用户名: 密码: 验证码:
近红外光谱在复合固体推进剂快速分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用近红外光谱分析技术研究了复合固体推进剂中三种主要原材料组分和部分杂质的测定方法,讨论了化学计量学方法在近红外光谱预处理、波长选择、模型建立、模型传递以及奇异点判别等工作中的应用效果。
     第一部分研究了近红外光谱标准加入法测定三-1-(2-甲基丙啶)氧化膦(MAPO)中水分含量的方法,分别采用单元线性回归、多元线性回归、主成分回归、偏最小二乘法、人工神经网络等建立校正模型,比较了不同模型对预测结果的影响。实验结果表明采用单元线性回归测定MAPO中水分具有较高的准确度和精密度,实验回收率为95%~108%,相对标准偏差为1.6%;采用本方法对实际样品的测定结果与国军标方法测定结果无显著差别。
     第二部分研究了近红外光谱测定NEPE胶中硝化甘油、丁三醇三硝酸酯、聚乙二醇含量的方法,采用相关系数、显变分析、间隔偏最小二乘法、遗传算法等方法选择波长,对模型传递方法进行了研究。实验结果表明数据平移处理可以有效改善样品吸光度与浓度之间的相关性;遗传算法选择波长优于相关系数法和间隔偏最小二乘法,显变分析不适合于本项研究;采用DS算法时,可以用NEPE胶标样在不同仪器上实现模型传递,不能用普通标样传递模型;近红外光谱法快速测定NEPE胶组分含量的结果与标准分析方法的测定结果一致,两者相差小于1%;水分含量的变化、正常加热操作对NEPE胶组分含量测定的影响不明显。
     第三部分研究了近红外光谱测定NEPEB胶中硝化甘油、二缩三乙二醇二硝酸酯、端羟基环氧乙烷—四氢呋喃共聚醚含量的方法,采用马氏距离、杠杆值、主成分相关图、三维主成分相关图、聚类分析等方法判别奇异点,建立稳健的校正模型。实验结果表明不同判别方法得到的奇异点不完全一致,不同判别方法对模型的影响也不一致,其中马氏距离和聚类分析较适合于本体系;各判别方法对不同预测项目的影响不一致,对改进PET的预测效果最好;删除奇异点后用近红外光谱快速测定NEPEB胶组分含量的预测误差小于2%。
The determination methods of the components and impurities in three principalmaterials of composite solid propellants were investigated by means of near infrared(NIR) technique. The effect of chemometrics methods which were applied in spectraldata pretreatment, wavelength selecting, calibration model establishing, model transferand outlier detecting was also discussed.
     In partⅠ, A NIR method was investigated to determine the content of water in MAPO by standard addition method which includes various calibration models such as single wavelength regression, multiple linear regression, principal component regression, partial least square regression and artificial neural network. The influences of these different models on predictive results were compared. The experiment results indicate that a more accurate result can be obtained with the single wavelength calibration model. The recovery of the standard additions method was 95%~108% and the relative standard deviation (RSD) was 1.6%. There was no system error in the determination results between standard additions method and national military standard method.
     In partⅡ, The method to determine the contents of NG, BTTN and PEG in NEPE binder was studied by NIR, which used many methods including the correlation coefficient, salience variety analysis, interval PLS and genetic algorithm to select wavelength. The model transfer methods were studied as well. The experiment results show that spectral data shift transform can improve the correlation between absorbance and concentration of samples. The GA was better than both of the correlation coefficient method and the iPLS method for selecting wavelength, and the salience variety analysis was not suitable for this purpose. The model could be transfered between different apparatus with NEPE standard samples, but not with general standard samples when D/S algorithm was applied. The results of component content in NEPE binder obtained by NIR method was in accord with that by standard method. The difference between these two methods is less than 1%. The water contents and general heating process have no obvious effect on determination results.
     In partⅢ, The method to determine the contents of NG,TEGDN and PET in NEPEB binder was studies by NIR, which included outlier detection and establishment of robust calibration model. The outlier was detected by various methods such as the Mahalanobis distance, leverage, PC correlation plot, PC correlation three dimension plot and clusters dendrogram. The experiment results suggest that all of the outliers obtained by different detecting methods were not identical and the effect of these different methods on model was different. The Mahalanobis distance and the clusters dendrogram were more applicable for this system. The effect of detecting methods was different for each predicting object, which was best to improve predictive results of PET. It was less than 2% that the predictive residual error using NIR method to determine NEPEB binder component content after outliers eliminated.
