用户名: 密码: 验证码:
无机硒纳米颗粒催化鲁米诺化学发光反应的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以化学反应为基础的化学发光分析法具有灵敏度高、线性范围宽、仪器设备简单、分析速度快等诸多优点,已成为重要的分析方法之一。其中鲁米诺发光体系因具有较高的发光量子产率和较好的水溶性,是目前研究及应用最为广泛的一类化学发光试剂。近年来,随着纳米技术的发展,鲁米诺化学发光已从传统的分子或离子范围拓展到纳米科学领域。然而,纳米颗粒参与的鲁米诺发光体系依然有限,同时许多有关鲁米诺化学发光的报道都只进行了机理的推测或依据少量的实验事实提出可能的反应机理,但研究反应机理的实验手段实际上相对较少,并没有真正获取反应中间体或产物的详细信息。因此,研究新的纳米材料参与的化学发光体系及发光机理已成为化学发光领域的重要课题。基于此,本论文主要围绕纳米材料和铜硫族化物纳米颗粒催化鲁米诺的化学发光机理开展了一系列研究。主要内容如下:
     1.发现氧化石墨烯(Graphene oxide, GO)做为催化剂可以提高鲁米诺-过氧化氢体系的化学发光强度,并且其催化过程是通过单线态氧(1O2)的中间产物完成的,这和文献上报道的其它纳米材料催化通过羟自由基(OH.)和超氧阴离子自由基(O2-)的中间产物截然不同。研究表明,在弱碱性介质中,GO能够增强鲁米诺-过氧化氢体系的化学发光强度,与单壁纳米管(Single-walled carbon nanotubes, SWCNTs)、多壁纳米管(Multiwalled carbon nanotubes, MWCNTs)及纳米颗粒(Carbon nanoparticles, CNPs)相比,GO具有更强的催化能力,这主要归因于它的高比表面积(理论值为2630m2/g)。同时,GO的催化能力比还原型氧化石墨烯(Red uced graphene oxide, RGO)也强,这主要是因为GO表面的含氧官能基团在催化过程中发挥了重要的作用。以GO催化鲁米诺-过氧化氢的化学发光体系为例,考察了溶液pH值、反应试剂浓度(鲁米诺、过氧化氢及GO溶液)等参数对体系发光的影响,并借助化学发光光谱、紫外-可见吸收光谱、电子顺磁共振(Electron paramagnetic resonance, EPR)光谱、各类自由基捕获实验等手段研究该化学发光增强的机理。结果表明,与以往传统催化剂催化鲁米诺发光机制不同的是,该发光过程为典型的1O2诱导的发光机理,其原因是具有大共轭结构的GO在催化过氧化氢分解时首先生成OH·和O2·-,自由基间(如OH·和O2·-)的再聚合和重组反应导致在其表面生成大量的1O2;最后,1O2和鲁米诺反应生成激发态的3-氨基邻苯二甲酸根离子(3-APA*,鲁米诺的氧化产物)并产生位于440nm的化学发光。因此,在上述发光体系中,1O2和鲁米诺间的反应是占主导地位的。我们的实验结果大大地丰富了传统鲁米诺的发光机理,相信其在生化分析等领域将具有更广泛的应用。
     2.发现十六烷基三甲基溴化铵包被的点(Cetyltrimethyl ammonium bromide-carbon nanodots, CTAB-CDs)在强碱性介质中可显著地提高鲁米诺-过氧化氢体系的化学发光强度。更重要的是,该提高过程是通过1O2的中间产物实现的,这和大多数的文献报道是不同的。CDs因其良好的性能被研究者们广泛关注,它的优良催化活性主要是其表面特殊结构与反应物之间相互作用的结果。我们以CTAB为钝化剂,采用富勒烯(C60)水热法合成CTAB-CDs,研究发现其在强碱性介质中能够明显增强鲁米诺-过氧化氢的化学发光20倍,其催化活性明显优于GO。基于CTAB-CDs加入前后鲁米诺-过氧化氢体系的化学发光光谱、动力学光谱、紫外-可见吸收光谱、EPR光谱和透射电子显微镜图(Transmission electron microscopy, TEM)的变化,及不同的自由基捕获剂对该体系化学发光强度的影响,提出了CTAB-CDs增敏鲁米诺发光的机理。与GO相同,CTAB-CDs催化鲁米诺发光的过程仍为典型的1O2诱导的发光机理,其原因可能为:水热法合成CDs的过程中,C60大的共轭结构并未被完全破坏,这样合成的CDs仍会保留C60的部分共轭结构。而共轭结构的存在不但会加速过氧化氢分解生成OH·和O2·-,而且还能进一步促进两者相互反应生成1O2。这项工作不仅有利于我们更好地理解纳米材料的表面性质和化学反应活性,而且丰富了强碱性介质条件下传统的鲁米诺发光机理,为化学发光分析法注入了新的活力。
     3.半导体铜硫属化物纳米颗粒-硒化铜(Cu2-xSe)可以增强鲁米诺-过氧化氢体系的化学发光,诱导发光增强的关键中间产物经证明是OH·和O2·-。实验发现,在强碱性介质中,Cu2-xSe对鲁米诺-过氧化氢体系的发光信号具有极大的增强作用(至少增强500倍),推测这与它特殊的结构,尤其是其中的铜元素或铜缺陷紧密相关。通过自由基抑制剂的抑制作用、化学发光光谱、紫外-可见吸收光谱、扫描电子显微镜图(Scanning electron microscope, SEM)、EPR光谱等手段,证实了OH.和02-在发光过程中起着关键作用,但这两种自由基并没有在Cu2-xSe表面进一步反应生成’02。所以,在上述体系中,OH-和02-是诱导Cu2-xSe催化鲁米诺发光增强的关键自由基,这和常规的纳米催化过程是一致的。
     4.纳米颗粒的结构,尤其是大的共轭结构的存在对102诱导鲁米诺-过氧化氢体系的发光机制有很大的影响。研究了强碱性介质条件下金胶(AuNPs)、银胶(AgNPs)及GO/Cu2-xSe复合物三种纳米颗粒的催化过程。结果表明,AuNPs、 AgNPs的表面并没有1O2生成,而GO/Cu2-xSe的表面则生成了大量的1O2。在我们选择的6种纳米材料中,按照表面是否有大的共轭结构可分为两大类。有共轭结构的包括GO、CTAB-CDs和GO/Cu2-xSe,在催化鲁米诺发光的过程中,它们不但能加速电子转移和催化过氧化氢分解成氧自由基,而且还能使上述氧自由基发生进一步的重组反应,那么其催化过程就为典型的1O2诱导的发光机理;另一大类没有共轭结构的纳米材料包括AuNPs、AgNPs和Cu2-xSe,它们在催化鲁米诺发光的过程中,仅能加速电子转移和催化过氧化氢分解生成OH.和O2-,大的共轭结构的缺失导致上述两种自由基不能进一步反应生成1O2。所以,纳米颗粒上大的共轭结构的存在至关重要,这直接决定了诱导体系发光的关键氧自由基。
     以上实验结果表明,将纳米颗粒作为催化剂应用于鲁米诺化学发光分析中,极大地拓展了化学发光的理论和应用研究范畴。对于催化机理而言,具有大的共轭结构的纳米粒子具有加速自由基产生并使自由基重组的作用,即它们除了加速电子转移和催化过氧化氢分解生成OH.和O2-,在其表面还可以发生自由基间(如OH.和O2-)的重组反应从而生成大量的102。上述结果对深入认识鲁米诺的化学发光机理、纳米颗粒独特的结构和功能性质,以及进一步拓展其在分析化学等相关领域中的应用,无疑具有重要的意义。
As a common luminescence phenomenon, chemiluminescence (CL) is based on a chemical reaction, and has been an attractive topic of intensive researches in various fields because of its high sensitivity, wide linear dynamic range, simple instrumentation, fast analysis, and low background. Among many well-established CL reagents, luminol is the most frequently used due to the relatively high luminescent quantum yield and good water solubility. Recently, with the development of nanotechnology, the CL of luminol has been extended to nanoparticles (NPs) systems in addition to traditional molecular or ionic systems. Higher sensitivity and stability can be achieved by using the NPs owing to their large surface area and special structures. However, the NPs-participated CL of luminol is still limited. On the other hand, many reported literatures on luminol CL only contained the assumption on the mechanism or proposed the possible luminescent processes on the basis of a few experimental data. The reaction mechanism was rarely studied by experimental methods, so we can hardly get the detailed information of the reaction intermediates. Therefore, it is an important issue to develop a new NPs-involved CL and further investigate its chemiluminescent mechanism. In this contribution, we attempt to establish the carbon-and metal chalcogenide nanomaterials-catalyzed luminol CL systems and carry out a series of studies on their enhancement mechanism. The main contains are listed as follows:
     1. Graphene oxide (GO) was found to enhance the CL of luminol-H2O2system mainly through the intermediate of1O2, which was greatly different from the traditional catalyst in such CL system that occurred in a strongly basic medium through the intermediates such as superoxide anion radical (O2-) and hydroxyl radical (OH-). In this work, GO could catalyze the luminol-H2O2CL in a weakly alkaline medium, and the GO-enhanced CL is markedly stronger than that of the other carbon materials including CNPs, MWCNTs, or SWCNTs, which is attributed to the high specific surface area of GO (calculated value,2630m2/g). Moreover, the effect of GO on luminol CL seems to be much stronger than that of RGO, owing to the oxygen-related groups of GO which are indeed a reactive part and crucial for luminol CL. Furthermore, taking GO-catalyzed luminol-H2O2CL as an example, we used CL spectral, UV-visible absorption spectral, and EPR spectral measurements and the effects of various free radical scavengers on the GO-enhanced luminol CL to identify the possible CL enhancement mechanism. The results showed that the enhancement took place mainly through the intermediate of1O2. It is well known that GO has a large conjugated structure, which can accelerate electron-transfer processes and the generation of radical species, as well as improve their stability. That is, the addition of GO into luminol system could not only catalyze the decomposition of H2O2to produce OH· and O2·-, but also facilitate the recombination reaction between them to form a high yield of1O2on the surface of GO. Then, the resulted1O2then reacted with luminol, producing an endoperoxide which decomposed to the excited state3-aminophthalate anions (3-APA*), and giving rise to light emission with the maximum wavelength at440nm. So the CL reaction between1O2and luminol to produce the3-APA*must be dominant in the present CL syetem. This work enriches greatly luminol CL mechanism, which would be of great potential applications in nanomaterial-based analytical chemistry.
