随粒径的增加有所降低。在单分散CdS色剂基础上,通过对PVP与CTAB等表面活性剂的选择,依St(?)ber法制备了具有超厚硅层包裹的Core-Shell型CdS@SiO_2色剂。与未包裹的色剂相比,CdS@SiO_2色剂高温稳定性有着较大的改进。
     对于陶瓷色料用单分散亚微米级CdS_xSe_(1-x)色剂的研究,此前尚无报道,而作为纳米量子点的CdS_xSe_(1-x)制备工艺却无法用于陶瓷色料生产。本研究利用CdS与CdSe具有较大溶度积差异这一特性,采用预制备的单分散CdS色剂,以单质硒为硒源,通过原位反应法制备了大红CdS_xSe_(1-x)色剂。以PVP为分散剂并恰当控制实验条件,可使获得的亚微米级CdS_xSe_(1-x)色剂在原位反应后,依然具备较佳的单分散或准单分散性。利用CdS与CdSe固溶体在22°-52°间XRD衍射峰的连续线性变化,可便捷确定CdS_xSe_(1-x)色剂中S与Se元素的相对含量,半定量的分析结果准确性与EDS分析结果相近。
     作为大红色料的包裹体,硅酸锆较低的合成温对于色料制备与色剂保护均有着极为重要的意义。本课题研究了300℃以下低温条件下水热合成ZrSiO_4的温度、反应时间、原料浓度、矿化剂、pH值与替代原料等因素对合成产物的影响,实现了从单层片状到多层层叠状以及超厚近球状等不同形貌硅酸锆的控制性制备。首次发现了以CaF_2与MgF_2碱土金属矿化剂为水热反应催化剂时可制备方形层叠式貌硅酸锆这一现象,解析了碱金属与碱土金属矿化剂在水热反应中的作用差异。水热合成产物ZrSiO_4具有约0.10cm3/g左右的孔含量与超过100m2/g的比表面积,可以用作催化剂载体材料。在此基础上,本研究提出了水热合成ZrSiO_4形态衍变的四阶段机制,并探析了硅酸锆的定向生长机理。为将水热条件下硅酸锆制备工艺用于色料包裹,笔者进一步研究了改进的Pechini法、醋酸络合延升法及基体球原位生成法,以探求对作为包裹体硅酸锆的合成改进作用。
     在以上对色剂与包裹体研究基础上,以预制备的准单分散CdS@SiO_2与单分散的CdS_xSe_(1-x)为起始色剂,柠檬酸为络合剂、NaF为矿化剂与适宜的锆源与硅源,在180℃条件下水热反应5-12h制备了CdS_xSe_(1-x)-ZrSiO_4大红色料。产物中色剂与包裹体分离现象的产生,主要归因于水热体系的复杂性以及水热条件下硅酸锆的定向结晶两方面因素。为此,本研究提出并初步试验了预烧与水热处理相结合的改进制备方法,为解决硅酸锆定向生长与后续的逐层包裹奠定了基础。
     最后,基于以上对大红色料的研究及利用单分散色剂配合共沉淀法的解决方案,笔者者建立了异晶包裹色料包裹率理论计算模型,提出了包裹率的三维计算通式与简化计算方法,并引入了“边缘色剂”与“随机包裹”等概念。首次从理论上论证了CdS_xSe_(1-x)@ZrSiO_4大红色料在目前共沉淀制备条件下的极限包裹率约为29.63%-42.19%,指出了超细色剂对提升包裹率的意义,为大红色料包裹率的提升、色料的超细化处理与在高温釉中稳定性改进指明了方向。最后,将建立在基于大红色料的包裹率模型扩展至其他色料与非色料类异晶包裹结构。本研究制备大红色料所采用的方法与前人研究相比有着明显的差异,单分散色剂的制备与包裹、水热合成的研究以及模型建立与包裹率计算,将为后续的研究提供了借鉴。
The CdS_xSe_(1-x)@ZrSiO_4pigments, as one of excellent heterogeneous crystalline stainsapplied in ceramic and glass industries, are always demonstrating their irreplaceable roles forcharacteristics of pure bright red color, abundant hues and strong tinting capacity andtherefore regarded as a paragon to all red pigments. Their unparallel brilliant red hues fordecoration function have imposed unlimited infatuation upon most beauty-pursuers. Ourresearching subjects are currently focusing on these kinds of pigments, which are of particularimportance and have received large-scaled industrious application but still by far exhibit theirinherent disadvantages such as high synthetic temperatures, poor stability under hightemperatures, low encapsulation coefficient and complicated production flow, etc. Thewhite-hot requirement for advanced red pigments in the ink-jet printing industry gives usanother motivation to pursue these subjects.
     In view of the problems and requirement for red pigments metioned above, the author’shaved achieved the current investigations which relates to: syntheses of monodispersecolorants CdS and CdS_xSe_(1-x)by solvothermal and hydrothermal methods, the optimizationselection of raw reagents, control factors such as reaction temperature, duration, pH valuesand alternative materials for synthesizing of ZrSiO_4(zirconium silicate) under hydrothermalconditions, the improvement for the hydrothermal method used for the encapsulatingpigments into the ZrSiO_4crystalline matrix, morphological revolution mechanism for roundor square layered zircons, the preparation of core-shell shaped CdS@SiO_2pigments,syntheses of red pigments CdS_xSe_(1-x)@ZrSiO_4under hydrothermal conditions as the ultimateobjective, and the calculation of encapsulation coefficient by the model establishment fromthe CdS_xSe_(1-x)@ZrSiO_4system and the extension of calculation modeling to all similarheterogeneous-crystalline encapsulation system.
     It is a premise for advanced monodisperse inclusion pigments to originate from themonodisperse colorant cores. The author have firstly prepared monodisperse orquasi-monodisperse CdS spherical particles in the size range of200-900nm at120-180℃bysolvothermal reaction. These colorants are of excellent brilliant yellow hues and have anincreasing size deviation with the increase of their particle scale. PVP and CTAB wereselected as surfactants for encapsulating SiO_2from TEOS hydrolysis upon to the obtainedCdS colorants by the St ber method. The ultra-thick pigments of CdS@SiO_2are preferablyobtained by CTAB as surfactant and they have an improved thermal stability when compared with those unencapsulated CdS pigments. The micro-meso pores in the outer SiO_2layers havehindered the further promotion of thermal stability.