引文
[1]陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术.北京:中国石油出版社,2000.
    [2]王多加,周向阳,金同铭,等.近红外光谱检测技术在农业和食品分析上的应用.光谱学与光谱分析,2004,24(4):447-450.
    [3]Bittner A,Marbach R,Heise H M.Multivariate Calibration for Protein,Cholesterol and Triglycerides in Human Plasma Using Short-Wave Near Infrared Spectrometry.Journal of Molecular Structure,1995,349:341-344.
    [4]Shengtian Pan,Hoeil Chung,Arnold M A.Near-Infrared spectroscopic measurement of physiological glucose level in variable matrics of protein and triglycerides.Anal.Chem.,1996,68(7):1124-1135.
    [5]Sumaporn K,Du Y P,Koichi M,et al.Simultaneous determination of human serum albumin,lambda-globulin and glucosein a phosphate buffer solution by near-infrared spectroscopy with moving window partialleast squares regression.The Analyst,2003,128(12):1471-1477.
    [6]Kasemsumran S and Du Y P.Near-infrared spectroscopic determination of human serum albumin,γ-globulin and glucose in a control serum solution with searching combination moving window partial least squares.Analytica Chimica Acta,2004,512(2):223-230.
    [7]Clark C J,McGlone V A,Requejo C,et al.Dry matter determination in 'Hass'avocado by NIR spectroscopy.Postharvest Biology and Technology,2003,29(3):300-307.
    [8]Lafrance D and Lands L C.In vivo lactate measurement in human tissue by near infrared diffuse reflectance spectroscopy.Vibrational Spectroscopy,2004,36(2):195-320.
    [9]Macho S and Larrechi M S.Near-infrared spectroscopy and multivariate calibration for the quantitative determination of certain properties in the petrochemical industry,rends in analytical chemistry,2002,21(12):799-806.
    [10]Aske N and Kallevik H.Determination of Saturate,Aromatic,Resin,and sphaltenic(SARA) Components in Crude Oils by Means of Infrared and Near-Infrared Spectroscopy.Energy & Fuels,2001,15(5):1304-1312.
    [11]Hannisdal A and Hemmingsen P V.Group-Type Analysis of Heavy Crude Oils Using Vibrational Spectroscopy in Combination with Multivariate Analysis. Ind. Eng. Chem. Res., 2005, 44(5): 1349-1357.
    [12] Kim M J, Lee Y H, Han C H. Real-time classification of petroleum products using near-infrared spectra. Computers and Chemical Engineering, 2000, 24 (2) : 513-517.
    [13]Narve A, Harald K, Johan S. Water-in-crude oil emulsion stability studied by critical electric field measurements, Correlation to physico-chemical parameters and near-infrared spectroscopy. Journal of Petroleum Science and Engineering, 2002, 36(1): 1-17.
    [14] Malley D F, Williams P C, Stainton M P. Rapid measurement of suspended C, N , and P from precambrian shield lakes using near-infrared reflectance spectroscopy. Water Research, 1996, 30(6): 1325-1332.
    [15] Cecilia P, Nordgren, Anders. Partitioning the variation of microbial measurements in forest soils into heavy metal and substrate quality dependent parts by use of near infrared spectroscopy and multivariate statistics. Soil Biology & Biochemistry, 1996, 28(6): 711-720.
    [16]McCaig T N. Extending the use of visible/near-infrared reflectance spectrophotometers to measure color of food and agricultural products. Food Research International, 2002, 35(8): 731-736.
    [17]Velasco L and Fernandez J M. Application of Near-Infrared reflectance spectroscopy to estimate the bulk density of Ethiopian mustard Seeds. J. Sci. Food Agric, 1998, 77(4): 312-318.
    [18]Kemsley E K and Henri S T. Comparison of spectroscopic technique for the determination of Kjeldahl and ammoniacal nitrogen content of farmyard manure. J. Agric. Food Chem., 2001, 49(2): 603-609.