     2. Cetyltrimethyl ammonium bromide passivated carbon nanodots (CTAB-CDs) can be used as excellent catalysts to dramatically enhance the CL intensity of luminol-H2O2system in NaOH medium. More importantly, this CL enhancement takes place mainly through the intermediate of1O2, which follows a different mechanism from traditional reports. CDs attract growing attention in many fields because of their excellent catalytic activity, which may result from the interactions between their unique surface structure and the reagents. In this work, we prepared a new kind of CTAB-CDs through the hydrothermal method, using fullerene (C60) as the raw material in the presence of CTAB. The CTAB-CDs can enhance the CL intensity of luminol-H2O2system in NaOH medium up to20times, and show a better CL catalytic ability than that of GO reported in our previous work. The CL spectra, UV-vis spectra, EPR spectra, and transmission electron microscopy (TEM) images before and after the CL reaction, as well as the effects of various free radical scavengers on the CL intensity were all conducted to identify the possible CL enhancement mechanism. Similar to GO, the enhanced CL by CTAB-CDs was still attributed to the1O2-induced luminescent mechanism. During the process of hydrothermal synthesis of CTAB-CDs, the conjugate structure of Cf,o has not been completely destroyed, and thus the as-formed CTAB-CDs may keep partly the conjugate structure of C60. The existence of the conjugated structure of CTAB-CDs could decompose H2O2effectively into OH-and O2-, which then participated in the radical recombination reaction to form plenty of O2on the surfaces of CTAB-CDs. Therefore, the enhanced CL of the CDs-based luminol system in NaOH solution was primarily caused by1O2, rather than other reported oxygen radicals. The present study is beneficial not only for gaining a better understanding of the1O2-induced luminol CL mechanism in a strongly alkaline medium, but also displaying the unique surface property and chemical reactivity of CDs.
     3. The semiconductor chalcogenide nanomaterial, copper selenide (Cu2-xSe), was found to catalyze the chemiluminescent reaction between luminol and H2O2, and the key intermediates induced luminescence enhancement were the OH-and O2-. The experimental results showed that Cu2-xSe NPs could enhance the CL signal of luminol-H2O2system more than500folds in alkaline medium. The strong catalytic ability of this kind of NPs is probably attribulted to the critical roles of copper element or copper defects. Based on the CL spectra, UV-vis spectra, EPR spectra, and scanning electron microscope (SEM) images before and after the CL reaction, as well as the effects of various free radical scavengers on the CL intensity, we considered that OH-and O2-played an important role in luminol CL enhancement. In other words, these two kinds of free radicals did not further react with each other to form O2on the surface of Cu2-xSe NPs. Therefore, OH-and O2-, instead of1O2, were the key species for the emission processes, which was identical with the common nanocatalytical systems.
     4. The structure of NPs, especially the large conjugate structure, has a great influence on the1O2-induced luminescence mechanism. We also studied the catalytic activity of AuNPs, AgNPs and GO/Cu2-xSe in strong alkaline conditions. The results indicated that1O2did not generate on the surfaces of both AuNPs and AgNPs. On the contrary, abundant1O2was observed on the surface of GO/Cu2-xSe. We supposed that the NPs used as catalysts could accelerate the electron transfer and decomposition of H2O2to produce oxygen-related intermediates, and may play an important role in making them react with each other to form1O2as well. As for the NPs including GO, CTAB-CDs, and GO/Cu2-xSe, their catalytical processes can be the typical1O2-induced luminescence mechanism because of the presence of the conjugated structure. However, for the Cu2-xSe, AuNPs, and AgNPs, the generation of1O2from OH·and O2-could not occur due to the absence of the large conjugated structure, and the role of these NPs was only to accelerate the electron transfer and the decomposion of H2O2. Therefore, the large conjugated structure on the surface of NPs is a critical factor, which directly determines the key radicals in the process of luminol CL.
     The above experimental results indicate that, the NPs are introduced into the luminol CL system as the catalysts, which can remarkably expand the theory and applications of CL. As for the mechanism, the existence of large conjugated structure of the NPs can accelerate the generation of free radicals, and further make them recombination. That is, the NPs with the large conjugated structure can catalyze the electron transfer and the decomposition of H2O2to form OH·and O2-,and then they react with each other to form abundant1O2. In summary, the research results described above would be important for deeply understanding the CL mechanism of luminol and the properties of NPs, and helpful to expand their applications in a variety of fields.
引文
[1]Radziszewski, B. R. Untersuchungen uber Hydrobenzamid, Amarin und Lophin. Chem. Ber. 1877,70(1),70-75.