     The brilliant red pigments were obtained by in-situ reaction from the obtained CdScolorants, which is based on the distinct disparity of solubility product between CdS andCdSe. When PVP was used as surfactant and synthesis conditions were concisely controlled,the resultant CdS_xSe_(1-x)can still maintain its monodisperity and qusai-monodisperity. Thesesub-micron CdS_xSe_(1-x)pigments used for ceramics have not covered by previous researchers,which are most focused on the nano-sized CdS_xSe_(1-x)quantum dots for their photo-electricfuntions in this erea. The special raw materials and complicated processing ways applied bythem can not function well for the ceramic pigment industry. The22°-52°XRD diffractionpeaks of CdS_xSe_(1-x)exhibit a superb linear variation with the contents of CdS and CdSe. Theauthor has applied the relation for the proportion determination of sulfur and seleniumelements in CdS_xSe_(1-x)and the resulting can be guaranteed as accurate as the EDS testing.
     It is of great significance in low temperatures to synthesizing ZrSiO_4as theencapsulation body for inclusion pigments. In this study, comprehensive investigations offactors of temperature, duration, concentration, mineralizers, pH and alternative raw materialsand other factors have been conducted under the hydrothermal temperatures below300℃.The controllable syntheses of zircons of round single-layer to multi-layer and still toultra-thick doughnut-shape can be accomplished by varying different factors. When themineralizers of CaF_2and MgF_2are applied, square lamellar ZrSiO_4are first prepared andanother phase ZrO_2commonly emerges as an intermediate only under this kind ofmineralizers. Therefore the different catalyzing role of alkali metal and alkaline mineralizersare also discussed. The hydrothermal ZrSiO_4products have pore contents of about0.10cm3/gand specific surface areas of more than100m2/g and so they can be used as candidatematerials as catalyst carriers. Based on these researches, the author presents a four-stagemechanism for the morphological evolution of the hydrothermal zircons and interprets thepreferable crystallization orientation. The modification processing of Pechini method,pH-elevating by acetic acid and in-situ matrix ball preparation, are also explored for thepurpose of subsequent pigment encapsulation.
     The as-prepared monodisperse colorants, CdS@SiO_2and CdS_xSe_(1-x), were applied asstarting pigments for the syntheses of CdS_xSe_(1-x)-ZrSiO_4, where citric acid functioned aszirconium source complexing agent and NaF as a mineralizer. The brilliant redCdS_xSe_(1-x)-ZrSiO_4pigments were prepared through the hydrothermal reaction at180℃for 5-12h. Separation of colorant cores and ZrSiO_4has been observed, as is mainly due to thesilicon phase migration and zircon’s preferable crystallization orientation under the complexhydrothermal system. In response to this problem, combination tests of preheating andhydrothermal treatment were conducted and the improvement work for the layer-by-layerinclusion and subsequent generation of ZrSiO_4is still requesting further investigations.
     Established on the above bases and auxiliary syntheses of red pigments by solid-statecalcination with the prepared CdS_xSe_(1-x)colorants, the author has established a model for thecalculation of encapsulation coefficient for heterogeneous-crystalline inclusion pigments andhas proposed the calculation formula with three independent parameters as a_(max)=[1-2(k+1)r/L]~3×100%and also its simplified calculation method. Meanwhile, theconcept of "Marginal Colorant Cluster" has been introduced. The calculation modeling for theencapsulation coefficient is finally extended to the encapsulation of other kind of pigments ornon-pigments. For the first time, the author points out that the upper limits of encapsulationcoefficient of CdS_xSe_(1-x)@ZrSiO_4will not be higher than29.63%-42.19%for the currentproduction level, which denotes the unreachability for a higher coefficient in thepigmentindustry. It has first presented the author’s original proposals and suggestions against theproblems mentioned above in the red pigment industry.
     The routes for syntheses of brilliant red pigments discussed above significantly varyfrom those routes applied by previous researchers in the terms of preparation and theencapsulation of monodisperse colorants, hydrothermal syntheses, the modeling andcalculation of encapsulation coefficient. These efforts will be of good significance forsubsequent researchers, and the brilliant red pigments and their alternatives will have moreconspicuous prospects for researching and applications of their products.
引文
[1] Scott I. V., Oscar T. Method of producing a carbon black silica pigment [P]. US Patent4,211,578,1980.
    [2] Takewell R. B., Kohn T. Method of making carbon black/silica pigment [P]. US Patent3,390,006,1968.
    [3] Peng C., Zhang C., Lv M., et al. Preparation of silica encapsulated carbon black with highthermal stability[J]. Ceram Int,2013,
    [4] Jansen M., Letschert H. Inorganic yellow-red pigments without toxic metals[J]. Nature,2000,404(6781):980-2.
    [5] Gargori García C., Galindo Llorach R., Llusar Vicent M., et al. New chromium-calciumtitanate red ceramic pigment[J]. Advances in Science and Technology (1662-8969),2010,68
    [6] Luňáková P., Trojan M., Luxová J., et al. BaSn1-xTbxO3: A new yellow pigment based on aperovskite structure[J]. Dyes Pigments,2012,
    [7] Ishida S., Ren F., Takeuchi N. New yellow ceramic pigment based on codopingpyrochlore-type Y2Ti2O7with V5+and Ca2+[J]. J Am Ceram Soc,1993,76(10):2644-8.
    [8] Lyubenova T. S., Ocana M., Carda J. Brown ceramic pigments based on chromium(III)-doped titanite obtained by spray pyrolysis[J]. Dyes Pigments,2008,79(3):265-9.
    [9] Costa A., Leite A., Ferreira H., et al. Brown pigment of the nanopowder spinel ferriteprepared by combustion reaction[J]. J Eur Ceram Soc,2008,28(10):2033-7.
    [10] Trojan M. A blue-violet zirconium silicate pigment with admixtures of condensed cobaltphosphates[J]. Dyes Pigments,1987,8(2):129-40.
    [11] Oca a M., Espinós J., Carda J. Synthesis, through pyrolysis of aerosols, of YIn1xMnxO3blue pigments and their efficiency for colouring glazes[J]. Dyes Pigments,2011,91(3):501-7.
    [12] Dondi M., Zanelli C., Ardit M., et al. Co-doped hardystonite, Ca2(Zn, Co)Si2O7, a newblue ceramic pigment[J]. J Am Ceram Soc,2011,94(4):1025-30.
    [13] Kato M., Yamashita S., Takahashi M. Red colouring of glaze by manganese-zirconpurple pigment[J]. J Ceram Soc Jpn,2000,108(8):742-6.
    [14] Zhang H. Y., Wang J. H., Zhang L. F., et al. The research of silica-coated chromiumoxide green pigment prepared by liquid phase method[J]. Applied Mechanics andMaterials,2011,84514-8.
    [15] Thongkanluang T., Limsuwan P., Rakkwamsuk P. Preparation and application of highnear-infrared reflective green pigment for ceramic tile roofs[J]. Int J Appl Ceram Tec,2011,8(6):1451-8.
