用户名: 密码: 验证码:
铜铟镓硒薄膜的氧化物墨水法制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜太阳能电池在国民经济和国防科技的各个领域具有广泛地应用。铜铟镓硒(CIGS)薄膜太阳能电池具有成本低、光电转换效率高和性能稳定等优点,成为国内外研究的热点。而在CIGS薄膜太阳能电池中,CIGS吸收层是关系到电池转换效率的关键。本论文主要对非真空先驱体墨水法制备CIGS吸收层进行了详细地研究和探讨,并对吸收层的性能进行了测试。
     论文首先以铜、铟和镓的硝酸盐为原料,经共沉淀和高温煅烧工艺制备出纳米金属氧化物。综合考虑粒径与团聚等因素,较优沉淀条件为:体系pH值控制为8.0,沉淀温度为50℃;较优煅烧条件为:煅烧温度550℃,恒温时间为10h。所制备金属氧化物的粒径约80nm,比表面积为48.8m2/g,其组成主要为氧化铜、氧化铟和氧化镓的混合物,其中Cu/(In+Ga)比为1.03,Ga/(In+Ga)比为0.16。
     将纳米金属氧化物、分散剂Orotan1124和水按一定的质量配比混合后经高能球磨制备出氧化物墨水,然后采用自流平方式在不锈钢基底上涂覆成膜。结果表明,造成氧化物墨水不稳定的主要因素是颗粒间的团聚。提高墨水中颗粒分散稳定性,一是减小颗粒的粒径大小,二是增强颗粒之间的静电作用力。
     氧化物薄膜经退火处理后,在氢气气氛中经高温还原处理得到铜铟镓(CIG)合金薄膜。结果表明,还原温度是影响合金薄膜组成和形貌的关键因素:当还原温度高于550℃时,合金薄膜中形成大量球状颗粒。较优的还原条件为:还原温度为500℃,还原时间为60min。铜铟镓合金薄膜主要由Cu11In9、Cu9In4、In2O3、Cu等组成,其Cu/(In+Ga)比为0.98,Ga/(In+Ga)比为0.16。
     将铜铟镓合金置于真空条件下采用固体源后硒化法进行硒化处理制备CIGS吸收层。较优的硒化条件为:250℃恒温30 min,550℃恒温40 min。XRD分析及元素分析表明,产物为黄铜矿结构的CuIn1-xGaxSe2多晶薄膜。薄膜中Cu/(In+Ga)比为0.92,Ga/(In+Ga)比为0.14,Se/(Cu+In+Ga)比为0.92。
     霍尔效应测试表明CIGS薄膜为p型半导体,其载流子浓度为4.5×1014/cm3,迁移率为217cm2/V·s,电阻率为63Ω·cm;光谱测试表明CIGS薄膜的带隙宽度高于1.1eV,可用于太阳能电池的制备。
Thin-film solar cells are playing an important role in national economy and national defense technology. CuIn1-XGaXSe2 (CIGS) thin-film solar cells are thought to be the most promising solar cells because of its low cost, high efficiency, and stabilization. CIGS thin film is the most important structure in CIGS solar cells, which decides the conversion efficiency of the thin-film solar cells. In this paper, the fabrication of CIGS thin film using non-vacuum nanoparticle precursor inks was investigated. The properties of CIGS thin film were characterized.
     Nanoparticles of Cu, In and Ga oxides were prepared by co-precipitation and calcination using Cu(NO3)2, In(NO3)3 and Ga(NO3)3 as raw materials. Considering the particle size and aggregation of oxides, the optimal precipitation conditions were that pH was about 8. and the temperature was about 50℃. The optimal calcining conditions were that the temperature was about 550℃and the holding time was about 10 hours. The mean particle size of metal-oxides was about 80 nm. The average surface area was about 48.8 m2/g. It was the mixture of CuO, In2O3 and Ga2O3. The Cu/(In+Ga) ratio was 1.03, the Ga/(In+Ga) ratio was 0.16.