    [2]林金明.化学发光基础理论与应用.第1版,北京:化学工业出版社,2004年。
    [3]方禹之.分析科学与分析及技术.第1版,上海:华东师范大学出版社,2002年。
    [4]Wang, X.; Liu, M.-L.; Cheng, X.-L.; Lin, J.-M. Flow-Based Luminescence-Sensing Methods for Environmental Water Analysis. TrAC, Trends Anal. Chem.2009,28 (1), 75-87.
    [5]Previte, M. J. R.; Aslan, K.; Malyn, S. N.; Geddes, C. D. Microwave Triggered Metal Enhanced Chemiluminescence:Quantitative Protein Determination. Anal. Chem.2006,78 (23),8020-8027.
    [6]Rose, A. L.; Waite, T. D. Chemiluminescence of Luminol in the Presence of Iron(Ⅱ) and Oxygen:Oxidation Mechanism and Implications for Its Analytical Use. Anal. Chem.2001, 73 (24),5909-5920.
    [7]Zhu, Y.; Shi, J.; Zhang, Z.; Zhang, C.; Zhang, X. Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide. Anal. Chem.2002,74 (1),120-124.
    [8]Liu, J.; Liu, X.; Baeyens, W. R. G.; Delanghe, J. R.; Ouyang, J. A Novel Probe Au(Ⅲ) for Chemiluminescent Image Detection of Protein Blots on Nitrocellulose Membranes. J. ProteomeRes.2008,7(5),1884-1890.
    [9]Han, E.; Ding, L.; Qian, R.; Bao, L.; Ju, H. Sensitive Chemiluminescent Imaging for Chemoselective Analysis of Glycan Expression on Living Cells Using a Multifunctional Nanoprobe. Anal. Chem.2012,84 (3),1452-1458.
    [10]Huang, G.; Ouyang, J.; Delanghe, J. R.; Baeyens, W. R. G.; Dai, Z. Chemiluminescent Image Detection of Haptoglobin Phenotyping after Polyacrylamide Gel Electrophoresis. Anal. Chem.2004,76(11),2997-3004.
    [11]Lee, Y.-D.; Lim, C.-K.; Singh, A.; Koh, J.; Kim, J.; Kwon, I. C.; Kim, S. Dye/Peroxalate Aggregated Nanoparticles with Enhanced and Tunable Chemiluminescence for Biomedical Imaging of Hydrogen Peroxide. ACSNano 2012,6 (8),6759-6766.
    [12]El-Sayed, R.; Eita, M.; Barrefelt, A.; Ye, F.; Jain, H.; Fares, M.; Lundin, A.; Crona, M.; Abu-Salah, K.; Muhammed, M.; et al. Thermostable Luciferase from Luciola cruciate for Imaging of Carbon Nanotubes and Carbon Nanotubes Carrying Doxorubicin Using in Vivo Imaging System. Nano Lett.2013,13 (4),1393-1398.
    [13]Albrecht, H. O. Chemiluminescence of Aminophthalic Hydrazide. Z. Phys. Chem.1928, 136,321-330.
    [14]Robinson, J. K.; Bollinger, M. J.; Birks, J. W. Luminol/H2O2 Chemiluminescence Detector for the Analysis of Nitric Oxide in Exhaled Breath. Anal. Chem.1999,71 (22),5131-5136.
    [15]Fletcher, P.; Andrew, K. N.; Calokerinos, A. C.; Forbes, S.; Worsfold, P. J. Analytical Applications of Flow Injection with Chemiluminescence Detection-A Review. Luminescence 2001,16 (1),1-23.
    [16]Song, X.; Shen, H.; Yin, X.; Wang, X.; Liu, J. Microflow-Injection Chemiluminescence of Luminol and Hypochlorite Enhanced by Phloxine B. Luminescence 2013,25(1),16-22.
    [17]Li, J.; Dasgupta, P. K. Chemiluminescence Detection with a Liquid Core Waveguide Determination of Ammonium with Electrogenerated Hypochlorite Based on the Luminol-hypochlorite Reaction. Anal. Chim. Acta 1999,398 (1),33-39.
    [18]Lai, C.-Y.; Liang, B.-Q.; Wang, X.-L.; Zhu, J.; Li, F. Determination of Carbon Dioxide by the Enhancement of Luminol-Potassium Permanganate Chemiluminescence and Its Application for the Biodegradation Analysis of Cellulose Acetate-g-poly (p-dioxanone) Copolymer. Anal.Lelt.2012,45 (1),75-84.
    [19]Navarrro, M. V.; Payan, M. R.; Lopez, M. A. B.; Fernandez-Torres, R.; Mochon, M. C. Rapid Flow Injection Method for the Determination of Sulfite in Wine Using the Permanganate-Luminol Luminescence System. Talanta 2010,82 (5),2003-2006.
    [20]Li, Y; Niu, W.; Lu, J. Sensitive Determination of Phenothiazines in Pharmaceutical Preparation and Biological Fluid by Flow Injection Chemiluminescence Method Using Luminol-KMnO4 System. Talanta 2007,71 (3),1124-1129.
    [21]Zhang, X.; He, S.; Chen, Z.; Huang, Y. CoFe2O4 Nanoparticles as Oxidase Mimic-Mediated Chemiluminescence of Aqueous Luminol for Sulfite in White Wines.J. Agric. Food Chem.2013,61 (4),840-847.
    [22]Paul, D. B. Recent analytical developments using chemiluminescence in solution. Talanta 1978,25 (7),377-382.
    [23]White, E. H.; Bursey, M. M. Chemiluminescence of Luminol and Related Hydrazides:The Light Emission Step. J. Am. Chem. Soc.1964,86 (5),941-942.
    [24]Bostick, D. T.; Hercules, D. M. Quantitative Determination of Blood Glucose Using Enzyme Induced Chemiluminescence of Luminol. Anal. Chem.1975,47 (3),447-452.
    [25]Burdo, T. G.; Seitz, W. R. Mechanism of Cobalt Catalysis of Luminol Chemiluminescence. Anal. Chem.1975,47(9),1639-1643.
    [26]Schneider, E. Chemiluminescence of Luminol Catalyzed by Iron Complex Salts of Chlorophyll Derivatives. J. Am. Chem. Soc.1941,63 (5),1477-1478.
    [27]Giokas, D. L.; Vlessidis, A. G.; Tsogas, G. Z.; Evmiridis, N. P. Nanoparticle-Assisted Chemiluminescence and Its Applications in Analytical Chemistry. TrAC, Trends Anal. Chem.2010,29 (10),1113-1126.
    [28]Li, Q.; Zhang, L.; Li, J.; Lu, C. Nanomaterial-amplified Chemiluminescence Systems and Their Applications in Bioassays. TrAC, Trends Anal. Chem.2011,30(2),401-413.
    [29]Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271(5251),933-937.
    [30]Su, Y.; Xie, Y.; Hou, X.; Lv, Y. Recent Advances in Analytical Applications of Nanomaterials in Liquid-Phase Chemiluminescence. Appl. Spectrosc. Rev.2014,49 (3), 201-232.
    [31]吴亮;沐春磊;张群林;吕忱;张晓悦,纳米颗粒参与的鲁米诺化学发光及其分析应用.化学进展 2013,25(7),1187-1197.
    [32]Daniel, M.-C.; Astruc, D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev.2004,104 (1),293-346.''
    [33]Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-Gold Catalysis in Fine Chemical Synthesis. Chem. Rev.2012,112 (4),2467-2505.