    [16]黄黎. CdSxSe1-x包裹色料的制备与热稳定性研究[D];华南理工大学,2010.
    [17]俞康泰,陶瓷.陶瓷色釉料与装饰导论[M].武汉工业大学出版社,1998.
    [18] Speer D., Kiss A., Kleinschmit P., et al. Inclusion pigments of zirconium silicate formedwith spinel inclusions, a process for the preparation and use thereof [P]. US Patent5,252,125,1993.
    [19] Eppler R. A. Inverse spinel pigments[J]. J Am Ceram Soc,1983,66(11):794-801.
    [20]许之衡(撰),杜斌(校注).饮流斋说瓷[M].济南:山东画报出版社,2010.
    [21]程士元.中国文化中的红色情结[J].艺术探索,2006,20(3):118.
    [22]邵璐.“中国元素”设计的红色情结[J].齐鲁艺苑:山东艺术学院学报,2007,(5):34-6.
    [23]朱振峰,黄剑锋,胡秀兰,等.铝系红色颜料呈色性能与原料晶型关系的研究[J].陶瓷,1999,6004.
    [24]曹春娥,洪琛,熊春华,等.高温陶瓷红色料的研究现状与展望[J].中国陶瓷工业,2007,14(4):22-5.
    [25]曹春娥,王迎军,郑乃章,等.炻质瓷装饰用无公害镉硒大红釉的研究[J].硅酸盐学报,2004,32(003):264-9.
    [26] Airey A. C., Spiller A. Method of protecting pigments with transparent crystalline zircon
    [P]. US Patent4,482,390,1984.
    [27] Curtis C., Sowman H. Investigation of the thermal dissociation, reassociation, andsynthesis of zircon[J]. J Am Ceram Soc,2006,36(6):190-8.
    [28] Butterman W. C., Foster W. R. Zircon stability and ZrO2-SiO2phase diagram[J]. AmMineral,1967,52880-5.
    [29] Mori T., Hoshino H., Yamamura H., et al. Mechanical properties of high purity sinteredZrSiO4[J]. J Ceram Soc Jpn,1990,98(9):1017-22.
    [30] Durand B., Guth J., Valéro R., et al. New method for a hydrothermal preparation ofzircons-Are useful as precursors of coloured pigments and as catalyst supports [P]. EUpatent2,763,933,1998.
    [31] Wei M., Okabe K., Arakawa H., et al. Synthesis and characterization of zirconiumcontaining mesoporous silicates and the utilization as support of cobalt catalysts forfischer-tropsch synthesis[J]. Catal Commun,2004,5(10):597-603.
    [32] Li Z., Li X., Zhou H., et al. Grenvillian continental collision in south China: NewSHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J].Geology,2002,30(2):163-6.
    [33] Albonetti S., Baldi G., Bitossi M., et al. Process for the inclusion of heat-labile ceramicpigments and the inclusion pigments thus obtained [M]. EP Patent1,866,382.2009.
    [34] Seabrlght C. A. Ceramic pigments [P]. US Patent2,441,447,1948.
    [35] Seabright C. A. Blue pigments [P]. US Patent3,025,178,1962.
    [36] Seabright C. A. Yellow ceramic pigments [M]. Google Patents.1961.
    [37] Kato E., Takashima H. Zircon colours: Ⅲ—Praseodymium yellow[J]. Nagoya KogyoGijutsu Shikensho Hokaku,1956,5147-50.
    [38] Seabright C. A. Iron ceramic pigment [P]. US Patent3,166,430,1965.
    [39]朱振峰,朱敏.异晶包裹镉硒红颜料的研究进展及展望[J].陶瓷学报,2005,26(2):118-22.
    [40] Speer D., Kiss D., Horst J. Neutral blue zirconium vanadium pigments [P]. EP Patent0,569,724,1995.
    [41] Speer D., Kiss D., Kleinschmit P., et al. Zirconium silicate occlusion pigments withspinel occlusions, their preparation and their use [P]. EP Patent0,504,599,1995.
    [42] Kiss A., Kleinschmit P., Hanich J., et al. Methods of preparing encapsulated pigments [P].US Patents4,874,433,1989.
    [43] Speer D., Kiss D., Kleinschmit P., et al. Zirconium silicate occlusion pigments withchromium oxyde occlusions, their preparation and their use [P]. EP Patent0,504,600,1995.
    [44]尹彦征.陶瓷釉用耐高温硫硒化镉大红色料及其制造方法[P]. CN.01128545.1,2003.
    [45]胡天霏,毛明福.镉红分解历程浅探[J].中国陶瓷,1991,(003):46-7.
    [46]朱志斌.锆基色料的研究与发展[J].佛山陶瓷,2000,1(1):5-9.
    [47] Ocana M., González-Elipe A. R., Orera V. M., et al. Spectroscopic Studies on theLocalization of Vanadium (Ⅳ) in Vanadium-Doped Zircon Pigments[J]. J Am Ceram Soc,2005,81(2):395-400.
    [48] Waal D. d., Heyns A. M., Pretorius G., et al. Raman Spectroscopic InvestigationsofZrSiO4: V4+, the Blue Zircon Vanadium Pigment[J]. J Raman Spectrosc,1996,27(9):657-62.
    [49] George G., George G., Rao P. P., et al. Synthesis and characterization of environmentallybenign nontoxic pigments: RE2Mo2O9(RE=La or Pr)[J]. Chem Lett,2005,34(12):1702-3.
    [50] Del Nero G., Cappelletti G., Ardizzone S., et al. Yellow Pr-zircon pigments: The role ofpraseodymium and of the mineralizer[J]. J Eur Ceram Soc,2004,24(14):3603-11.
    [51] Badenes J., Vicent J., Llusar M., et al. The nature of Pr-ZrSiO4yellow ceramicpigment[J]. J Mater Sci,2002,37(7):1413-20.
    [52] Trojan M. Synthesis of a yellow zircon pigment[J]. Dyes Pigments,1988,9(4):261-73.
    [53] Eppler R. A. Mechanism of formation of zircon stains[J]. J Am Ceram Soc,1970,53(8):457-62.
    [54]孙再清,刘属兴.陶瓷色料生产及应用[M].北京:化学工业出版社,2007.
    [55] Trojan M. Synthesis of a blue-green pigment from the mineral zircon[J]. Ceram Int,1990,16(5):295-9.
    [56] Speer D., Kiss A., Kleinschmit P. Method for the preparation of gray-green pigmentsbased on zirconium silicate/vanadium compounds and sodium compound [P]. US Patent5,021,092,1991.
