用户名: 密码: 验证码:
水稻生长对根际氧营养的响应特征及其生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的农作物,世界上一半以上的人口以水稻为主食。氧参与了稻田生态系统活动的重要过程,是水稻生长发育和生理代谢过程中主要的营养因子。水稻不但能利用通气组织和根从地上部及根际环境中吸收和转运氧以满足自身生长的需要,还能通过根系泌氧改善根际环境。稻田氧营养直接影响水稻的生长和产量的形成,具有显著的生态效应。
     地表积水是导致水稻地下部(根系)缺氧胁迫的主要原因。水稻生长早期(分蘖期)需要田间淹水以防除杂草,这将导致其根际缺氧;遭受涝害时,水稻根系也会处于缺氧环境。此时,水稻根系必需在形态(如增加孔隙度)和代谢(如减少营养物质的吸收面积)上进行一定的调节,而这种调节又会影响其生长以及根际状况。控制灌水(增加土壤和空气的接触时间)是目前常见的一种水稻根际增氧途径,而利用化学物质增氧还处于试验阶段。
     基于国内外研究进展,本研究拟以水稻根系形态、素营养和产量性状对根际氧营养的响应为突破口,兼顾水稻品种间的差异,旨在研明不同根际氧营养水稻的生物学响应及其生理机制;探寻水稻根际氧营养调控的可行途径;为水稻抗逆高产栽培提供基于氧营养调控的理论依据和技术储备。
     依据水稻根系对根际氧营养的敏感程度,本课题组于2005-2006对农艺性状差异较大的近20份水稻品种进行了筛选,确定“国稻1号”和“秀水09”分别作为籼型和粳型代表品种。2006-2007,选择过氧化尿素和过氧化钙作为化学物质增氧材料,通过系列试验,验证其增氧效果并确定适宜用量。2007年通过营养液培养,确定水稻的需氧性和根际氧营养敏感时期。为验证不同增氧模式对水稻根际缺氧的调控效果,分别于2007年和2008年,设计了过氧化尿素(T1)、过氧化钙(T2)以及干湿交替灌溉(T3)等3种根际增氧模式的田间试验并以长期淹水田块为对照(CK),监测水稻地上、地下部的形态、生理特征与根际环境效应以及素利用效率和产量效应。获得主要结论如下:
     1.过氧化尿素和过氧化钙都能与水反应,释放出氧气、提高水体的溶氧量。一次施用含20kg hm-1活性氧的两种化学物质,在不种植作物时能够使水层保持至少17d的增氧状态,且pH值升高幅度不大。水稻种植试验表明,分别在分蘖期和孕穗期追力口120kghm-2的过氧化尿素或施用364kg hm-2的过氧化钙,即共施入含40kg hm-2活性氧的两种化学物质时,水稻产量分别提高32.3%和27.5%,较其余施用量增产效果好。
     2.水稻不同时期根际增氧均能提高植株的生物量,但分蘖期和孕穗期最明显。分蘖期增氧,国稻1号和秀水09生物量分别提高12.3%和44.8%,增加幅度较其他时期大。孕穗期持续低氧处理或增氧处理,水稻生物量和产量增加或降低的幅度均较其他阶段大。该阶段持续低氧处理,国稻1号和秀水09生物量分别降低14.2%和13.2%,产量分别降低28.4%和12.3%。
     3.根际增氧显著促进水稻根系形态结构的优化和功能的提高,主要表现为:根系长度增加、根体积变大、根吸收面积增加和根系活力增强;增氧模式下,灌浆期水稻根系仍能保持18%以上的孔隙度,有利于根系获得较多的氧;齐穗后SOD和POD仍保持相对较强的活性,MDA(丙二醛)积累较少。
     4.田间试验表明:与CK相比,国稻1号和秀水09的T1、T2和T3处理增产幅度2007年分别为:3.1%/11.5%、10.2%/14.9%和18.9%/16.4%;2008年分别为:11.56%/6.57%、8.48%/9.20%和13.56%/9.39%。在田间长期淹水条件下两种化学物质增氧处理的水稻产量接近田间干湿交替灌溉处理的水平。水稻在形态、生理及干物质积累等方面对氧营养增加的响应总体表现为:(1)前期分蘖数增加较快,有效穗增多;(2)齐穗后叶片叶绿素含量下降较慢,剑叶SOD(超氧化物歧化酶)和POD(过氧化物酶)活性较高,MDA含量较低;(3)齐穗后叶片光合作用对穗部干物质积累贡献大,结实率提高。
     5.增氧模式下,水稻齐穗期叶和茎鞘中积累较多,增氧有利于穗部灌浆期的转运。齐穗后,国稻1号增氧模式的积累均显著高于CK,秀水09T1和T3积累也较CK多。收获期,两水稻品种的积累量均表现为T3> T1> T2> CK.增氧促进了水稻对硝态的吸收,且硝态含量品种间差异显著,其中粳稻硝态含量较低。叶片NRA受增氧模式的影响显著,硝酸还原酶的活性与叶片硝态的含量呈极显著(国稻1号)或显著(秀水09)相关。增氧模式下,水稻齐穗后仍能保持较大吸收能力,其机制与硝酸还原酶活性提高、同化加速有关。水稻的素偏生产力(PFPN)在两种化学物质增氧下,均有所提高,但受水稻基因型的影响,其中国稻1号的PFPN表现为T1>T2,而秀水09则相反。
     6.采用Richards方程对不同增氧模式下水稻籽粒的灌浆动态进行拟合发现,增氧处理强势粒和弱势粒重均高于CK;国稻1号增氧处理强势粒的灌浆速率降低,而秀水09提高。秀水09增氧模式全穗灌浆速率较快,全穗粒重的增加主要依靠强势粒灌浆速率的提高;而国稻1号全穗灌浆速率较慢,弱势粒灌浆时间延长,全穗粒重的提高主要依靠弱势粒的贡献。
Rice (Oryza sativa L.) is the most important crop in the world, and more than half of the world population lives on it. Oxygen, as a major nutrition for rice plant, involves in the important processes of rice ecosystems and plays a great role in rice physiological metabolism and development. Rice can absorb and transport oxygen to meet the needs of its own growth through aerenchyma and roots from the aboveground and rhizosphere, and improve the rhizosphere environment through radial oxygen loss (ROL) of its root system. Oxygen nutrition in paddy directly influences rice growth and grain yield, while there are also significant ecological effects to rhizosphere environment.