    [19] Boever J L, Cottyn B G , Brabander D L, et al. Prediction of the feeding value of grass silages by chemical parameters, in vitro digestibility and near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 1996, 60(1): 103-115.
    [20] Woo Y A, Kim H J, Cho J H. Identification of Herbal Medicines Using Pattern Recognition Techniques with Near-Infrared Reflectance Spectra. Microchemical Journal, 1999, 63(1): 61-70.
    [21] Woo Y A, Kim H J, Cho J H. Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques. Journal of Pharmaceutical and Biomedical Analysis, 1999, 21(2): 407-413.
    [22] Andersson M and Josefson M. Monitoring of a film coating process for tablets using near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 1999, 20(1-2): 20-30.
    [23] Magali L and Tuulikki H P. Determination of the thickness of plastic sheets used inblister packaging by near infrared spectroscopy: development and validation of themethod. European Journal of Pharmaceutical Sciences, 2004, 21 (4): 493-500.
    [24] Laporte M F and Paquin P. Near-Infrared Analysis of Fat, Protein and Casein in Cow's Milk. Journal of Agricultural Food Chem., 1999, 47(7): 2600-2605.
    [25] Albanell E, Caceres P, Caja G, et al. Determination of Fat, Protein, and Total Solids in Ovine Milk by Near-Infrared Spectroscopy . Journal of AOAC International, 1999, 82(3): 753-757.
    [26] Sasic S and Ozaki Y. Short-Wave Near-Infrared Spectroscopy of Biological Fluids, Quantitative Analysis of Fat, Protein, and Lactose in Raw Milk by Partial Least-Squares Regression and Band Assignment. Analytical Chemistry, 2001, 73(1): 1-6.
    [27] Huang Y Q, Rogers T M, Wenz M A, et al. Detection of sodium chloride in cured salmon roe by SW-NIR Spectroscopy. J. Agric. Food Chem., 2001, 49(9): 4161-4167.
    [28] Price J and Long J. Method and apparatus for biological fluid analyte concentration measurement using generalized distance outlier detection. Environment International, 1997, 23(5): 5-6.
    [29] Malley D F. Near-infrared spectroscopy as a potential method for routine sediment analysis to improve rapidity and efficiency. Water Science and Technology, 1998, 37(6): 181-188.
    [30] Breitkreitz M C, Raimundo I M, RohwedderJJ, et al. Determination of total sulfur in diesel fuel employing NIR spectroscopy and multivariate calibration. The Analyst, 2003, 128(9): 1204-1207.
    [31] Leornardo S and Flavia C C. Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Raman spectrometries. Analytica Chimica Acta, 2003, 493(2): 219-231.
    [32] Wilson N D, Ivanova M S, Watt R A, et al. The quantification of citral in lemongrass and lemon oils by near-infrared spectroscopy. Journal of Pharmacy & Pharmacology,2002,54(9):1257-1263.
    [33]Michael D J.The application of near-infrared spectroscopy for the quality controlanalysis of rocket propellant fuel pre-mixes.Talanta,2004,62(4):675-679.
    [34]孙耀国,林敏,吕进,等.近红外光谱法测定绿茶中氨基酸、咖啡碱和茶多酚的含量.光谱实验室,2004,21(5):940-943.
    [35]王多加,林纯忠,钟娇娥.近红外光谱法非破坏快速检测生菜中硝酸盐含量.食品科学,2004,25(10):239-241.
    [36]张洪艳,丁东,赵振武.人体血清中葡萄糖浓度的近红外光谱分析.光谱实验室,2004,21(6):1128-1130.
    [37]任玉林,李伟,沈今明.近红外漫反射一阶导数光谱法作安体舒通质量控制研究.分析科学学报,1997,13(4):281-285.
    [38]郑咏梅,张军,陈星旦,等.短波近红外光谱的整粒小麦蛋白质PLS方法的定量分析.光谱学与光谱分析,2004,24(9):1047-1049.
    [39]曹立群.近红外光谱法在快速测定汽油性质中的应用.河南化工,2004,6:40-41.
    [40]董文宾,王顺民.近红外光谱技术在食品分析中的应用.食品研究与开发,2004,25(2):113-114.