    [57] Trojan M. Synthesis of a grey-brown zirconium silicate pigment[J]. Ceram Int,1990,16(3):135-41.
    [58] Speer D., Kiss A., Kleinschmit P. Biege-brown encapsulated pigments and method oftheir production [P]. US Patent5,035,746,1991.
    [59] Speer D., Kiss A., Kleinschmit P. Brown to gray inclusion pigments and method of theirproduction [P]. US Patent5,043,016,1991.
    [60] Mann H. Production of zirconium silicate pigments [P]. US Patent3,514,303,19701970.
    [61] Trojan M. Synthesis of gray zirconium silicate pigments from zircon mineral[J]. J AmCeram Soc,1990,73(10):2892-5.
    [62] Masahiro K., Shigeki Y., Minoru T. Red coloring of glaze by manganese-zircon purplepigment[J]. J Ceram Soc Jpn,2000,108(1260):742-6.
    [63] Demiray T., Nath D., Hummel F. Zircon-vanadium blue pigment[J]. J Am Ceram Soc,1970,53(1):1-4.
    [64] Trojan M. A brown zirconium silicate pigment[J]. Dyes Pigments,1990,14(2):143-56.
    [65] Speer D., Kiss A., Kleinschmit P., et al. Inclusion pigments of zirconium silicate withincluded chromic oxide, a process for the preparation and use thereof [P]. US Patent5,330,571,1994.
    [66]孙再清.锆英石基陶瓷颜料[J].陶瓷导刊,1991,2(3):13-6.
    [67]黄风格.喷墨印花--建陶印刷技术的一大革新[J].自动化技术与应用,2011,(11):97-100.
    [68] Strutt J. W., Rayleigh L. On the instability of jets; proceedings of the Proc R Soc LondonA [C],1878.
    [69] Rayleigh L. On the stability, or instability, of certain fluid motions[J]. P Lond Math Soc,1879,1(1):57-72.
    [70]韩复兴,范新晖,王太华,等.浅析陶瓷墨水的发展方向[J].佛山陶瓷,2011,21(6):1-3.
    [71] Jacob C. W. Apparatus for color reproduction [P]. US Patent2,573,143,1951.
    [72] Hertz C. Ink jet recorder [P]. US Patent3,416,153,1968.
    [73] Zoltan S. Pulsed droplet ejecting system [P]. US Patent3,683,212,1972.
    [74] Brünahl J., Grishin A. M. Piezoelectric shear mode drop-on-demand inkjet actuator[J].Sens Actuators, A,2002,101(3):371-82.
    [75] Endo I., Sato Y., Saito S., et al. Liquid jet recording process and apparatus thereof [P].UK Patent2,007,162,1979.
    [76] Vaught J. L., Cloutier F. L., Donald D. K., et al. Thermal ink jet printer [P]. US Patent4,490,728,1984.
    [77] Blazdell P., Evans J., Edirisinghe M., et al. The computer aided manufacture of ceramicsusing multilayer jet printing[J]. J Mater Sci Lett,1995,14(22):1562-5.
    [78] Teng W. D., Edirisinghe M. J., Evans J. R. Optimization of dispersion and viscosity of aceramic jet printing ink[J]. J Am Ceram Soc,1997,80(2):486-94.
    [79] Teng W., Huneiti Z., Machowski W., et al. Towards particle-by-particle deposition ofceramics using electrostatic atomization[J]. J Mater Sci Lett,1997,16(12):1017-9.
    [80] Teng W. D., Edirisinghe M. J. Development of ceramic inks for jet printing: effect ofconductivity[J]. Key Eng Mater,1997,132337-40.
    [81] Teng W. D., Edirisinghe M. J. Development of ceramic inks for direct continuous jetprinting[J]. J Am Ceram Soc,1998,81(4):1033-6.
    [82] Mott M., Song J. H., Evans J. R. Microengineering of Ceramics by Direct Ink‐JetPrinting[J]. J Am Ceram Soc,2004,82(7):1653-8.
    [83] Mott M., Evans J. Zirconia/alumina functionally graded material made by ceramic ink jetprinting[J]. Materials Science and Engineering: A,1999,271(1):344-52.
    [84]赛恩斯,加西亚,罗梅罗,等.用于陶瓷釉面砖(瓦)和表面的彩色喷墨印刷的独特的油墨和油墨组合[P].费罗公司(Ferro) CN00818261.2,2000.
    [85] Magdassi S., Eron G., Vinetsky Y., et al. Ink for ceramic surfaces [P]. WO Patent2005/019360,2005.
    [86] Airey A. C., Crooks M. E., Brett R. D. Ink jet printer ink for printing on ceramics or glass[P]. US Patent5,407,474,1995.
    [87] Eroles A., Friedberg A. Color and Structural Character of CdS-CdSe Pigments[J]. J AmCeram Soc,1965,48(5):223-7.
    [88]郑红霞,杨兆雄,吴绍祥.硫硒化镉颜料的制作工艺及其发展趋势[J].中国陶瓷,1993,322-4.
    [89]俞康泰,胡亚萍.硫硒化镉—硅酸锆包裹色料形成机理的研究[J].陶瓷学报,1999,20(2):83-6.
    [90]赖志华,黎先财.红色陶瓷颜料的研究和发展[J].江西化工,2001,(4):10-4.
    [91]宋晓岚,丁意,彭林,等.微乳液法合成ZrSiO4/Cd (S1-xSex)包裹色料[J].硅酸盐学报,2010,(5):974-8.
    [92] Song X.-l., Peng L., Ding Y., et al. Synthesis and coloring properties of Cd (S1xSex)pigments by precipitate-hydrothermal method[J]. Journal of Central South University ofTechnology,2008,15(6):748-52.
    [93] Chen Y., Peng S., Xu P., et al. Study on the Preparaion of CdS_(1-x) Se_x By solidPhase Reaction at Room Temperature [J][J]. Bulletin of the Chinese Ceramic Society,2005,141-3.
    [94] Zhang Y., Zeng D., Rao P., et al. Hydrothermal synthesis of cadmium sulfoselenideinclusion pigment[J]. J Sol-gel Sci Techn,2008,48(3):289-93.
    [95]王义宽.高级硒红釉的研制[J].山东陶瓷,1990,(1):3-6.
    [96]邵明梁,赵宗昱,李凝芳.多熔块反应法制备Cd(SxSe1-x)系列色釉[J].中国陶瓷,1998,34(1):
    [97]相贤光,李顺禄.镉硒大红系列色釉的研制[J].陶瓷1990,(005):3-7.
    [98]长沙大红瓷器.中国红瓷器[OL]. http://www.ccredcclove.cn
    [99]俞康泰,尹彦征.对中国红陶瓷主要工艺性能的测试和研究[J].陶瓷,2002,(4):21-4.