     The ink was prepared by milling of the oxides mixture, a dispersing agent (Orotan 1124) and water. The ink was coated on the stainless steel to form the oxides film. The results indicated that the aggregation of nanoparticles was the major factor in the unstableness of the ink. The stabilization of the ink can be improved by reducing the size of the particle and enhancing electrostatic force of nanoparticles.
     After it was annealed in air, the oxides film was reduced in H2 gas in order to form Cu-In-Ga (CIG) alloys film. The results revealed that the temperature of reduction was the most important effects on the morphology and composition of alloys film. When the temperature was higher than 550℃, there appeared many spherical particles on the alloys film. The optimal conditions of reduction were that the temperature was 500℃and the time was 60 minutes. The alloys consisted of Cu11In9, Cu9In4, In2O3 and Cu. The Cu/(In+Ga) ratio was 0.98, the Ga/(In+Ga) ratio was 0.16.
     The CIGS film was obtained by the selenizing of Cu-In-Ga alloys using solid Se as raw materials in vacuum. The optimal conditions of selenization were that the first stage was at 250℃for 30 minutes, the second stage was at 550℃for 40 minutes. The XRD and EDS results showed that the production was polycrystalline CuIn1-xGaxSe2. The Cu/(In+Ga) ratio was 0.92, the Ga/(In+Ga) ratio was 0.14, the Se/(Cu+In+Ga) ratio was 0.92.
     The reslut of hall effect measurement showed that the CIGS film was p-type semiconductor. The carrier concentration, mobility and the resistivity of CIGS film were about 4.5×1014/cm3, 217cm2/V·s and 63Ω·cm, respectively. The spectrum analysis indicated that the band-gap of the CIGS film was higher than 1.1eV, which can be used in the solar cells.
引文
[1]雷永泉主编.新能源材料[M].天津:天津大学出版社, 2000: 222-370.
    [2]朱洁.迅速发展的CIGS薄膜太阳电池[J].电源技术, 2008, 32(1): 9-12.
    [3]杨文继. CIGS薄膜太阳电池的制备及性能研究[D].上海:上海大学, 2007.
    [4] Goetzberger A, Hebling C. Photovoltaic materials, past, present, future[J]. Sol Energy Mater Sol Cells, 2000, 62: 1-19.
    [5]高桥清,滨川圭弘,后川昭雄.太阳光发电[M].北京:新时代出版社, 1987: 47-49.
    [6]庄大明,张弓. CIGS薄膜太阳能电池研究现状及发展前景[J].新材料产业, 2005, (4): 43-48.
    [7]徐慢,夏冬林,杨晟,赵修建.薄膜太阳能电池[J].材料导报, 2006, 20(9): 109-111.
    [8]钟伯强.薄膜太阳电池[J].上海电力, 2006, (4): 364-371.
    [9] Ingrid R, Miguel A C, Brian E, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor[J]. Progress in Photovoltaics: Research and Applications, 2008, 16: 235-239.
    [10]成志秀,王晓丽.太阳能光伏电池综述[J].信息记录材料, 2007, 8(2): 41-47.
    [11]李果华.走近有机太阳电池[J].阳光能源, 2008, 5: 48-49.
    [12]徐明生,季振国,阙端麟等.有机太阳能电池研究进展[J].材料科学与工程, 2000, 18(3): 92-99.
    [13]彭艳红,韩雪峰,温和瑞.太阳能电池材料的研究进展[J].赣南师范学院学报, 2006, 6: 78-81.
    [14]徐立珍,李彦,秦锋.薄膜太阳电池的研究进展及应用前景[J].可再生能源, 2006, (3): 9-12.
    [15] Hahn H, Frank G, Klingler W, et al.Ubereinige ternare Chalkogenide mit Chalkopyritstruktur[J]. Z Anorg u. Allg Chemie, 1953, 271: 153.