    [34]Ryceng, M.; Cobley, C. M; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Dong Qin; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonics Applications. Chem. Rev.2011,111 (6),3669-3712.
    [35]Dickerson, M. B.; Sandhage, K. H.; Naik, R. R. Protein-and Peptide-Directed Syntheses of: Inorganic Materials. Chem. Rev.2008,108 (11),4935-4978.
    [36]Ferna'ndez-Garci'a, M.; Martfnez-Arias, A.; Hanson, J. C..; Rodriguez, J. A. Nanostructured Oxides in Chemistry:Characterization and Properties. Chem. Rev.2004, 104(9),4063-4104.
    [37]Gijs, M. A. M.; Lacharme, F.; Lehmann, U. Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis. Chem. Rev.2010,110 (3),1518-1563.
    [38]Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic Iron Oxide Nanoparticles:Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev.2008,108 (6),2064-2110.
    [39]Guo, S.; Dong, S. Graphene Nanosheet:Synthesis, Molecular Engineering, Thin Film, Hybrids, and Energy and Analytical Applications. Chem. Soc. Rev.2011,40 (5), 2644-2672.
    [40]Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene Oxide as a Chemically Tunable Platform for Optical Applications. Nat. Chem.2010 2(12),1015-1024.
    [41]Mao, H. Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A. A.; Mahmoudi, M. Graphene:Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chem. Rev. 2013,113 (5),3407-3424.
    [42]Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H.; Ray, P. C. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene. J. Am. Chem. Soc.2009,131 (38),13806-13812.
    [43]Liu, X.; Dai, Q.; Austin, L.; Courts, J.; Knowles, G.; Zou, J.; Chen, H.; Huo, Q. A One-Step Homogeneous Immunoassay for Cancer Biomarker Detection Using Gold Nanoparticle Probes Coupled with Dynamic Light Scattering. J. Am. Chem. Soc.2008,130 (9), 2780-2782.
    [44]Park, Y.-K.; Yoo, S.-H.; Park, S. Three-Dimensional Pt-Coated Au Nanoparticle Arrays: Applications for Electrocatalysis and Surface-Enhanced Raman Scattering. Langmuir 2008, 24 (8),4370-4375.
    [45]Zhang, Z.-F.; Cui, H.; Lai, C.-Z.; Liu, L.-J. Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications. Anal. Chem.2005,77 (10), 3324-3329.
    [46]Narayanan, R.; El-Sayed, M. A. Catalysis with Transition Metal Nanoparticles in Colloidal Solution:Nanoparticle Shape Dependence and Stability. J. Phys. Chem. B 2005,109 (26), 12663-12676.
    [47]Qi, Y.; Li, B.; Zhang, Z. Label-Free and Homogeneous DNA Hybridization Detection Using Gold Nanoparticles-based Chemiluiminescence System. Biosens. Bioelectron.2009, 24 (12),3581-3586.
    [48]Li, Q.; Fang Liu; Lu, C.; Lin, J.-M. Aminothiols Sensing Based on Fluorosurfactant-Mediated Triangular Gold Nanoparticle-Catalyzed Luminol Chemiluminescence.J. Phys. Chem. C2011,115(22),10964-10970.
    [49]Lu, C.; Li, Q.; Chen, S.; Zhao, L.; Zheng, Z. Gold Nanorod-Catalyzed Luminol Chemiluminescence and Its Selective Determination of Glutathione in the Cell Extracts of Saccharomyces Cerevisiae. Talanta 2011,85 (1),476-481.
    [50]Zhang, L.; Lu, B.; Lu, C. Chemiluminescence Sensing of Aminothiols in Biological Fluids Using Peroxymonocarbonate-Prepared Networked Gold Nanoparticles. Analyst 2013,138 (3),850-855.
    [51]Gorman, B. A.; Francis, P. S.; Dunstan, D. E.; Barnett, N. W. Tris(2,2-bipyridyl) Ruthenium(Ⅱ) Chemiluminescence Enhanced by Silver Nanoparticles. Chem. Commun. 2007,43 (4),395-397.
    [52]Guo, J.-Z.; Cui, H.; Zhou, W.; Wang, W. Ag Nanoparticle-Catalyzed Chemiluminescent Reaction between Luminol and Hydrogen Peroxide. J. Photochem. Photobiol. A 2008,193 (2-3),89-96.
    [53]Chen, H.; Gao, F.; He, R.; Cui, D. Chemiluminescence of Luminol Catalyzed by Silver Nanoparticles. J. colloid interface sci.2007,315(1),158-163.
    [54]Liu, W.; Kou, J.; Jiang, X.; Zhang, Z.; Qi, H. Determination of Nitrofurans in Feeds Based on Silver Nanoparticle-Catalyzed Chemiluminescence. J. Lumin.2012,132 (4),1048-1054
    [55]Xu, S.-L.; Cui, H. Luminol Chemiluminescence Catalysed by Colloidal Platinum Nanoparticles. Luminescence 2007,22 (2),77-87.
    [56]Niazov, T.; Shlyahovsky, B.; Willner, I. Photoswitchable Electrocatalysis and Catalyzed Chemiluminescence Using Photoisomerizable Monolayer-Functionalized Surfaces and Pt Nanoparticles. J. Am. Chem. Soc.2007,129 (20),6374-6375.
    [57]Duan, C.; Cui, H.; Zhang, Z.; Liu, B.; Guo, J.; Wang, W. Size-Dependent Inhibition and Enhancement by Gold Nanoparticles of Luminol-Ferricyanide Chemiluminescence. J. Phys. Chem. C2007,111 (12),4561-4566.
    [58]Li, S.; Li, X.; Xu, J.; Wei, X. Flow-injection Chemiluminescence Determination of Polyphenols Using Luminol-NaI04-Gold Nanoparticles System. Talanta 2008,75 (Ⅰ), 32-37.
    [59]Koutsoulis, N. P.; Giokas, D. L.; Vlessidis, A. G; Tsogas, G. Z. Alkaline Earth Metal Effect on the Size and Color Transition of Citrate-Capped Gold Nanoparticles and Analytical Implications in Periodate-Luminol Chemiluminescence. Anal Chim. Acta 2010,669 (1-2), 45-52.
    [60]Cui, H.; Guo, J.-Z.; Li, N.; Liu, L.-J. Gold Nanoparticle Triggered Chemiluminescence between Luminol and AgNO3. J. Phys. Chem. C 2008,112 (30),11319-11323.
    [61]Cai, S.; Lao, K.; Lau, C; Lu, J. "Turn-On" Chemiluminescence Sensor for the Highly Selective and Ultrasensitive Detection of Hg2+ Ions Based on Interstrand Cooperative Coordination and Catalytic Formation of Gold Nanoparticles'. Anal. Chem.2011,83 (24), 9702-9708.
    [62]Liu, C; Li, B. Silver Nanoparticle-Initiated Chemiluminescence Reaction of Luminol-AgN03 and Its Analytical Application. Anal. Bioanal. Chem.2011,401 (1), 229-235.
    [63]Du, J.; Quan, J.; Wang, Y. Chemiluminescence Determination of Timolol Maleate by Gold Nanoparticles-Catalyzed Luminol-N-Bromosuccinimide System. Talanta 2012,90 (1), 117-122.
    [64]Safavi, A.; Absalan, G.; Bamdad, F. Effect of Gold Nanoparticle as a Novel Nanocatalyst on Luminol-Hydrazine Chemiluminescence System and Its Analytical Application. Anal. Chim. Acta 2008,610 (2),243-248.