     Long-term flooding is the main reason causing anoxic stress to rice belowground system, especially the root systems. At early tiller stage, flooding can control weed in paddy field, but lead to hypoxia in rice rhizosphere. Oxygen deficiency of rice plant often happens while waterlodgging and flooding, especially under heavy rian fall. Characteristics of roots allowing internal aeration may conflict with those for water or nutrient acquisition, thereby, morphological and physiological adjustments are inevitable, consequently inducing adjustments to plant growing and the rhizosphere conditions. So far, alternate dry/wet irrigation, which can keep sufficient commutative area of gas between air and soil during rice growth stage, is the main method to alleviate anoxic stress in rice rhizosphere for high-yield cultivation. Besides, the studies on other oxygen-increasing patterns including aeration by peroxide application are still under experimental stage.
     Accroding to the literature review of the research on oxygen nutrition in paddy at home and abroad in recent years, this study took the responses of root morphology and N uptake of rice plant to oxygen nutrition as the key topic, including the differences in the responses between rice genotypes. During2005-2006, nearly20varieties of rice, whose agronomic characteristic are quite different from each other, were compared by the sensitivity of their roots to oxygen rhizosphere in our research group, and then "Guodao1" and "Xiushui09" were selected as the representatives of indica and japonica varieties used in this reserach, respectively. In2007, a nutrition solution culture experiment was performed which aimed at determination of demand of oxygen nutrition at different stages for rice growing. During2006-2007, urea peroxide and calcium peroxide were selected as the chemical materials to improve oxygen situations in field, and their effects to rice growth and supplication were determinated by a serial of experiments. In order to monitor the morphological and physiological responses, as well as yield characteristics of rice to the three oxygen-increasing patterns in rhizosphere, two-year field trials (2007-2008) were performed. Three oxygen-increasing patterns were adopted:(1) urea peroxide application (T1), calcium peroxide application (T2) and alternate dry/wet irrigation (T3). Continuous submerging condition (no oxygen increased in rhizosphere) was taken as the control (CK). Under T1, T2and CK, a10cm depth of water was kept in the field during the whole period of rice growing.
     The objectives were mainly to explore rice morphological and physiological responses to and their mechanism of different oxygen nutrition levels and oxygen regulation patterns. This study hopes to supply theoretical references and technical reserves for rice cultivation with high-yield under flooding stress. The main conclusions are as follows:
     1. After reacting with water, calcium peroxide and urea peroxide can release oxygen to significantly increase dissolution oxygen content in the water. These chemicals application (equivalent to20kg ha-1active oxygen element) could keep water at high dissolution oxygen concentration for not less than17d, and the pH value was enhanced when no rice was planted in the soil. The results showed that the application amount of120kg hm-2urea peroxide or364kg hm-2at the tiller stage and booting stage respectively was the suitable doses, and the former dose increased rice yield by32.3%and the latter by27.5%.