    [16] Wagner S, Shay J L, Migliorato P, et al. CuInSe2/CdS heterojunction photovoltaic detectors[J]. Applied Physics Letter, 1974, 25: 434-435.
    [17] Mickelsen R A, Chen W S. Development of a 9.4% efficient thin-film CuInSe2/CdS Solar Cell[C]. Proceedings of the 15th IEEE Photovoltaic Specialists Conference. Orlando: IEEE, 1981: 800-904.
    [18] Chen W S, Stewar J M, Stanbery B J, et al. Development of thin film polycrystalline Culn1-xGaxSe2 solar cells[C]. Proceedings of the 19th IEEE Photovoltaic Specialists Conference. New Orleans: IEEE, 1987: 1445-1447.
    [19] Contreas M, Gabor A M, Tennant A, et al. Accelerated publication 16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo Solar cell[J]. Progress in Photovoltaics: Research and Applications, 1994, 2: 287-292.
    [20] Contreras M A, Egaas B, Ramanathan K, et al. Progress towards 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cell[J]. Progress in Photovoltaics: Research and Applications, 1999, 7: 311-316.
    [21]张力,何青,徐传明等.金属Cr阻挡层对柔性不锈钢衬底Cu(In,Ga)Se2太阳电池性能的影响[J].半导体学报, 2006, 27(10): 1781-1784.
    [22] Wei S H, Zhang S B, Zunger A. Effects of Na on the electrical and structural properties of CuInSe2[J]. Journal of Applied Physics, 1999, 85: 7214-7218.
    [23] Marika B, Karin G, Lars S, et al. The behaviour of Na implanted into Mo thin films during annealing[J]. Solar Energy Material and Solar Cells, 1999, 58:199-208.
    [24] Rudmann D, Bremand D, Zogg H. Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils[J]. Journal of Applied Physics, 2005, 97: 1-5.
    [25]施成营,何青,张力等.柔性不锈钢衬底CIGS薄膜太阳电池[J].太阳能学报, 2007, 28(9): 947-950.
    [26] Zhang S B, Wei S H, Zunger A, et al. Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Physical Review B, 1998, 57: 9642-9645.
    [27] Dimmler B, Schock H W. Scalability and pilot operation in solar cells of CuInSe2 and their alloys[J]. Prog. Photovolt. Res. Appl, 1998, 6: 193-199.
    [28]蒋方丹,冯嘉猷.铜铟镓硒薄膜太阳能电池的几个基础问题研究[J].物理, 2006, 35(11): 957-960.
    [29]胡晨明, R. M.怀特.太阳电池[M].北京:北京大学出版社, 1990: 18.
    [30]马丁·格林.太阳电池工作原理、工艺和系统的应用[M].北京:电子工业出版社, 1987: 42-45.
    [31]沈辉,曾祖勤主编.太阳能光伏发电技术[M].北京:化学工业出版社, 2005: 34-36.
    [32] Delahoy A E, Cambridge J, Chen L, et al. Thin Film CIGS Photovoltaic Technology[R]. Final Technical Report. 16 April 1998-15 October 2001.March 2002. NREL/SR-520-31739.
    [33]刘芳芳,何青,李凤岩等. Cu(In,Ga)Se2材料成分对其电池性能的影响[J].半导体学报, 2005, 26(10):1954-1958.
    [34] Harin U. National Renewable Energy Laboratory. Phase II, Second Quarterly Japan Report #ZDJ-2-30630-14.
    [35]李长健,乔在祥,张力. Cu(In,Ga)Se2薄膜太阳电池研究进展(I)[J].电源技术, 2009, 33(2): 77-80.
    [36]陈树海. CIGS多晶薄膜太阳电池参数分析及结构改进[D].安徽合肥:合肥工业大学, 2007.