    [65]Li, N.; Gu, J.; Cui, H. Luminol Chemiluminescence Induced by Silver Nanoparticles in the Presence of Nucleophiles and Cu2+. J. Photochem. Photobiol. A:Chem.2010,215 (2-3), 185-190.
    [66]Chaichi, M. J.; Azizi, S. N.; Heidarpour, M. A Novel Luminol Chemiluminescent Method Catalyzed by Silver/Gold Alloy Nanoparticles for Determination of Anticancer Drug Flutamide. Spectrochim. Acta, Part A 2013,116,594-598.
    [67]Li, S.; Tao, S.; Wang, F.; Hong, J.; Wei, X. Chemiluminescence Reactions of Luminol System Catalyzed by Nanoparticles of a Gold/Silver Alloy. Microchim. Acta 2010,169 (1-2),73-78.
    [68]Li, N.; Wang, W.; Tian, D.; Cui, H. pH-Dependent Catalytic Properties of Pd-Ag Nanoparticles in Luminol Chemiluminescence. Chem. Commun.2010,46(9),1520-1522.
    [69]Yang, P.; Jin, S.-Y.; Xu, Q.-Z.; Yu, S.-H. Decorating PtCo Bimetallic Alloy Nanoparticles on Graphene as Sensors for Glucose Detection by Catalyzing Luminol Chemiluminescence. Small 2013,9 (2),199-204.
    [70]Wu, J.; Fu, X.; Xie, C.; Yang, M.; Fang, W.; Gao, S. TiO2 Nanoparticles-Enhanced Luminol Chemiluminescence and Its Analytical Applications in Organophosphate Pesticide Imprinting. Sens. Actuators B 2011,160(1),511-516.
    [71]Li, S.-F.; Zhang, X.-M.; Du, W.-X.; Ni, Y.-H.; Wei, X.-W. Chemiluminescence Reactions of a Luminol System Catalyzed by ZnO Nanoparticles. J. Phys. Chem. C 2009,113 (3), 1046-1051.
    [72]Li, X.; Sun, L.; Ge, A.; Guo, Y. Enhanced Chemiluminescence Detection of Thrombin Based on Cerium Oxide Nanoparticles. Chem. Commun.2011,47(3),947-949.
    [73]Chen, W.; Hong, L.; Liu, A.-L.; Liu, J.-Q.; Lin, X.-H.; Xia, X.-H. Enhanced Chemiluminescence of the Luminol-Hydrogen Peroxide System by Colloidal Cupric Oxide Nanoparticles as Peroxidase Mimic. Talanta 2012,99,643-648.
    [74]Hong, L.; Liu, A.-L.; Li, G.-W.; Chen, W.; Lin, X.-H. Chemiluminescent Cholesterol Sensor Based on Peroxidase-Like Activity of Cupric Oxide Nanoparticles. Biosens. Bioeledron.2013,43,1-5.
    [75]Xie, J.; Huang, Y. Co304 Nanoparticles-Enhanced Luminol Chemiluminescence and Its Application in H2O2 and Glucose Detection. Anal. Methods 2011,3 (5),1149-1155.
    [76]He, S.; Shi, W.; Zhang, X.; Li, J.; Huang, Y.β-Cyclodextrins-Based Inclusion Complexes of CoFe2O4 Magnetic Nanoparticles as Catalyst for the Luminol Chemiluminescence System and Their Applications in Hydrogen Peroxide Detection. Talanta 2010,82 (1), 377-383.
    [77]Shi, W.; Zhang, X.; Hea, S.; Huang, Y. CoFe2O4 Magnetic Nanoparticles as a Peroxidase Mimic Mediated Chemiluminescence for Hydrogen Peroxide and Glucose. Chem. Commun.2011,47(38),10785-10787.
    [78]Triantis, T. M.; Papadopoulos, K.; Yannakopoulou, E.; Dimotikali, D.; Hrba"c, J.; Zbovril, R. Sensitized Chemiluminescence of Luminol Catalyzed by Colloidal Dispersions of Nanometer-Sized Ferric Oxides. Chem. Eng. J.2008,144 (3),483-488.
    [79]Guan, G.; Yang, L.; Mei, Q.; Zhang, K.; Zhang, Z.; Han, M.-Y. Chemiluminescence Switching on Peroxidase-Like Fe3O4 Nanoparticles for Selective Detection and Simultaneous Determination of Various Pesticides. Anal. Chem.2012,84 (21),9492-9497.
    [80]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y; Dubonos,,S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004,306(5696),666-669.
    [81]Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J.Am. Chem. Soc.2004,126(40),12736-12737.
    [82]Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985,318 (6042),162-163.
    [83]Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991,354 (6348),56-58.
    [84]Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater.2007,6 (3),183-191.
    [85]Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon:A Review of Graphene. Chem. Rev.2010,110(1),132-145.
    [86]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene:The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed.2009,48 (42),7752-7777.
    [87]Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 2001,39 (4),507-514.
    [88]Chen, D.; Feng, H.; Li, J. Graphene Oxide:Preparation, Functionalization, and Electrochemical Applications. Chem. Rev.2012,112 (11),6027-6053.
    [89]Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol.2009,4 (4),217-224.
    [90]Yang, S.; Liang, J.; Luo, S.; Liu, C.; Tang, Y. Supersensitive Detection of Chlorinated Phenols by Multiple Amplification Electrochemiluminescence Sensing Based on Carbon Quantum Dots/Graphene. Anal. Chem.2013,85 (16),7720-7725.
    [91]Deng, S.; Ju, H. Electrogenerated Chemiluminescence of Nanomaterials for Bioanalysis. Analyst 2013,138 (1),43-61.
    [92]Wang, T.; Zhang, S.; Mao, C.; Song, J.; Niu, H.; Jin, B.; Tian, Y. Enhanced Electrochemiluminescence of CdSe Quantum Dots Composited with Graphene Oxide and Chitosan for Sensitive Sensor. Biosens. Bioelectron.2012,31 (1),369-375.
    [93]Zhang, M.; Yuan, R.; Chai, Y.; Chen, S.; Zhong, X.; Zhong, H.; Wang, C. A Cathodic Electrogenerated Chemiluminescence Biosensor Based on Luminol and Hemin-Graphene Nanosheets for Cholesterol Detection. RSCAdv.2012,2(11),4639-4641.
    [94]Xu, S.; Liu, Y.; Wang, T.; Li, J. Positive Potential Operation of a Cathodic Electrogenerated Chemiluminescence Iminunosensor Based on Luminol and Graphene for Cancer Biomarker Detection. Anal. Chem.2011,83 (10),3817-3823.
    [95]Hao, M.; Liu, N.; Ma, Z. A New Luminol Chemiluminescence Sensor for Glucose Based on pH-Dependent Graphene Oxide. Analyst 2013,138 (15),4393-4397.
    [96]Baker, S. N.; Baker, G. A. Luminescent Carbon Nanodots:Emergent Nanolights. Angew. Chem. Int. Ed 2010,49 (38),6726-6744.
    [97]Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. Carbon Nanodots:Synthesis, Properties and Applications.J. Mater. Chem.2012,22 (46),24230-24253.
    [98]Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; et al. Carbon Dots for Multiphoton Bioimaging. J. Am. Chem. Soc. 2007,729(37),11318-11319.
    [99]Zhou, L.; Li, Z.; Liu, Z.; Ren, J.; Qu, X. Luminescent Carbon Dot-Gated Nanovehicles for pH-Triggered Intracellular Controlled Release and Imaging. Langmuir 2013,29 (21), 6396-6403.