     2. Rice biomass was enhanced by oxygen-increasing rhizosphere at different growth stage, especially at the stages of tiller and booting. At the tiller stage, rice biomass increased by12.3%for'Guodaol'and44.8%for 'Xiushui09' respectively, compared with CK after20d aeration. Under hypoxia or aeration, amplitudes of variation of rice plants in yield and biomass were the largest or the smallest at booting stage than that at other stages. Keeping lower dissolution oxygen concentration in the nutrient solution from booting stage to harvest stage, rice biomass decreased by14.2%for'Guodao1' and13.2%for 'Xiushui09', grain yield by28.4%for'Guodao1'and12.3%for 'Xiushui09', respectively, comparison with the CK.
     3. Results of2007-2008showed that oxygen-increasing decreased root porosity at tillering stage, while root volume and activity increased at heading stage. Aeration enhanced the activity of antioxidant enzyme, and decreased the content of MDA in rice roots.
     4. The results showed that compared with the control (CK), grain yield under the treatments of T1, T2and T3increased by3.1%,10.2%.and18.9%for'guodao1',and11.5%,14.9%and16.4%for 'Xiushui09'(japonica) in2007, respectively; and by11.56%,8.48%and13.56%for the former, and6.57%,9.20%and9.39%for the later in2008, respectively. Grain yield in flooding paddy field under the two chemical materials application was near to the yield of rice in the field with alternate dry/wet irrigation. The main mechanisms underlying the yield increase under oxygen-increasing are:(1) Panicle number was larger due to the rapid development of tillers during tillering stage, and (2) Chlorophyll content of leaves decreased more slowly after heading stage, but SOD and POD activity increased while MDA concentration decreasing in leaves at harvest stage, and (3) Dry matter translocation rate was higher with greater biomass accumulation after heading.Although the three oxygen-increasing patterns had different effects on rice growth, they all could effectively alleviate the stress for root system and above-ground part.
     5. Oxygen-increasing rhizosphere enhanced nitrogen use efficiency by rice plant. Under different oxygen-increasing patterns, more nitrogen was accumulated in rice leaf and stem sheath than that in roots and spikes at full heading stage, consequently may benefit N to transit to the spikes at grain-filling stage. After heading stage, nitrogen absorption by 'Guodao1'cultivar was significantly higher under oxygen-increasing treatments than under the CK, as well as, similar trends existed in 'XiushuiO9' plant under the T1or T2treatments. The nitrogen accumulation amounts of the two rice varieties at harvest stage were ranked as T3>T1>T2>CK. Nitrogen content in rice leaves was promoted by increasing-oxygen, and significantly higher nitrogen enhancement was found in the indica rice. Increasing-oxygen patterns significantly influenced NRA (nitrate reductase activity) in rice leaves. The correlations between NRA and nitrate content in rice leaves were at significant levels for 'Guodao1'(P<0.01) and 'Xiushui09'(P<0.05). Under the increasing-oxygen patterns, Oxygen-led increment in nitrate content in leaves stimulated the activity of nitrate reductase to help nitrogen assimilation of rice leaves and the latter enhance nitrogen accumulation, inducing higher nitrogen use efficiency. The PFPN(partial factor productivity from applied N) of rice under the T1and T2treatments was higher than the CK, and obvious difference existed between the genotypes. PFPN under the T1treatment for'Guodao1' was higher than that in the T2, and that under T2for 'Xiushui09' was higher than the T1.
     6. Grain filling dynamic at different positions of rice panicle was investigated. The Richards equation was used to describe grain filling processes. The results showed that oxygen-increasing patterns significantly increased grain weight on lower and upper parts of panicle. The grain-filling rate of grains on upper parts of the panicle for'Guodaol'was smaller under oxygen-increasing patterns than that under the CK, but grain weight of the former was higher than the later. The grain-filling rate of 'Xiushui09' was larger than that of'Guodaol'. Time of grain-filling for'Guodaol'under oxygen-increasing patterns were prolonged, but the average rate of grain-filling was lower than CK. Amount of grain-filling for'Guodaol'was increased by oxygen-increasing resulting from the increase of grain-filling rate of grain on the lower part of panicle, but for 'Xiushui09' resulting from the increase of grain-filling rate of grain on the upper part of panicle.