    [37] Zheng G F, Yang H X. A Novel Semiconductor CIGS Photovoltaic Materialand Thin-Film Technology[J]. Journal of Semiconductors, 2001, 22: 1357-1363.
    [38] Jiyon S, Sheng S L, Huang C H, et al. Device modeling and simulation of the performance of Cu(In1-xGax)Se2 solar cells[J]. Solid-State Electronics, 2004, 48: 73-79.
    [39] Hanna G, Jasenek A, et al. Open Circuit Voltage Limitations in CuIn1-xGaxSe2 Thin-Film Solar Cells[R]. Rapid Research Notes. Phys.stat.sol, 2000, R7(a) 179.
    [40] Lundberg O, Edoff M, Stolt L. The effect of Ga-grading in CIGS thin film solar cells[J]. Thin Solid Films, 2005: 480-481, 520-525.
    [41] Dullweber T, Lundberg O, et al. Back surface band gap gradings in Cu(In,Ga)Se2 solar cells[J]. Thin Solid Films, 2001, 387: 11-13.
    [42] Takashi M, Takuya M, Hideyuki T, et al. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation[J]. Solar Energy Materials & Solar Cells, 2001, 67: 83-88.
    [43] Hanna G, Jasenek A. Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2[J]. Thin Solid Films, 2001, 387: 71-73.
    [44] Yamamoto N, Miyauchi T. Growth of single crystals of CuGaSe2 and CuGa(1-x)InxS2 in In solution[J]. J Appl Phys, 1972, 11: 1383-1384.
    [45] Green, Martin A. Bounds upon grain boundary effects in minority carrier semiconductor devices: A rigorous“perturbation”approach with application to silicon solar cells[J]. Journal of Applied Physics, 8/1/96, 80(3): 1515.
    [46] Markus G. Device physics of Cu(In,Ga)Se2 thin-film solar cells[D]. Colorado State University, 2005.
    [47]李伟.溅射预制层固态源硒化法制备CIGS(铜铟镓硒)薄膜太阳电池[D].天津南开:南开大学, 2006.
    [48]李伟,孙云,刘伟等.镓(Ga)的含量及分布对CIGS薄膜电池量子效率的影响[J].人工晶体学报, 2006, 35(1): 131-134.
    [49] Ramanathan K, Bhattacharya R, Contreras M, et al. High Performance CIGS Thin Film Solar Cells: A Laboratory Perspective[C]. DOE Solar Energy Technologies Program Review Meeting. Denver, Colorado, November 2005. NREL/CP-520-38987.
    [50] Delahoy A E, Bruns J, Ruppert A, et al. Thin film CIGS Photovoltaic Technology[R]. NREL, Annual Technical Report, Phase II, 16 April 1999-15 April 2000.
    [51] Shafarman W N, Klenk R, McCandless B E. Characterization of Cu(ln,Ga)Se2 solar cells with high Ga content[C]. The 25th IEEE Photovoltaic Specialists Conference. Washington, D.C., May 13-17 1996: 763-768.
    [52] Green M A. Silicon Solar Cells, Advanced Principles & Practices[D]. The University of New South Wales, 1995.
    [53] Dullweber T, Hanna G, Rau U, et al. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors[J]. Solar Energy Materials & Solar Cells, 2001, 67: 145-150.
    [54] Powalla M, et al. Large-area CIGS modules: processes and properties[J]. Thin Solid Films, 2003:431-432, 523-533.
    [55]张晓科,王可,解晶莹. CIGS太阳电池的低成本制备工艺[J].电源技术, 2005, 29(12): 849-852.
    [56]孙云,王俊清,杜兆峰等. CIS和CIGS薄膜太阳电池的研究[J].太阳能学报. 2001, 22(2): 192-195.
    [57] Mickelsen R A, Chen W S. Methods for forming thin-film heterojunction solar cells from I-III-VI2 chalcopyrite compound, and solar cells produced thereby[P]. US, Patent No: 4,335,266.