    [100]Liu, C.; Zhang, P.; Tian, F.; Li, W.; Li, F.; Liu, W. One-Step Synthesis of Surface Passivated Carbon Nanodots by Microwave Assisted Pyrolysis for Enhanced Multicolor Photoluminescence and Bioimaging. J. Mater. Chem.2011,21 (35),13163-13167.
    [101]Chen, B.; Li, F.; Li, S.; Weng, W.; Guo, H.; Guo, T.; Zhang, X.; Chen, Y; Huang, T.; Hong, X.; et al. Large Scale Synthesis of Photoluminescent Carbon Nanodots and Their Application for Bioimaging. Nanoscale 2013,5 (5),1967-1971.
    [102]Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y; Zhao, X. J.; Huang, C. Z. Highly Selective Detection of Phosphate in Very Complicated Matrixes with an Off-On Fluorescent Probe of Europium-adjusted Carbon Dots. Chem. Commun.2011,47 (9),2604-2606.
    [103]Goncalves, H.; Jorge, P. A. S.; Fernandes, J. R. A.; Silva, J. C. G. E. d. Hg(Ⅱ) Sensing Based on Functionalized Carbon Dots Obtained by Direct Laser Ablation. Sens. Actuators, 52010,145 (2),702-707.
    [104]Wang, F.; Chen, Y.-h.; Liu, C.-y.; Ma, D.-g. White Light-Emitting Devices Based on Carbon Dots' Electroluminescence. Chem. Commun.2011,47(12),3502-3504.
    [105]Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y. Carbon Nanodots as Peroxidase Mimetics and Their Applications to Glucose Detection. Chem. Commun. 2011,47(23),6695-6697.
    [106]Lin, Z.; Xue, W.; Chen, H.; Lin, J.-M. Peroxynitrous-Acid-Induced Chemiluminescence of Fluorescent Carbon Dots for Nitrite Sensing. Anal. Chem.2011,83(21),8245-8251.
    [107]Lin, Z.; Xue, W.; Chen, H.; Lin, J.-M. Classical Oxidant Induced Chemiluminescence of Fluorescent Carbon Dots. Chem. Commun.2012, 48(7),1051-1053.
    [108]Dou, X.; Lin, Z.; Chen, H.; Zheng, Y.; Lu, C.; Lin, J.-M. Production of Superoxide Anion Radicals as Evidence for Carbon Nanodots Acting as Electron Donors by the Chemiluminescence Method. Chem. Commun.2013,49(52),5871-5873.
    [109]Zhao, L.; Di, F.; Wang, D.; Guo, L.-H.; Yang, Y; Wan, B.; Zhang, H. Chemiluminescence of Carbon Dots under Strong Alkaline Solutions:A Novel Insight into Carbon Dot Optical Properties. Nanoscale 2013,5 (7),2655-2658.
    [110]Xie, Y; Zheng, X.; Jiang, X.; Lu, J.; Zhu, L. Sonochemical Synthesis and Mechanistic Study of Copper Selenides Cu2-xSe, β-CuSe, and Cu3Se2. Inorg. Chem.2002,41 (2), 387-392.
    [111]Gao, M.-R.; Jiang, J.; Yu, S.-H. Solution-Based Synthesis and Design of Late Transition Metal Chalcogenide Materials for Oxygen Reduction Reaction (ORR). Small 2012,8 (1), 13-27.
    [112]Zhu, J.; Li, Q.; Bai, L.; Sun, Y; Zhou, M.; Xie, Y Metastable Tetragonal Cu2Se Hyperbranched Structures:Large-Scale Preparation and Tunable Electrical and Optical Response Regulated by Phase Conversion. Chem. Eur:J.2012,18 (41),13213-13221.
    [113]Low, K.-H.; Li, C.-H.; Roy, V. A. L.; Chui, S. S.-Y.; Chan, S. L.-F.; Che, C.-M. Homoleptic Copper(1) Phenylselenolatc Polymer as a Single-Source Precursor for Cu2Se Nanocryslals. Structure, Photoluminescence and Application in Field-Effect Transistor. Chem. Sci.2010,1(4),515-518.
    [114J Xu, J.; Zhang, W.; Yang, Z.; Ding, S.; Zeng, C.; Chen, L.; Wang, Q.; Yang, S. Large-Scale Synthesis of Long Crystalline Cib-xSe Nanowire Bundles by Water-Evaporation-Induced Self-Assembly and Their Application in Gas Sensing. Adv. Fund. Mater.2009,19 (Ⅱ), 1759-1766.
    [115]Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu2-xS Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(Ⅰ) Sulfides. J. Am. Chem. Soc.2009,131 (12),4253-4261.
    [116]Scotognella, F.; Valle, G. D.; Kandada, A. R. S.; Dorfs, D.; Zavelani-Rossi, M.; Conforti, M.; Miszta, K.; Comin, A.; Korobchevskaya, K.; Lanzani, G.; et al. Plasmon Dynamics in Colloidal Cu2-xSe Nanocrystals. Nano Lett.2011,11(11),4711-4717.
    [117]Gao, M.-R.; Xu, Y.-F.; Jiang, J.; Yu, S.-H. Nanostructured Metal Chalcogenides:Synthesis, Modification, and Applications in Energy Conversion and Storage Devices. Chem. Soc. Rev.2013,42(7),2986-3017.
    [118]Tian, Q.; Hu, J.; Zhu, Y.; Rujia Zou; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 ran Fe3O4@Cu2-xS Core-Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy. J. Am. Chem. Soc.2013,135 (23),8571-8577.
    [119]Ding, C.; Zhong, H.; Zhang, S. Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using NanoCuS Tags. Biosens. Bioelectron.2008,23 (8), 1314-1318.
    [120]Tmutz, M. Studies on Chemiluminescence. Z. Phys. Chem.1905,53 (1),1.
    [121]Marquette, C. A.; Blum, L. J. Applications of the Luminol Chemiluminescent Reaction in Analytical Chemistry. Anal. Bioanal. Chem.2006,385 (3),546-554.
    [122]Wabaidur, S. M.; Naushad, M.; Alothman, Z. A. Recent Analytical Applications of Nanoparticle Sensitized Lucigenin and Luminol Chemiluminescent Reactions. Bull. Mater. Sci.2012,35(1),7-12.
    [123]Li, X.; Zhang, Z.; Tao, L. A Novel Array of Chemiluminescence Sensors for Sensitive, Rapid and High-Throughput Detection of Explosive Triacetone Triperoxide at the Scene. Biosens. Bioelectron.2013,47,356-360.
    [124]Shwetha, N.; Selvakumar, L. S.; Thakur, M. S. Aptamer-Nanoparticle-Based Chemiluminescence for P53 protein. Anal. Biochem.2013,441 (1),73-79.
    [125]Roda, A.; Fusco, M. D.; Quintavalla, A.; Guardigli, M.; Mirasoli, M.; Lombardo, M.; Trombini, C. Dioxetane-Doped Silica Nanoparticles as Ultrasensitive Reagentless Thermochemiluminescent Labels for Bioanalytics. Anal. Chem.2012,84 (22),9913-9919
    [126]Huang, X.; Ren, J. Nanomaterial-Based Chemiluminescence Resonance Energy Transfer: A Strategy to Develop New Analytical Methods. TrAC, Trends Anal. Chem.2012,40, 77-89.
    [127]Barnett, N. W.; Francis, P. S., Second Ed. Chemiluminescence:Liquid-Phase, Encyclopedia of Analytical Science; Elsevier Academic Press:London,2005.