引文
[1]Geigenberger P. Response of plant metabolism to too little oxygen [J]. Curr Opin Plant Biol,2003, 6:247-256
    [2]Colmer T D. Long-distance transport of gases in plants:A perspective on internal aeration and radial oxygen loss from roots [J]. Plant Cell Environ,2003,26:17-36
    [3]Matthieu N B, Fanny T, Martine L F, et al. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.):A microcosm study [J]. Plant Soil.2008,302:207-218
    [4]章秀福,王丹英,屈衍艳,等.水稻垄畦栽培的植株形态和生理特性研究[J].作物学报,2005,31(6):742-748
    [5]章秀福,王丹英,邵国胜.垄畦栽培水稻的产量、品质效应及其生理生态基础[J].中国水稻科学,2003,17(4):343-348
    [6]王丹英,韩勃,章秀福,等.水稻根际含氧量对根系生长的影响[J].作物学报,2008,34(5):803-808
    [7]Shigeru M G. Root Formation.Agricultrue Encyclopedia [M]. Japan:Yangxian hall.1987
    [8]Pezeshki S R. Spartina patens to rhizophere oxygen deficiency [J]. Acta Ecology,1996,17(5): 365-378
    [9]Colmer T D, Cox C H, Voesenek L A. Root aeration in rice(Oryza sativa):Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations [J]. New Phytologist, 2006,170:767-778
    [10]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.) [J]. Annals of Botany,2003,91:301-309
    [11]Garthwaite A J, Armstrong W, Colmer T D. Physiology of the barrier to radial O2 loss in adventitious roots of hordeum marinum assessed using modelling and experiments to manipulate O2 in the aerenchyma [J], Plant Anaerobiosis (Perth, Australia),2004,8:27-31
    [12]Groot T T, Bodegom P M, Meijer H A, Harren F J. Gas transport through the root-shoot transition zone of rice tillers [J]. Plant and Soil,2005,277:107-116
    [13]Armstrong J, Armstrong W. Rice:Sulphide-induced barriers to root radial oxygen loss, Fe2+and water uptake, and lateral root emergence [J]. Annals of Botany,2005,96:625-638.
    [14]Claus L M, Kaj S J. Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna [J]. New Phytologist,2008,179:804-825
    [15]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil [J]. New Phytologist,2003,159:185-194
    [16]汪晓丽,司江英,陈冬梅,等.低pH条件下不同源对水稻根通气组织形成的影响[J].2005,26(2):66-71
    [17]Arah J R, Kirk G J. Modelling rice plant-mediated methane emission [J]. Nutrient Cycling in Agro-Ecosystems,2000,58:221-230
    [18]Zhang Y S, Lin X Y, Luo A C. Chemical behavior of phosphorus in paddy soil as affected by O2 secretion from rice root [J]. Chinese Rice Science,2000,14(4):208-212
    [19]Frankenberger W T, Factors J. Affecting the fate of urea peroxide added to soil [J]. Bull Environ Contam Toxicol,1997,59:50-57
    [20]Crawford R M M. Tolerance to anoxia and ethanol metabolism in germinating seeds [J]. New Phytol,1977,79:511-517
    [21]Armstrong J, Armstrong W. Rice and Phragmites:Effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere [J]. American Journal of Botany,2001,88: 1359-1370
    [22]Vartapetian B B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry and molecular biology:2. Further development of the problem [J]. Russian Journal of plant physiology,2007,53(6):711-738
    [23]Perata P, Alpi A. Plant responses to anaerobiosis [J]. Plant Science,1993,93:1-17
    [24]Maslova I P, Chernyadeva I F, Vartapetian B B. Soluble proteins and alcohol dehydrogenase of rice seedlings in anoxia, Abst. XII Int. Bot [J]. Congr.Leningrad:Nauka,1975,2:365-368
    [25]Costes C, Vartapetian B B. Plant grown in a vacuum:The ultrastructure and functions of mitochondria [J]. Plant Sci.1978,11:115-119
    [26]Jacob D L, Otte M L. Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond [J]. Environmental Pollution,2004,130: 337-345
    [27]Maria S, Kapuganti J G, Robert D H. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria [J]. Planta,2007,226:465-474
    [28]Angenlida M, Gerd A. Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia [J]. Physiologia plantarum,2003,117:508-520
    [29]Xu K, Xu X, Ronald P C, et al. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Subl [J]. Mol.Gen. Genet,2000,263:681-689
    [30]Nandi S, Subudhi P K. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selection gene typing [J]. Mol Gen Genet,1997,225:1-8