    [100]徐研,高雅春,李美霞.新型大红陶瓷色料的研制[J].陶瓷,2006,424-7.
    [101]沈华荣,洪琛,曹春娥,等. Cr2O3, Y2O3含量及矿化剂对铬钇铝红色料呈色影响的研究[J].中国陶瓷,2006,42(12):18-20.
    [102]沈化森,储茂友. Y—Ce2S3型红颜料的制备研究[J].稀有金属,2002,9(26):409-12.
    [103]黄健,况学成,梁艳珍,等.包裹法国红色料在陶瓷领域应用的探索[J].中国陶瓷工业,2007,14(005):18-21.
    [104]朱振峰,朱敏.异晶包裹镉硒红颜料的研究进展及展望[J].陶瓷学报,2005,26(2):119.
    [105] Sullivan R. M. Cadmium sulfide or cadmium sulfoselenide colored glazes and processfor producing same [P]. US Patent3,527,649,1970.
    [106] Lambies L. V., Rincon L. J. M. Mechanism of formation of a zircon-cadmiumsulfoselenide pigment[J]. Trans J Br Ceram Soc,1981,80105-8.
    [107] Yekta B. E., Tamizifar M., Rahimi N. Synthesis of A Zircon-Cadmium Sulfo SelenidePigment by A Sol-Gel Technique[J]. J Ceram Soc Jpn,2007,115(1347):757-60.
    [108] Hummel F. A., Sombuthawee C. Zinc sulfide based pigments [P]. US Patent4,086,123,1978.
    [109] Kinstle G. P. Zinc sulfide based pigments containing selenium [P]. US Patent4,216,023,1980.
    [110] Nimmo J. A. Zinc selenide based pigment material [P]. EP Patent0,424,126,1991.
    [111] Nimmo J. A. Zinc sulfide or selenosulfide material [P]. US Patent5,152,229,1992.
    [112]杨萍,赵宗昱.硫硒化锌基颜料的研究[J].硅酸盐通报,1998,17(006):28-31.
    [113]杨萍,管延勇.硫硒化锌基颜料颜色与组成关系的研究[J].硅酸盐学报,1999,27(3):316-23.
    [114]朱振峰,周燕.陶瓷工业中的红色颜料及其研究进展[J].中国陶瓷工业,2006,12(5):31-4.
    [115] Corporation F. Inclusion Pigments Brochure [OL]. http://www.ferro.com
    [116] Haxel G., Hedrick J., Orris G. Rare earth elements-Critical resources for hightechnology: US Geological Survey Fact Sheet[M]. Technical report, US GeologicalSurvey,2002.
    [117] Suess H. E., Urey H. C. Abundances of the elements[J]. Rev Mod Phys,1956,28(1):53.
    [118]俞康泰,胡亚萍.对包裹型镉硒红釉的组成和呈色机理的研究[J].陶瓷,1999,(004):25-8.
    [119] Li Y. D., Liao H. W., Ding Y., et al. Nonaqueous synthesis of CdS nanorodsemiconductor[J]. Chem Mater,1998,10(9):2301-3.
    [120] Ohde H., Ohde M., Bailey F., et al. Water-in-CO2microemulsions as nanoreactors forsynthesizing CdS and ZnS nanoparticles in supercritical CO2[J]. Nano Lett,2002,2(7):721-4.
    [121] Monteiro O. C., Esteves A. C. C., Trindade T. The synthesis of SiO2@CdSnanocomposites using single-molecule precursors[J]. Chem Mater,2002,14(7):2900-4.
    [122] Peng X., Manna L., Yang W., et al. Shape control of CdSe nanocrystals[J]. Nature,2000,404(6773):59-61.
    [123] Lide D. R. CRC handbook of chemistry and physics[M]. CRC Press,2012.
    [124] Ge C., Xu M., Fang J., et al. Luminescent cadmium sulfide nanochains templated onunfixed deoxyribonucleic acid and their fractal alignment by droplet dewetting[J]. TheJournal of Physical Chemistry C,2008,112(29):10602-8.
    [125] Broil A. Zirconium ceramic color bodies [P]. US Patent3,802,900,1974.
    [126] Celikkaya A., Akinc M. Preparation and mechanism of formation of sphericalsubmicrometer zinc sulfide powders[J]. J Am Ceram Soc,1990,73(8):2360-5.
    [127] Gobet J. Preparation of uniform colloidal cadmium and lead selenide particles[J]. JColloid Interf Sci,1984,100(2):555-60.
    [128] Li X. H., Li J. X., Li G. D., et al. Controlled synthesis, growth mechanism, andproperties of monodisperse CdS colloidal spheres[J]. Chem-eur J,2007,13(31):8754-61.
    [129] Jiang X., Xie Y., Lu J., et al. Preparation and phase transformation of nanocrystallinecopper sulfides (Cu9S8, Cu7S4and CuS) at low temperature[J]. J Mater Chem,2000,10(9):2193-6.
    [130] Li X., Li J., Li G., et al. Controlled synthesis, growth mechanism, and properties ofmonodisperse CdS colloidal spheres[J]. Chem Eur J,2007,13(31):8754-61.
    [131] Watzky M. A., Finke R. G. Transition metal nanocluster formation kinetic andmechanistic studies. A new mechanism when hydrogen is the reductant: slow,continuous nucleation and fast autocatalytic surface growth[J]. J Am Chem Soc,1997,119(43):10382-400.
    [132] Lewis P. A. Color for Science, Art and Technology[M].4ed. Amsterdam: NorthHolland Press,1998.283-312
    [133] Van der Snickt G., Dik J., Cotte M., et al. Characterization of a degraded cadmiumyellow (CdS) pigment in an oil painting by means of synchrotron radiation based x-raytechniques[J]. Anal Chem,2009,81(7):2600-10.
    [134] Lewis P. A. Inorganic colored pigments[J]. Paint and Coating Testing Manual14thEdition of the Gardner-Sward Handbook (ASTM Manual Series), edited by JV Koleske,American Society of Testing and Materials, Philadelphia, PA,1995,209-17.
    [135] Wang D., Cao Y., Zhang X., et al. Size control of CdS nanocrystals in block copolymermicelle[J]. Chem Mater,1999,11(2):392-8.
    [136] Cheng Y., Wang Y., Bao F., et al. Shape control of monodisperse CdS nanocrystals:Hexagon and pyramid[J]. J Phys Chem B,2006,110(19):9448-51.
    [137] Mott M., Song J. H., Evans J. R. G. Microengineering of ceramics by direct ink-jetprinting[J]. J Am Ceram Soc,2004,82(7):1653-8.