    [128]Merenyi, G.; Lind, J. S. Role of a Peroxide Intermediate in the Chemiluminescence of Luminol. A Mechanistic Study. J. Am. Chem. Soc.1980,102 (18),5830-5835.
    [129]Merenyi, G.; Lind, J.; Eriksen, T. E. Luminol Chemiluminescence:Chemistry, Excitation, Emitter. J. Biolumin. Chemilumin.1990,5(1),53-56.
    [130]Yuan, D.-Q.; Lu, J.; Atsumi, M.; Yan, J.-M.; Kai, M.; Fujita, K. Cerium Complexes of Cyclodextrin Dimers as Efficient Catalysts for Luminol Chemiluminescence Reactions. Org. Biomol. Chem.2007,5(18),2932-2939.
    [131]Lu, J.; Lau, C.; Morizono, M.; Ohta, K.; Kai, M. A Chemiluminescence Reaction between Hydrogen Peroxide and Acetonitrile and Its Applications. Anal. Chem.2001,73 (24), 5979-5983.
    [132]Kuschnir, K.; Kuwana, T. Photosensitized Chemiluminescence of Luminol, 6-Aminophthalazine-1,4(2H,3H)-dione.y. Chem. Soc. D 1969(5),193.
    [133]Yasuta, N.; Takahashi, S.; Takenaka, N.; Takemura, T. Mechanism of the Photosensitized Chemiluminescence of Luminol. Bull. Chem. Soc. Jpn.1999,72 (9),1997-2003.
    [134]Machado, B. F.; Serp, P. Graphene-Based Materials for Catalysis. Catal. Sci. Technol. 2012,2(1),54-75
    [135]Pyun, J. Graphene Oxide as Catalyst:Application of Carbon Materials beyond Nanotechnology. Angew. Chem. Int. Ed.2011,50 (1),46-48.
    [136]Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-Based Semiconductor Photocatalysts. Chem. Soc. Rev.2012,41 (2),782-796
    [137]Su, D. S.; Perathoner, S.; Centi, G. Nanocarbons for the Development of Advanced Catalysts. Chem. Rev.2013,113 (8),5782-5816.
    [138]Serp, P.; Figueiredo, J. L. Carbon Materials for Catalysis, John Wiley & Sons,2009.
    [139]Cote, L. J.; Kim, F.; Huang, J. Langmuir-Blodgett. Assembly of Graphite Oxide Single Layers. J. Am. Chem. Soc.2009,131 (3),1043-1049.
    [140]Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature 2007,448 (7152),457-460.
    [141]Song, Y.; Qu, K.; Zhao, C; Ren, J.; Qu, X. Graphene Oxide:Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Adv. Mater.2010,22(1),1-5.
    [142]He, P.; Bayachou, M. Layer-by-Layer Fabrication and Characterization of DNA-Wrapped Single-Walled Carbon Nanotube Particles. Lungmuir 2005,21 (13),6086-6092.
    [143]Lin, J.-M.; Liu, M. Chemiluminescence from the Decomposition of Peroxymonocarbonate Catalyzed by Gold Nanoparticles.J. Phys. Chem.#2008,112(26),7850-7855.
    [144]Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc.1958, SO (6),1339-1339.
    [145]Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc.2008,130 (18),5856-5857.
    [146]Xu, Y.; Zhao, L.; Bai, H.; Hong, W.; Li, C; Shi, G. Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(Ⅱ) Ions. J. Am. Chem. Soc.2009,131 (37),13490-13497.
    [147]Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol.2008,3 (2),101-105.
    [148]Pan, D.; Zhang, J.; Li, Z.; Wu, C.; Yan, X.; Wu, M. Observation of pH-, Solvent-, Spin-, and Excitation-Dependent Blue Photoluminescence from Carbon Nanoparticles. Chem. Commun.2010,46 (21),3681-3683.
    [149]Sharma, R. K.; Sharma, P.; Maitra, A. Size-dependent Catalytic Behavior of Platinum Nanoparticles on the Hexacyanoferrate(Ⅲ)/Thiosulfate Redox Reaction. J. Colloid Interface Sci.2003,265 (1),134-140.
    [150]Henglein, A. Physicochemical Properties of Small Metal Particles in Solution: "Microelectrode" Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition. J. Phys. Chem.1993,97(21),5457-5471.
    [151]Ajayan, P. M. Nanotubes from Carbon. Chem. Rev.1999,99(7),1787-1800.
    [152]Harbour, J. R.; Issler, S. L. Involvement of the Azide Radical in the Quenching of Singlet Oxygen by Azide Anion in Water. J. Am. Chem. Soc.1982,104 (3),903-905.
    [153]Villamena, F. A.; Locigno, E. J.; Rockenbauer, A.; Hadad, C. M.; Zweier, J. L. Theoretical and Experimental Studies of the Spin Trapping of Inorganic Radicals by 5,5-Dimethyl-l-Pyrroline N-Oxide (DMPO).2. Carbonate Radical Anion. J. Phys. Chem. A 2007,111 (2),384-391.
    [154]Wang, Y.; Lu, J.; Tang, L.; Chang, H.; Li, J. Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. Anal. Chem.2009,81 (23),9710-9715.
    [155]Li, H.-R.; Wu, L.-Z.; Tung, C.-H. Reactions of Singlet Oxygen with Olefins and Sterically Hindered Amine in Mixed Surfactant Vesicles. J. Am. Chem. Soc.2000,122 (11), 2446-2451.
    [156]Wang, W.-f; Schuchmann, M. N.; Schuchmann, H.-P.; Knolle, W.; Sonntag, J. v.; Sonntag, C. v. Radical Cations in the OH-Radical-Induced Oxidation of Thiourea and Tetramethylthiourea in Aqueous Solution.J. Am. Chem. Soc.1999,121 (1),238-245.
    [157]Schaap, A. P.; Thayer, A. L.; Faler, G. R.; Goda, K.; Kimura, T. Singlet Molecular Oxygen and Superoxide Dismutase.J. Am. Chem. Soc.1974,96 (12),4025-4026.
    [158]Aboul-Enein, H. Y.; Kruk, I.; Lichszteld, K. Chemiluminescence Accompanying Oxidation of Bopindolol. Biospectroscopy 1998,4 (4),229-233.
    [159]Adam, W.; Kazakov, D. V.; Kazakov, V. P. Singlet-Oxygen Chemiluminescence in Peroxide Reactions. Chem. Rev.2005,105 (9),3371-3387.
    [160]Nishikawa, M.; Mitani, Y.; Nosaka, Y. Photocatalytic Reaction Mechanism of Fe(Ⅲ)-Grafted TiO2 Studied by Means of ESR Spectroscopy and Chemiluminescence Photometry. J. Phys. Chem. C 2012,116,14900-14907.
    [161]He, D.; Jones, A. M.; Garg, S.; Pham, A. N.; Waite, T. D. Silver Nanoparticle-Reactive Oxygen Species Interactions:Application of a Charging-Discharging Model. J. Phys. Chem. C2011,115,5461-5468.
    [162]Huang, C.-C.; Hohn, K. L.; Schlup, J. R. The Influence of Surface Hydroxyls on Catalyzed Tetrakis(dimethylamino)ethylene Chemiluminescence.J. Phys. Chem. C 2009, 113,11050-11059.
    [163]Wang, D. M.; Zhang, Y; Zheng, L. L.; Yang, X. X.; Wang, Y.; Huang, C. Z. Singlet Oxygen Involved Luminol Chemiluminescence Catalyzed by Graphene Oxide. J. Phys. Chem. C2012,116(40),21622-21628.