    [41]屈凌波,相秉仁,安登魁,等.近红外光谱在制药过程控制分析中的应用.中国医药工业杂志,1996,27(11):526-528.
    [42]李凤瑞,唐玉国,肖宝兰.应用近红外光谱分析技术测量煤质发热量.电站系统工程,2004,20(3):19-20.
    [43]张铁强,郭山河,何丽桥.应用近红外分析技术检测烟丝水份.红外技术,1995,17(5):45-48.
    [44]王菊香,申刚,刑志娜.近红外光谱分析在液体推进剂分析中的应用.化学通报,2004,67:1-4.
    [45]倪永年.化学计量学在分析化学中的应用.北京:科学出版社,2004.
    [46]许禄,邵学广.化学计量学方法.北京:科学出版社,2004.
    [47]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展,2004,16(4):528-542.
    [48]候林法.复合固体推进剂.北京:中国宇航出版社,1994.
    [49]中华人民共和国国家军用标准.三-1-(2-甲基丙啶)氧化膦规范.GJB1959-94.
    [50]Tompa A S and Barefoot R D.Determination of water and hydrogen bonding in tris-[1-(2-methyl)aziridinyl]phosphine oxide by infrared and nuclear magnetic resonance spectrometry.Anal.Chem.,1968,40(3):650-652.
    [51]林道昌.导数光谱法测定三(2-甲基丙啶)氧化膦-1中微量水分.黎明化工,1997,6:28-30.
    [52]汪尔康.21世纪的分析化学.北京:科学出版社,1999.
    [53]Jouan R D,Walczak B,Massart D L.Comparison of multivariate methods based on latent vectors and methods based on wavelength selection for the analysis of near-infrared spectroscopic data.Analytica Chimica Acta,1995,304(3):285-295.
    [54]Xu L and Zhang W J.Comparison of different methods for variable selection.Analytica Chimica Acta,2001,446(1-2):477-483.
    [55]李敏强,寇纪松,林丹,等.遗传算法的基本理论与应用.北京:科学出版社,2002.
    [56]张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社,2000.
    [57]Sangit C,Matthew L,Lynch L A.Genetic algorithms and their statistical applications:an introduction.Computational Statistics and Data Analysis,1996,22(6):633-651.
    [58]褚小立,袁洪福,陆婉珍.光谱多元校正中的模型传递.光谱学与光谱分析,2001,21(6):881-885.
    [59]徐广通,袁洪福,陆婉珍.近红外光谱定量校正模型适用性研究.光谱学与光谱分析,2001,21(4):459-463.
    [60]褚小立,袁洪福,陆婉珍.普鲁克分析用于近红外光谱仪的分析模型传递.分析化学,2002,30(1):114-119.
    [61]Walczak B,Bouveresse E,Massart D L.Standardization of near-infrared spectra in the wavelet domain.Chemometrics and Intelligent Laboratory Systems,1997,36(1):41-51.
    [62]Gislason J,Chan H,Sardashti M.Calibration transfer of chemometrics models based on process nuclear magnetic resonance spectroscopy.Applied Spectroscopy,2001,55(11):1553-1560.
    [63]Park K S,Ko Y H,Lee H.Near-infrared spectral data transfer using independent standardization samples,a case study on the trans-alkylation process.Chemometrics and Intelligent Laboratory Systems,2001,55(1):53-65.
    [64]闵顺耕,李宁,张明祥.近红外光谱分析中异常值的判别与定量模型优化.光谱学与光谱分析,2004,24(10):1205-1209.
    [65] William J E. Outlier Detection in Multivariate Analytical Chemical Data. Anal. Chem., 1998, 70(11): 2372-2379.
    [66] Walczak B . Outlier detection in multivariate calibration. Chemometrics Intell.Lab.Syst., 1995, 28(2): 259-272.
    [67] Pell R J. Multiple outlier detection for multivariate calibration using robust statistical techniques. Chemometrics Intell.Lab. Syst., 2000, 52(1): 87-104.
    [68]Jouan R D, Bouveresse E, Massart D L, et al. Detection of prediction outliers and inliers in multivariate calibration. Anal. Chim. Acta, 1999, 388(3): 283-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700