    [138] Chen M., Gao L., Yang S., et al. Fabrication of well-defined water-soluble core/shellheteronanostructures through the SiO2spacer[J]. Chem Commun,2007,(12):1272-4.
    [139] Desnica U., Dubcek P., Desnica-Frankovic I., et al. Grazing incidence small-angleX-ray scattering studies of the synthesis and growth of CdS quantum dots fromconstituent atoms in SiO2matrix[J]. J Appl Crystallogr,2003,36(3):443-6.
    [140] Cavalcante P., Dondi M., Guarini G., et al. Colour performance of ceramicnano-pigments[J]. Dyes Pigments,2009,80(2):226-32.
    [141] Zhao F., Gao Y., Li W., et al. Nanocoating Fe2O3powders with a homogeneous ultrathinZrO2shell[J]. J Ceram Soc Jpn,2008,116(1358):1164-6.
    [142] Gao Y., Zhao F., Liu Y., et al. Synthesis and characterization of ZrO2capsules andcrystalline ZrO2thin layers on Fe2O3powders[J]. Cryst Eng Comm,2011,13(10):3511-4.
    [143] Rossetti R., Ellison J., Gibson J., et al. Size effects in the excited electronic states ofsmall colloidal CdS crystallites[J]. The Journal of chemical physics,1984,804464.
    [144] Li T., Moon J., Morrone A. A., et al. Preparation of Ag/SiO2nanosize composites by areverse micelle and sol-gel technique[J]. Langmuir,1999,15(13):4328-34.
    [145] Bae D. S., Han K. S., Adair J. H. Synthesis and microstructure of Pd/SiO2nanosizedparticles by reverse micelle and sol–gel processing[J]. J Mater Chem,2002,12(10):3117-20.
    [146] Fu Q., Lu C., Liu J. Selective coating of single wall carbon nanotubes with thin SiO2layer[J]. Nano Lett,2002,2(4):329-32.
    [147] Guerrero‐Martínez A., Pérez‐Juste J., Liz‐Marzán L. M. Recent progress on silicacoating of nanoparticles and related nanomaterials[J]. Adv Mater,2010,22(11):1182-95.
    [148] Yang Y., Jing L., Yu X., et al. Coating aqueous quantum dots with silica via reversemicroemulsion method: toward size-controllable and robust fluorescent nanoparticles[J].Chem Mater,2007,19(17):4123-8.
    [149] Jeong U., Wang Y., Ibisate M., et al. Some new developments in the synthesis,functionalization, and utilization of monodisperse colloidal spheres[J]. Adv Funct Mater,2005,15(12):1907-21.
    [150] Edler K. J., Reynolds P. A., White J. W. Small-angle neutron scattering studies on themesoporous molecular sieve MCM-41[J]. J Phys Chem B,1998,102(19):3676-83.
    [151] Xu J., Luan Z., He H., et al. A reliable synthesis of cubic mesoporous MCM-48molecular sieve[J]. Chem Mater,1998,10(11):3690-8.
    [152] Ding K., Hu B., Xie Y., et al. A simple route to coat mesoporous SiO2layer on carbonnanotubes[J]. J Mater Chem,2009,19(22):3725-31.
    [153] Marlow F., McGehee M. D., Zhao D., et al. Doped mesoporous silica fibers: a new lasermaterial[J]. Adv Mater,1999,11(8):632-6.
    [154] Prabhakarp Rao P., Reddy M. Synthesis and characterisation of (BiRE)2O3(RE:Y, Ce)pigments[J]. Dyes Pigments,2004,63(2):169-74.
    [155] Huang J. Sol-Gel Principles and Technology[M]. Beijing, China: Chemical IndustryPress,2005.3
    [156] Peng Z. A., Peng X. Nearly monodisperse and shape-controlled CdSe nanocrystals viaalternative routes: nucleation and growth[J]. J Am Chem Soc,2002,124(13):3343-53.
    [157] Qu L., Peng Z. A., Peng X. Alternative routes toward high quality CdSe nanocrystals[J].Nano Lett,2001,1(6):333-7.
    [158] Lu Z., Xu J., Xie X., et al. CdS/CdSe double-sensitized ZnO nanocable arrayssynthesized by chemical solution method and their photovoltaic applications[J]. TheJournal of Physical Chemistry C,2012,116(4):2656-61.
    [159] Moon G. D., Ko S., Xia Y., et al. Chemical Transformations in Ultrathin ChalcogenideNanowires[J]. Acs Nano,2010,4(4):2307-19.
    [160] Jada S. S. Preparation of hollow zircon (ZrSiO4) microspheres by the spray-pyrolysismethod[J]. J Mater Sci Lett,1990,9(5):565-8.
    [161] Mori T., Yamamura H., Kobayashi H., et al. Preparation of high-purity ZrSiO4powderusing sol-gel processing and mechanical properties of the sintered body[J]. J Am CeramSoc,1992,75(9):2420-6.
    [162]江伟辉,周艳华,魏恒勇,等.非水解溶胶—凝胶法低温合成硅酸锆[J].中国陶瓷,2008,44(7):20-2.
    [163] Jiang W. H., Yang Y. H., Zhu Q. X., et al. Iron-zircon pigments prepared bynon-hydrolytic sol-gel method at low temperature[J]. Advanced Materials Research,2012,412223-6.
    [164] Jiang W. H., Cheng S., Zhu Q. X., et al. Effects of solvents on synthesis and dispersionof zircon powder via non-hydrolytic sol-gel route[J]. Key Eng Mater,2012,51254-8.
    [165] Lei B., Peng C., Wu J. Controllable synthesis of layered zircons by low-temperaturehydrothermal method[J]. J Am Ceram Soc,2012,95(9):2791-4.
    [166] Fang P., Lv M., Zeng Z., et al. Effect of temperature on TiO2nanopowders prepared bya hydrothermal method[J]. CHINA CERAMICS,2009,45(7):25-7.
    [167] Valéro R., Durand B., Guth J., et al. Mechanism of hydrothermal synthesis of zircon ina fluoride medium[J]. J Sol-gel Sci Techn,1998,13(1):119-24.
    [168] Valéro R., Delmotte L., Paillaud J. L., et al. A New Hydrothermal Fluoro-Zircon[J]. JMater Chem,1999,9(1):117-23.
    [169] Yanhua Z., Pengpeng Y., Yongfeng P., et al. Research progress and prearation of zirconpowders[J]. Jiangsu Ceramics,2008,3003.
    [170] Kanno Y. Thermodynamic and crystallographic discussion of the formation anddissociation of zircon[J]. J Mater Sci,1989,24(7):2415-20.