    [164]Zhao, Q.-L.; Zhang, Z.-L.; Huang, B.-H.; Peng, J.; Zhang, M.; Pang, D.-W. Facile Preparation of Low Cytotoxicity Fluorescent Carbon Nanocrystals by Electrooxidation of Graphite. Chem. Commun.2008,44 (41),5116-5118.
    [165]Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; et al. Strongly Green-Photoluminescent Graphene Quantum Dots for Bioimaging Applications. Chem. Commun.2011,47(24),6858-6860.
    [166]Li, L.; Wu, C.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J. Focusing on Luminescent Graphene Quantum Dots:Current Status and Future Perspectives. Nanoscale 2013,5 (10), 4015-4039.
    [167]Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V; Giannelis, E. P. Photoluminescent Carbogenic Dots. Chem. Mater.2008,20(14),4539-4541.
    [168]Xuc, W.; Lin, Z.; Chen, IL; Lu, C; Lin, J.-M. Enhancement of Ultraweak Chemiluminescence from Reaction of Hydrogen Peroxide and Bisulfite by Water-Soluble Carbon Nanodots.J. Phys. Chem. C 2011,115 (44),21707-21714.
    [169]Zhou, Y.; Xing, G.; Chen, H.; Ogawa, N.; Lin, J.-M. Carbon Nanodots Sensitized Chemiluminescence on Peroxomonosulfate-Sulfite-Hydrochloric Acid System and Its Analytical Applications. Talanta 2012,99,471-477.
    [170]Jiang, J.; He, Y.; Li, S.; Cui, H. Amino Acids as the Source for Producing Carbon Nanodots:Microwave Assisted One-Step Synthesis, Intrinsic Photoluminescence Property and Intense Chemiluminescence Enhancement. Chem. Commun.2012,48(77),9634-9636.
    [171]Shi, J.; Lu, C.; Yan, D.; Ma, L. High Selectivity Sensing of Cobalt in HepG2 Cells Based on Necklace Model Microenvironment-Modulated Carbon Dot-Improved Chemiluminescence in Fenton-Like System. Biosens. Bioelectron.2013,45 (1),58-64.
    [172]Huang, C. Z.; Gao, M. X.; Wu, Z. L. Patent, CN 201310147910.8,2013.
    [173]Gao, M. X.; Liu, C. F.; Wu, Z. L.; Zeng, Q. L.; Yang, X. X.; Wu, W. B.; Li, Y. F.; Huang, C. Z. A Surfactant-Assisted Redox Hydrothermal Route to Prepare Highly Photoluminescent Carbon Quantum Dots with Aggregation-Induced Emission Enhancement Properties. Chem. Commun.2013,49(73),8015-8017.
    [174]Liu, M.; Li, B.; Cui, X. Conjugated Polyelectrolytes-Initiated Chemiluminescence:A Biosensing Platform for Label-Free and Homogeneous DNA Detection. Biosens. Bioelectron.2013,47,26-31.
    [175]Qi, Y; Li, B. A Sensitive, Label-Free, Aptamer-Based Biosensor Using a Gold Nanoparticle-Initiated Chemiluminescence System. Chem. Eur. J.2011,17 (5),1642-1648.
    [176]Min, L.; Wu, X.-Z. Chemiluminescence from Luminol Solution after Illumination of a 355 nm Pulse Laser. Luminescence 2009,24 (6),400-408.
    [177]Lin, J.-M.; Liu, M. Chemiluminescence from the Decomposition of Peroxymonocarbonate Catalyzed by Gold Nanoparticles. J. Phys. Chem. B 2008,112 (26), 7850-7855.
    [178]Delawski, E.; Parkinson, B. A. Layer-by-Layer Etching of Two-Dimensional Metal Chalcogenides with the Atomic Force Microscope. J. Am. Chem. Soc.1992,114 (5), 1661-1667.
    [179]Bochmann, M. Metal Chalcogenide Materials:Chalcogenolato Complexes as "Single-Source" Precursors. Chem. Vap. Deposition 1996,2 (3),85-96.
    [180]Kumta, P. N.; Risbud, S. H. Rare-earth Chalcogenides-An Emerging Class of Optical Materials. J. Mater. Sci.1994,29 (5),1135-1158.
    [181]Jagminas, A.; JuSkenas, R.; Gailiute, I.; Statkute, G; TomaSiunas, R. Electrochemical Synthesis and Optical Characterization of Copper Selenide Nanowire Arrays within the Alumina Pores. J. Cryst. Growth 2006,294 (2),343-348.
    [182]Gao, M.-R.; Jiang, J.; Yu, S.-H. Solution-Based Synthesis and Design of Late Transition Metal Chalcogenide Materials for Oxygen Reduction Reaction (ORR). Small 2012,8 (1), 13-27.
    [183]Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots. Nat. Mater.2011,10 (5), 361-366.
    [184]Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper Selenide Nanocrystals for Photothermal Therapy. Nano Lett.2011,11 (6), 2560-2566.
    [185]Johari, P.; Shenoy, V. B. Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. ACS Nano 2012,6 (6), 5449-5456.
    [186]Huang, P.; Kong, Y.; Li, Z.; Gao, F.; Cui, D. Copper Selenide Nanosnakes:Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization. Nanoscale Res Lett.2010,5 (6),949-956.
    [187]Ingole, P. P.; Joshi, P. M.; Haram, S. K. Room Temperature Synthesis of 1-Hexanethiolate Capped Cu2-xSe Quantum Dots, in Triton X-100 Water-in-Oil Microemulsions. Colloids Surf., A 2009,337 (1-3),136-140.
    [188]Whetten, R. L.; Gelbart, W. M. Nanocrystal Microemulsions:Surfactant-Stabilized Size and Shape. J. Phys. Chem.1994,98 (13),3544-3549.
    [189]Fan, H.; Leve, E. W.; Scullin, G.; Gabaldon, J.; Tallant, D.; Bunge, S.; Boyle, T.; Wilson, M. C.; Brinker, C. J. Surfactant-Assisted Synthesis of Water-Soluble and Biocompatible Semiconductor Quantum Dot Micelles. Nano Lett.2005,5 (4),645-648.
    [190]Wang, D. M.; Gao, M. X.; Gao, P. F.; Yang, H.; Huang, C. Z. Carbon Nanodots-Catalyzed Chemiluminescence of Luminol:A Singlet Oxygen-Induced Mechanism. J. Phys. Chem. C 2013,117(31),19219-19225.
    [191]Huang, C.-C.; Huang, Y.-F.; Cao, Z.; Tan, W.; Chang, H.-T. Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors. Anal. Chem.2005,77(17),5735-5741.
    [192]Long, Y. J.; Li, Y. F.; Liu, Y.; Zheng, J. J.; Tang, J.; Huang, C. Z. Visual Observation of the Mercury-Stimulated Peroxidase Mimetic Activity of Gold Nanoparticles. Chem. Commun.2011,47(43),11939-11941.
    [193]Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and Characterization Monolayers. Anal. Chem.1995,67(4),735-743.
    [194]Lee, P. C.; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols.J. Phys. Chem.1982,86(17),3391-3395.
    [195]Ren, Z.; Wei, Y.; Xiang, J.; Zhang, S.; Song, J.; Mao, C.; Niu, H.; Jin, B.; Wu, J.; Tian, Y. Preparation and Electrochemiluminescence of a Graphene Oxide/Selenium Nanocomposite. Anal.Lett.2013,46(9),1394-1403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700