    [31]Nakazomo M, Tsuji H, Li Y, et al. Expression of a gene encoding mitochondria aldehyde dehydrogenises in rice increase under submerged conditions [J]. Plant Physiology,2000,16(1): 45-51
    [32]龚红兵,周义文,刁立平,等.几个杂交稻组合的适应性分析[J].江苏农业科学,2006,6:25-28
    [33]Lee K W, Chen P W, Lu C A, et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding [J]. Sci Signal,2009,2 (91):p. ra61
    [34]Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies [J]. FEMS Microbiol Rev,2000,24:625-645
    [35]Weis J S, Weis P. Metal uptake transport and release by wetland plants:implications for phytoremediation and restoration [J], Environmental International,2004,30:685-700
    [36]Pan S Z. Characterization of gleyization of paddy soils in the middle reaches of the Yangtze River [J]. Pedosphere,1996,6 (2):111-119
    [37]Jia Z J, Cai Z C, Xu H. Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddy soil [J]. Plant Soil,2001,23(1):211-221
    [38]何胜德,林贤青,朱德峰.杂交水稻根际供氧对土壤氧化还原电位和产量的影响[J].杂交水稻,2006,21(3):78-80
    [39]Matthieu N B, Fanny T, Martine L F, et al. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.):a microcosm study[J]. Plant Soil.2008, DOI 10.1007/s11104-007-9532-x
    [40]Lu Y H, Dirk R, Werner L. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere [J]. Environ Microbiology,2006,8(8):1351-1360
    [41]Banker B C, Kludze H K, Alford D P. Methane sources and sinks in paddy rice soils:Relationship to emissions [J].AgricEcosyst Environ,1995,53:243-251
    [42]Werner L, Sylvia S, Niels P. Revsbech. Microbiology of flooded rice paddies [J]. FEMS Microbiology Reviews,2000,24:625-645
    [43]李香兰,徐华,曹金留,等.水分管理对水稻生长期CH4排放的影响[J].土壤,2007,39(2):238-245
    [44]Butterbach B K, Papen H, Rermenberg H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields [J]. Plant cell Environ,1997,20:1175-1183
    [45]King G M. Ecological aspects of methan oxidation'a key determinant of global methane dynamics [J]. Adv Microbial Ecol.1992,12:431-468
    [46]丁维新,蔡祖聪.植物在CH4产生、氧化和排放中的作用.应用生态学报[J].2003,14(8):1379-1384
    [47]陈永华,赵森,柳俊,等.水稻耐淹涝性状的遗传分析和SSR标记的研究[J].遗传,2006,28(12):1562-1566
    [48]李阳生,李玉昌,周建林,等.水稻新材料耐淹涝能力的比较研究[J].应用与环境生物学报,2000,6(3):211-217
    [49]唐建军,王永锐,傅家瑞.水稻对渍水稻田土壤缺氧胁迫的反应[J].中国稻米,1995(1):29-31
    [50]Haque Q A, Lambers D H R, Tepora N M. Inheritance of submengence tolerance in rice [J]. Eup Hytica,1989,41(3):247-251
    [51]章家恩,许荣宝,全国明,等.鸭稻互作对水稻生理特性的影响[J].应用生态学报,2007,18(9):1959-1964
    [1]章家恩,许荣宝,全国明,陈瑞.鸭稻互作对水稻生理特性的影响[J].应用生态学报,2007,18(9):1959-1964
    [2]章秀福,王丹英,屈衍艳,等.水稻垄畦栽培的植株形态和生理特性研究[J].作物学报,2005,31(6):742-748
    [3]章秀福,王丹英,邵国胜.垄畦栽培水稻的产量、品质效应及其生理生态基础[J].中国水稻科学,2003,17(4):343-348
    [4]Shigeru M G. Root Formation.Agricultrue Encyclopedia [M]. Japan:Yangxian hall,1987
    [5]Frankenberger W T, Factors J. Affecting the fate of urea peroxide added to soil [J]. Bull Environ Contain Toxicol,1997,59:50-57
    [6]Motoyuki H, Mitsuo I. Promotion of seedling emergence of paddy rice from flooded soil by coating seed with potassium nitrate [J]. Jpn J Crop Sci,1991,60(3):441-446
    [7]王丹英,韩勃,章秀福,等.水稻根际含氧量对根系生长的影响[J].作物学报,2008,34(5):803-808
    [8]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.) [J]. Annals of Botany,2003,91:301-309
    [9]Colmer T D, Cox M C H, Voesenek L A. Root aeration in rice (Oryza sativa):evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations [J]. NewPhytologist,2006,170:767-778
    [10]Bryce J H, Focht D D, Stolzy L H. Soil aeration and plant growth response to urea peroxide fertilization [J]. Soil Sci,1982,134:111-116
    [11]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil [J]. New Phytologist,2003,159:185-194
    [12]Armstrong J, Armstrong W. Rice:sulphide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence [J]. Annals of Botany,2005,96:625-638
    [13]Fore B G. Local andlong-range signaling pathwaysregulating plant responses to nitrate [J]. Annual Review of Plant Physiology and Plant Molecular Biology,2002,53:203-224
    [14]Ella E S, Kawano N, Osamu H. Importance of active oxygen scavenging system in the recovery of rice seedlings after submergence[J]. Plant Sci,2003,65:85-93
    [15]段英华,张亚丽,沈其荣,等.增硝营养对不同基因型水稻苗期素吸收同化的影响[J].营养与肥料学报,2005,11(2):160-165