    [171] Tartaj P. Zircon formation from nanosized powders obtained by a reverse micelleprocess[J]. J Am Ceram Soc,2005,88(1):222-4.
    [172] Andrianainarivelo M., Corriu R., Leclercq D., et al. Mixed oxides SiO2-ZrO2andSiO2–TiO2by a non-hydrolytic sol–gel route[J]. J Mater Chem,1996,6(10):1665-71.
    [173] Jansen M., Guenther E. Oxide gels and ceramics prepared by a nonhydrolytic sol-gelprocess[J]. Chem Mater,1995,7(11):2110-4.
    [174] Jansen M., Gunther E. Anhydrous gels and xerogels containing no hydroxyl groups,process for the production thereof and use thereof [P]. US Patent5,656,328,1997.
    [175]张宇宏,董波.高温大红釉的研制[J].陶瓷,1997,(3):39-41.
    [176] Monrós G., Carda J., Escribano P., et al. Synthesis of V-ZrSiO4solid solutions[J]. JMater Sci Lett,1990,9(2):184-6.
    [177] Geisler T., Zhang M., Salje E. K. H. Recrystallization of almost fully amorphous zirconunder hydrothermal conditions: an infrared spectroscopic study[J]. J Nucl Mater,2003,320(3):280-91.
    [178] Caruba R., Baumer A., Ganteaume M., et al. An Experimental Study of HydroxylGroups and Water in Synthetic and Natural Zircons: A Model of the Metamict State[J].Am Mineral,1985,701224-31.
    [179] Fang P., Wu J. Low temperature synthesis of high-purity zircon powder by ahydrothermal method[J]. J Chin Ceram Soc,2009,37(2):11.
    [180] Kido H., Komarneni S. Hydrothermal processing of zircon[J]. Trans Mater Res Soc Jpn,1990,1358-69.
    [181] Frondel C., Collette R. Hydrothermal synthesis of zircon, thorite and huttonite[J]. AmMineral,1957,42(11):759-65.
    [182] Hoskin P. W. Trace-element composition of hydrothermal zircon and the alteration ofhadean zircon from the jack hills, australia[J]. Geochim Cosmochim Ac,2005,69(3):637-48.
    [183] Valéro R., Durand B., Guth J. L., et al. Hydrothermal synthesis of porous zircon in basicfluorinated medium[J]. Micropor Mesopor Mat,1999,29(3):311-8.
    [184] Lu C., Wang X., Miao H., et al. Hydrothermal Synthesis of ZrSiO4NanometerPowder[J]. J Chin Ceram Soc,2000,28(1):87-90.
    [185] Sherman J. D., Bedard R. L., Lewis G. J., et al. New zirconium silicate molecular sievesfor selective absorption of ammonium ions from aqueous streams and as catalysts orcatalyst supports [P]. Uop Llc (Unvo),1999.
    [186] Widiastri M., Fendy, Marsih I. N. Zircon supported copper catalysts for the steamreforming of methanol[J]. AIP Conference Proceedings,2008,989(1):248-51.
    [187] Fang P., Wu J. Preparation of TiO2-SiO2composite powders stabilized at hightemperature by two-step hydrothermal method[J]. Journal of South China University ofTechnology (Natural Science Edition),2009,37(12):
    [188] Fang P. Preparation and properties of ZrSiO4@TiO2photocatalytic composites [D].Guangzhou, China; South China University of Technology,2010.
    [189] Chen Q., Wu J., Wang L. Effect of SiO2added method on photocatalytic activity ofhigh-temperature steady nano-TiO2[J]. CHINA CERAMICS,2006,42(6):12-7.
    [190] Falamaki C., Afarani M. S., Aghaie A. In situ crystallization of highly oriented silicalitefilms on porous zircon supports[J]. J Am Ceram Soc,2006,89(2):408-14.
    [191] Friis H., Finch A. A., Williams C. T., et al. Photoluminescence of zircon (ZrSiO4)doped with REE3+(REE=Pr, Sm, Eu, Gd, Dy, Ho, Er)[J]. Phys Chem Miner,2010,37(6):333-42.
    [192] Gaft M., Boulon G., Panczer G. Unexpected luminescence of Cr5+and Cr3+ions inZrSiO4crystals[J]. J Lumin,2000,87(89):1118-21.
    [193] Shinno I. Color and photo-luminescence of rare earth element-doped zircon[J]. MineralJ,1987,13(5):239-53.
    [194] Shul'Gin B., Gavrilov F., Stadukhin V., et al. The luminescence of zirconium silicates[J].Russ Phys J,1968,11(1):8-10.
    [195] Lin F.-Q., Dong W.-S., Liu C.-L., et al. In situ source–template-interface reaction routeto hollow ZrO2microspheres with mesoporous shells[J]. J Colloid Interf Sci,2008,323(2):365-71.
    [196]施尔畏,陈之战,元如林.水热结晶学[M].科学出版社,2004.45-46
    [197]张克从,张乐潓.晶体生长科学与技术[M].北京:科学出版社,1997.
    [198] Caporaso A. J., Kolb E. D., Laudise R. A. Hydrothermal crystal growth processes [P].US Patent4,579,622,1986.
    [199] Laudise R. Hydrothermal growth[J]. Crystal growth: an introduction,1973,1162.
    [200] Laudise R., Ballman A. The solubility of quartz under hydrothermal conditions[J]. TheJournal of Physical Chemistry,1961,65(8):1396-400.
    [201] Finch R. J., Hanchar J. M. Structure and chemistry of zircon and zircon-groupminerals[J]. Rev Mineral Geochem,2003,53(1):1-25.
    [202] Krstanovic I. X-ray investigation of zircon crystals containing OH groups[J]. AmMineralogist,1964,491146-8.
    [203] Valéro R., Paillaud J. L., Durand B., et al. Rietveld refinement of twofluoro-hydroxy-zircons[J]. Eur J Solid State Inorg Chem,1998,35(10-11):735-43.
    [204] Pierotti R., Rouquerol J. Reporting physisorption data for gas/solid systems with specialreference to the determination of surface area and porosity[J]. Pure Appl Chem,1985,57(4):603-19.
    [205] Ellis J. E. Metal Carbonyl Anions: from [Fe(CO)4]2-to [Hf(CO)6]2-and beyond[J].Organometallics,2003,22(17):3322-38.
    [206] Wu Y., Bandyopadhyay A., Bose S. Processing of alumina and zirconia nano-powdersand compacts[J]. Materials Science and Engineering: A,2004,380(1):349-55.
    [207] Pechini M. P., Adams N. Method of preparing lead and alkaline rearth titanates andniobates and coating method using the same to form a capacitor.[P]. US Patent3,330,697,1967.