    [58] Chen W S, Mickelsen R A. Thin film CdS/CuInSe2 heterojunction solar cell[J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1980, 248: 62-69.
    [59]郭杏元,许生,曾鹏举等. CIGS薄膜太阳能电池吸收层制备工艺综述[J].真空与低温, 2008, 14(3): 125-133.
    [60]孙云,李长健,李凤岩等.铜铟镓硒薄膜太阳电池研究进展[J].新材料产业, 2007, 7: 24-27.
    [61] Shigeyuki N, et al. Morphology improvement of Electrodeposited Bilayer CuInSe2 thin films for solar cell application[C]. 15th International Photovoltaic Scinece & Engineering Conference. Shanghai China, 2005, 39-3.
    [62] Kapur V K, Matthew F, Robin R. Nanoparticle oxides precursor inks for thin film Copper Indium Gallium Selenide (CIGS) solar cells [J]. Materials Research Society. 2001, 668: 2.6.1-2.6.7.
    [63]张青莲等.无机化学丛书(第二卷)铍碱土金属硼铝镓分族[M].北京:科学出版社, 1998: 517-618.
    [64]沈钟,王果庭.胶体与表面化学(第二版)[M].北京:化学工业出版社, 2003: 10-12.
    [65]张锡瑜等.化学分析原理[M].北京:科学出版社, 2000: 207-208.
    [66] Kapur V K, Basol B M, Leidholm C R, et al. Oxide-based method of making compound semiconductor films and making related electronic devices [P]. US Patent No: 6,127,202.
    [67] Mandelbrot B B. Fractal: form, chance and dimension[D]. New York: Freeman, 1977.
    [68]高濂等.纳米粉体的分散及表面改性[M].北京:化学工业出版社, 2003:14-134.
    [69]任俊等.颗粒分散科学与技术[M].北京:化学工业出版社, 2005: 56-98.
    [70]马运柱,范景莲,黄伯云等.超细/纳米颗粒在水介质中的分散行为[J].矿冶工程, 2003, 23(5): 43-46.
    [71] Derjaguin B V, Laudau L. Acta Physicochim. USSR 1941, 14: 633-662.
    [72] Verwey E J W, Overbeek J T G. Theory of Stability of Lyophobic Colloids[D]. Elsevier, Amsterdam, 1948.
    [73] Chang H, Jwo C S, Lo C H, et al. Rheology of CuO nanoparticle suspension prepared by asnss[J]. Rev. Adv. Mater. Sci., 2005, 10: 128-132.
    [74] Akademi A. Pristine points of zero charge of Gallium and Indium oxides[J]. Journal of Colloid and Interface Science, 2001, 238: 225-227.
    [75]森本哲雄.触媒[M].北京:化学工业出版社, 1996: 107.
    [76] Little L H. Infrared spectra of adsorbed species[M]. Academic Press, 1966.
    [77] Kiselev A V, Lygin V I. Infrared spectra of surface compound[M]. Halsted Press, 1975.
    [78]梁英教,车萌昌主编.无机物热力学数据手册[M].沈阳:东北大学出版社, 1993: 129-186.
    [79] Cu-In phase diagram. Journal of Phase Equilibria, 1994, 15(2).
    [80] Philip C V, Anthony R G, Chokkaram S. Collector for Recovering Gallium from Weapons Plutonium[R]. Amarillo National Resource Center for Plutonium, ANRCP-1998-14, 1998: 6.
    [81]薛永强,杜建平,朱利伟等.反应物对化学反应平衡常数的影响[J].太原理工大学学报, 2005, 36(5): 609-611.
    [82] Chen G S, Yang J C, Chan Y C, et al. Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target[J]. Solar Energy Material & Solar Cells, 2009, doi:10.1016/j.solmat.2009.02.014.
    [83] Kerr L L, Kim S, et al. Rapid thermal processing of CIS precursors[P]. 0-7803-7471-1/02.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700