    [1]Yoshida S, Forno D A, Cock J H, et al. Laboratory manual for physiological studies of rice [M]. IRRI, Manila, Philippines,1976
    [2]王镜岩,朱圣庚,徐长法.生物化学[M].北京: 高等教育出版社,2002:129-144
    [3]Vartapetian B B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry and molecular biology:2. Further development of the problem [J]. Russian J Plant Physiol,2007, 53(6):711-738
    [4]Pan S Z. Characterization of gleyization of paddy soils in the middle reaches of the Yangtze River [J]. Pedosphere,1996,6(2):111-119
    [5]Delaune R D, Pezeshki S R, Pardue J H. Anoxidation-reduction buffer for evaluating physiological response of plants to root oxygen stresses [J]. Environ Exp Bot,2005,30(2): 243-247
    [6]Sarkar R K, Reddy J N, Sharma S G, et al. Physiological basis of submergence tolerance in rice and implications for crop improvement [J]. Curr Sci,2006,91:899-906
    [7]王丹英,韩勃,章秀福,等.水稻根际含氧量对根系生长的影响[J].作物学报,2008,34(5):803-808
    [8]Pezeshki S R, Delaune R D. Responses of Spartina alterniflora and Spartina patens to rhizosphere oxygen deficiency [J]. Acta Oecol.1996,17:365-378
    [9]Shigeru M G. Root Formation.Agricultrue Encyclopedia [M]. Japan:Yangxian hall,1987
    [10]Colmer T D, Cox C H, Voesenek L A. Root aeration in rice (Oryza sativa):Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations[J]. NewPhytologist, 2006,170:767-778
    [11]Colmer T D. Long-distance transport of gases in plants:A perspective on internal aeration and radial oxygen loss from roots [J]. Plant Cell Environ,2003,26:17-36
    [12]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice(Oryza sativa L.) [J]. Annals of Botany,2003,91:301-309
    [13]汪晓丽,司江英,陈冬梅,等.低pH条件下不同源对水稻根通气组织形成的影响[J].2005,26(2):66-71
    [14]赵锋,王丹英,徐春梅,等.根际增氧模式的水稻形态、生理及产量响应特征[J].作物学报,2010,36(2):1-10
    [15]陈永华,赵森,柳俊,等.水稻耐淹涝性状的遗传分析和SSR标记的研究[J],遗传,2006,28(12):1562-1566
    [16]龚红兵,周义文,刁立平,等.几个杂交稻组合的适应性分析[J].江苏农业科学,2006,6:25-28
    [17]唐建军,王永锐,傅家瑞.水稻对渍水稻田土壤缺氧胁迫的反应[J].中国稻米,1995(1):29-31
    [1]朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响[J].中国农业科学,2001,34(4):429-432
    [2]程兆伟,邹应斌,刘武.水稻根系研究进展[J]. Corp research,2006(5):504-508
    [3]吴岳轩,吴振球.播期对亚种间杂交稻根系形态发育和生理活性的影响[J].作物学报,1996,(2):178-184
    [4]王余龙,蒋建中,何杰升,等.水稻颖花根活量与籽粒灌浆结实的关系[J].作物学报,1992,18(2):81-88
    [5]Yang C M, Yang L Z, Yang Y X, et al. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils[J]. Agricultural Water Management,2004,70:67-81
    [6]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.)[J]. Ann Bot,2003,91:301-309
    [7]Angenlida M, Gerd A. Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia [J]. Physiologia Plantarum,2003,117:508-520
    [8]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002
    [9]Delaune R D, Pezeshki S R, Pardue J H. Anoxidation-reduction buffer for evaluating physiological response of plants to root oxygen stresses [J]. Environ Exp Bot,2005,30(2): 243-247
    [10]Colmer T D, Cox C H, Voesenek L A. Root aeration in rice (Oryza sativa.L):evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations[J]. New Phytologist,2006,170:767-778
    [11]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil [J]. New Phytologist,2003,159:185-194
    [12]Armstrong J, Armstrong W. Rice:sulphide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence [J]. Annals of Botany,2005,96:625-638
    [13]蒋朝晖,曾清如,方至,等.不同温度下施入尿素后土壤短期内pH的变化和氨气释放特性[J].土壤通报,2004,35(3):299-302
    [14]白玲,周云,张晓然,等.过氧化氢参与了脱落酸调控的拟南芥根形态发育[J].科学通报,2007,52(5):608-611
    [15]钟宁,曾清如,廖柏寒,等.过碳酰胺在酸碱性土壤中的转化特征[J].中国农学通报.2006,22(2):53-357
    [16]张金锋,蘖庆中.稻飞虱为害胁迫对水稻植株内主要保护酶活性的影响[J].中国农业科学,2004,37(10):1487-1491
    [17]朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系[J].中国水稻科学,2002,16(4):326-330
    [18]王丹英,韩勃,章秀福,等.水稻根际含氧量对根系生长的影响[J].作物学报,2008,34(5):803-808
    [19]Frankenberger W T, Factors J. Factors affecting the fate of urea peroxide added to soil [J]. Bull Environ. Contam. Toxicol,1997,59:50-57
    [1]Peng S Z, Hao S R, Liu Q. Study on the mechanics of yield-raising and quality-improving for paddy rice under water-saving irrigation [J]. Irrigation and Drainage,2000,19(3):3-7.