    [208] Liu W., Farrington G., Chaput F., et al. Synthesis and electrochemical studies of spinelphase LiMn2O4cathode materials prepared by the pechini process[J]. J ElectrochemSoc,1996,143(3):879-84.
    [209] Zhang S., Messing G., Huebner W., et al. Synthesis of YBa2Cu3O7-xfibers from anorganic acid solution[J]. J Mater Res,1990,5(9):1806.
    [210] Tartaj P., Sanz J., Serna C., et al. Zircon formation from amorphous Spherical ZrSiO4particles obtained by hydrolysis of aerosols[J]. J Mater Sci,1994,29(24):6533-8.
    [211] Veytizou C., Quinson J.-F., Douy A. Sol-Gel Synthesis An Aqueous Semi-AlkoxideRoute and Characterization of Zircon Powders[J]. J Mater Chem,2000,10(2):365-70.
    [212] Kar J., Stevens R., Bowen C. Novel terbium-zircon yellow pigment[J]. J Mater Sci,2004,39(18):5755-63.
    [213] Caruba R., Baumer A., Hartman P. Crystal growth of synthetic zircon round naturalseeds[J]. J Cryst Growth,1988,88(2):297-302.
    [214] Wang B., Wu H., Yu L., et al. Template-free formation of uniform urchin-like α-FeOOHhollow spheres with superior capability for water treatment[J]. Adv Mater,2012,24(8):1111-6.
    [215] Frondel C. Hydroxyl substitution in thorite and zircon[J]. Am Mineral,1953,381007-18.
    [216] Dell'Agli G., Mascolo G. Hydrothermal synthesis of ZrO2–Y2O3solid solutions at lowtemperature[J]. J Eur Ceram Soc,2000,20(2):139-45.
    [217] Tsukada T., Venigalla S., Morrone A. A., et al. Low-temperature hydrothermal synthesisof yttrium-doped zirconia powders[J]. J Am Ceram Soc,1999,82(5):1169-74.
    [218] Nishizawa H., Yamasaki N., Matsuoka K., et al. Crystallization and transformation ofzirconia under hydrothermal conditions[J]. J Am Ceram Soc,1982,65(7):343-6.
    [219] tefani G., Popovi S., Musi S. Influence of pH on the hydrothermal crystallizationkinetics and crystal structure of ZrO2[J]. Thermochim Acta,1997,303(1):31-9.
    [220] Thompson R. C. Equilibrium studies and redox kinetics of the peroxo complex ofzirconium (IV) in acidic perchlorate solution[J]. Inorg Chem,1985,24(22):3542-7.
    [221] Muha G. M., Vaughan P. A. Structure of the complex ion in aqueous solutions ofzirconyl and hafnyl oxyhalides[J]. The Journal of Chemical Physics,1960,33194.
    [222] Henry M., Jolivet J. P., Livage J. Aqueous chemistry of metal cations: hydrolysis,condensation and complexation [M]. Chemistry, Spectroscopy and Applications ofSol-Gel Glasses. Springer.1992:153-206.
    [223] Devia D., Sykes A. G. Aqueous solution chemistry of zirconium (IV).1. Kinetic studieson hydrogen ion and general acid (HX) induced dissociations of the tetrameric ion
    [Zr4(OH)8(H2O)16]8+[J]. Inorg Chem,1981,20(3):910-3.
    [224] Singhal A., Toth L., Lin J., et al. Zirconium (IV) tetramer/octamer hydrolysisequilibrium in aqueous hydrochloric acid solution[J]. J Am Chem Soc,1996,118(46):11529-34.
    [225] Singhal A., Toth L. M., Beaucage G., et al. Growth and structure of zirconium hydrouspolymers in aqueous solutions[J]. J Colloid Interf Sci,1997,194(2):470-81.
    [226] Johnson J. S., Kraus K. A. Hydrolytic behavior of metal ions. VI. Ultracentrifugation ofzirconium (IV) and hafnium (IV); effect of acidity on the degree of polymerization1,2[J]. J Am Chem Soc,1956,78(16):3937-43.
    [227] Brinker C. Hydrolysis and condensation of silicates: effects on structure[J]. J Non-crystSolids,1988,100(1-3):31-50.
    [228] Arnal P. M., Weidenthaler C., Schüth F. Highly monodisperse zirconia-coated silicaspheres and zirconia/silica hollow spheres with remarkable textural properties[J]. ChemMater,2006,18(11):2733-9.
    [229] Bakhmutsky K., Wieder N. L., Cargnello M., et al. A versatile route to core-shellcatalysts: synthesis of dispersible M@Oxide (M=Pd, Pt; Oxide=TiO2, ZrO2)nanostructures by self-assembly[J]. ChemSusChem,2012,5(1):140-8.
    [230] Zhao F., Gao Y., Luo H. Controlled preparation and mechanism study of zirconia-coatedhematite particles by hydrolysis of zirconium sulfates[J]. Langmuir,2009,25(12):6940-6.
    [231] Zhao F., Gao Y., Luo H. Reactive formation of zircon inclusion pigments by depositionand subsequent annealing of a zirconia and silica double shell[J]. Langmuir,2009,25(23):13295-7.
    [232] Tom R. T., Nair A. S., Singh N., et al. Freely dispersible Au@TiO2, Au@ZrO2,Ag@TiO2, and Ag@ZrO2core-shell nanoparticles: One-step synthesis, characterization,spectroscopy, and optical limiting properties[J]. Langmuir,2003,19(8):3439-45.
    [233] Sarkar A., Biswas S. K., Pramanik P. Design of a new nanostructure comprisingmesoporous ZrO2shell and magnetite core (Fe3O4@m-ZrO2) and study of itsphosphate ion separation efficiency[J]. J Mater Chem,2010,20(21):4417-24.
    [234]张振禹,刘蔚玲.异晶包裹型陶瓷颜料包裹率研究[J].中国陶瓷,1998,34(3):8-10.
    [235]宋晓岚,彭林,丁意,等. ZrSiO4/Cd (S1-xSex)包裹色料的水热合成[J].硅酸盐学报,2009,37(7):1264-7.
    [236]彭林. ZrSiO4/Cd (S(1-x)Sex)包裹色料合成及其性能研究[D];中南大学,2009.
    [237] Pavlik Jr R. S., Holland H. J., Payzant E. A. Thermal decomposition of zirconrefractories[J]. J Am Ceram Soc,2001,84(12):2930-6.
    [238] Castilone R. J., Sriram D., Carty W. M., et al. Crystallization of zircon in stonewareglazes[J]. J Am Ceram Soc,1999,82(10):2819-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700