    [2]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice(Oryza sativa L.)[J]. Ann Bot,2003,91:301-309
    [3]Angenlida M, Gerd A. Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia [J]. Physiologia Plantarum,2003,117:508-520
    [4]Ella E S, Kawano N, Osamu H. Importance of active oxygen scavenging system in the recovery of rice seedlings after submergence[J]. Plant Sci,2003,65:85-93
    [5]Das K K, Sawano N, Ismail A M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice [J]. Plant Sci,2005,68:131-136
    [6]Xu K, Xu X, Ronald P C. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1 [J]. Mol Gen Genet,2000,263:681-689
    [7]Nakazomo M, Tsuji H, Li Y. Expression of a gene encoding mitochondria aldehyde dehydrogenises in rice increase under submerged conditions [J]. Plant Physiol,2000,16(1):45-51
    [8]Frankenberger W T, Factors J. Affecting the fate of urea peroxide added to soil [J]. Bull Environ Contam Toxicol,1997,59:50-57
    [9]Motoyuki H, Mitsuo I. Promotion of seedling emergence of paddy rice from flooded soil by coating seed with potassium nitrate [J]. Japan J Crop Sci,1991,60(3):441-446
    [10]乔富廉.植物生理学实验分析测定技术[M].北京:中国农业科技出版社,2002
    [11]赵步洪,奚岭林,杨建昌.两系杂交稻茎鞘物质运转与籽粒充实特性研究[J].西北农林科技大学学报·自然科学版,2004,32(10):9-14
    [12]Insalud N, Bellr W, Colmer T D, Rerkasem B. Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture [J]. Ann Bot, 2006,98:995-1004
    [13]Groot T T, Bodegom P M, Meijer H A, et al. Gas transport through the root-shoot transition zone of rice tillers [J]. Plant Soil,2005,277:107-116
    [14]Kirk G J D. Plant-mediated processes to acquire nutrients:nitrogen uptake by rice plants [J]. Plant Soil,2001,232:129-134
    [15]蒋彭炎,洪晓富,冯来定,等.水稻中期成穗与后期群体光合效率的关系[J].中国农业科学,1994,27(6):8-14
    [20]向万胜,周卫军,古汉虎.Ca02等缓性释氧物改善土壤氧化还原条件的作用及对水稻生长的影响[J].土壤学报,1995,33(2):220-22
    [1]梁建生,曹显祖,张海燕,等.水稻籽粒灌浆期间茎鞘贮存物质含量变化及其影响因素研究[J].中国水稻科学,1994,8(3):151-156
    [2]谢光辉,杨建昌,王志琴,等.水稻籽粒灌浆特性及其与籽粒生理活性的关系[J].作物学报,2001,27(5):557-565
    [3]左清凡,谢平,宋宇,等.水稻籽粒不同发育时期灌浆速率的遗传及其与环境互作的分析[J].中国农业科学,2002,35(5):465-470
    [4]张亚洁,许德美,孙斌,等.种植方式对陆稻和水稻籽粒灌浆及垩白的影响[J].中国农业科学,2005,39:257-264
    [5]朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析[J].作物学报,1988,14(3):182-192
    [6]杨建昌,苏宝林,王志琴,等.亚种间杂交稻籽粒充实不良的原因探讨[J].中国农业科学,1998,31(7):7-14
    [7]顾世梁,朱庆森,杨建昌,等.不同水稻材料籽粒灌浆特性的分析[J].作物报,2001,27(1):7-14
    [8]张强,李白超,傅秀林,等.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动态[J].作物学报,2005,31(9):1198-1206
    [9]蒋彭炎,洪晓富,冯来定,等.水稻中期成穗与后期群体光合效率的关系[J].中国农业科学,1994,27(6):8-14
    [10]胡健,杨连新,周娟,等.开放式空气C02浓度增高(FACE)对水稻灌浆动态的影响[J].中国农业科学,2007,40(11):243-245
    [11]Colmer T D, Cox C H, Voesenek L A. Root aeration in rice (Oryza sativa):Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations[J]. NewPhytologist, 2006,170:767-778
    [12]殷晓燕,徐阳春,沈其荣,等.直播早作水稻的吸特征与土壤素表观盈亏[J].生态学报,2007,24(8):1575-1581
    [13]段英华,张亚丽,沈其荣.水稻根际的硝化作用与水稻的硝态营养[J].土壤学报,2004,41(5):803-809
    [14]杨肖娥,孙羲.不同水稻品种NH4+和NO3-吸收的动力学[J].土壤通报,1991,22(5):222-224
    [15]Kirk G J D. Plant-mediated processes to acquire nutrients:Nitrogen uptake by rice plants [J]. Plant and soil,2001,232:129-134
    [16]曹云,范晓荣,贾莉君,等.不同水稻品种对NO3-同化差异的比较[J].南京农业大学学报,2005,28(1):52-56
    [17]陈薇,张德颐.植物组织中硝酸还原酶的提取、测定和纯化[J].植物生理学通讯,1980(4):45-49
    [18]Moll R H, Kamprathe E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy J,1982,74:562-564
    [19]上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社,1985:223-235
    [20]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924
    [21]Peng S B, Buresh R J, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China [J]. Field Crops Res,2006,96:37-47
    [22]Wang X Z, Zhu J G, Gao R, et al. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region [J]. Pedosphere,2007,17:62-69
    [23]Frenev T R, Frevitt A C F, Datta S K. The interdependence of ammonia volatilization and denitrification as nitrogen loss processes in flooded rice fields in Philippines [J]. Biol Fert Soils, 1990,9:31-36
    [24]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil [J]. New Phytologist,2003,159:185-194
    [25]刘丽,甘志军,王宪泽.植物代谢硝酸还原酶水平调控机制的研究进展[J].西北植物学报,2004,24(7):1355-1361
    [26]Glaab J, Kaiser W M. Inactivation of nitrate reductase involves NR-proteln phosphorylation and subsequent "binding" of an inhibitor protein [J]. Planta,1994,195(4):115-123
    [27]Peng S B, Hao S R, Liu Q. Study on the mechanics of yield-raising and quality-improving for paddy rice under water-saving irrigation [J]. Irrigation and Drainage,2000,19(3):3-7
    [1]Pan S Z. Characterization of gleyization of paddy soils in the middle reaches of the Yangtze River [J]. Pedosphere,1996,6(2):111-119
    [2]Shigeru M G. Root Formation. Agricultrue Encyclopedia [M]. Japan:Yangxian hall.1987
    [3]Motoyuki H, Mitsuo I. Promotion of seedling emergence of paddy rice from flooded soil by coating seed with potassium nitrate [J]. Japan J Crop Sci,1991,60(3):441-446
    [4]Frankenberger W T, Factors J. Affecting the fate of urea peroxide added to soil [J]. Bull Environ Contain Toxicol,1997,59:50-57
    [5]翟永青,丁士文,姚子华,等.过氧化钙在水稻直播中的应用试验研究[J].河北大学学报(自然科学版),22(4):360-362
    [6]龚红兵,周义文,刁立平,等.几个杂交稻组合的适应性分析[J].江苏农业科学,2006,6:25-28
    [7]唐建军,王永锐,傅家瑞.水稻对渍水稻田土壤缺氧胁迫的反应[J].中国稻米,1995(1):29-31
    [8]Colmer T D, Cox M C H, Voesenek L A. Root aeration in rice(Oryza sativa. L):evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations [J]. New Phytologist,2006,170:161-778
    [9]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil [J]. New Phytologist,2003,159:185-194
    [10]程兆伟,邹应斌,刘武.水稻根系研究进展[J]. Corp research,2006, (5):504-508
    [11]向万胜,周卫军,古汉虎.Ca02等缓性释氧物改善土壤氧化还原条件的作用及对水稻生长的影响[J].土壤学报,1995,33(2):220-22
    [12]Insalud N, Bellr W, Colmer T D, Rerkasem B. Morphological and physiological responses of rice (Oryza sativa.L) to limited phosphorus supply in aerated and stagnant solution culture [J]. Ananal Bottony,2006,98:995-1004
    [13]蒋彭炎,洪晓富,冯来定,等.水稻中期成穗与后期群体光合效率的关系[J].中国农业科学,1994,27(6):8-14
    [14]Weis J S, Weis P. Metal uptake transport and release by wetland plants:implications for phytoremediation and restoration [J]. Environmental International,2004,30:685-700
    [15]Armstrong J, Armstrong W. Rice:Sulphide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence [J]. Annals of Botany,2005,96:625-638
    [16]Amara W, Hank G, Campbell J T. The use of agar nutrient solution to simulate lack of convection in waterlogged soils [J]. Annals of Botany,1996,80:115-123
    [17]Wang X Z, Zhu J G, Gao R, et al. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region [J]. Pedosphere,2007,17:62-69
    [18]刘丽,甘志军,王宪泽.植物代谢硝酸还原酶水平调控机制的研究进展.西北植物学报,2004,24(7):1355-1361
    [19]Glaab J, Kaiser W M. Inactivation of nitrate reductase involves NR-proteln phosphorylation and subsequent "binding" of an inhibitor protein [J]. Planta,1994,195(4):115-123
    [20]Kirk G J D. Plant-mediated processes to acquire nutrients:Nitrogen uptake by rice plants [J]. Plant and soil,2001,232:129-134
    [21]Jampeetong A, Brix H. Oxygen stress in Salvinia natans:Interactive effects of oxygen availability and nitrogen source [J]. Environmental and Experimental Botany,2009,66:153-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700