用户名: 密码: 验证码:
基于化学法控制的亚硝化与厌氧氨氧化的耦合工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对低碳氮比废水中有机质含量不能满足正常反硝化除氮所需碳源的情况,近年来出现了短程硝化反硝化(SND)和厌氧氨氧化(ANAMMOX)新工艺,已在污泥厌氧消化液、垃圾渗沥液、养殖废水和味精废水等高氨氮废水的脱氮处理中得到了广泛应用。实现短程反硝化和厌氧氨氧化过程成功的关键,首要的是控制氨氮亚硝化步骤。尽管国内外对氨氮亚硝化进行了大量而卓有成效的研究工作,也取得了一些积极成果,如控制废水的温度、pH、碱度、水力停留时间(HRT)和溶解氧(DO)等工艺参数,但因受水质和有机负荷的波动以及环境条件变化的影响,仍然存在着过程控制复杂、亚硝化不稳定、效率不高等问题。因此研究一种经济、简便、易行的控制亚硝化的手段,具有重要的理论意义和应用价值。
     论文首先研究了化学试剂法培养好氧亚硝化颗粒污泥,实现同时短程硝化反硝化脱氮工艺。通过添加NOB选择性抑制剂(氯酸钾或羟胺)培养亚硝化颗粒污泥。在SBR反应器内,进水中的有机质大部分得到去除,从而降低或消除了有机质对厌氧氨氧化菌的抑制作用,有利于实现厌氧氨氧化和异养反硝化协同脱氮作用。然后通过亚硝化颗粒污泥与厌氧氨氧化耦合技术,对低浓度、低碳氮比废水处理进行了系统的实验室研究。
     在MBBR中试装置中,通过添羟胺快速启动了短程硝化,结合其他控制参数(游离氨、游离亚硝酸、低污泥龄和中温等),能够很好的控制出水NO2--N/NH4+-N比例,并将消化液中少量可降解有机质去除,为ANAMMOX中试装置提供合适的进水水质。
     利用无纺布生物转盘进行了厌氧氨氧化反应快速启动的中试实验,并利用短程硝化/厌氧氨氧化耦合工艺进行污泥厌氧消化液的处理。
     论文取得了一些创新性的研究成果,主要包括以下几点:
     (1)通过间歇性添加5mM氯酸钾能够实现硝化颗粒污泥短程硝化反硝化脱氮。在添加1~10mM氯酸钾条件下,均能实现系统的亚硝酸积累,NOB受到不同强度的抑制,AOB并未受到明显的抑制。荧光原位杂交结果显示亚硝化颗粒污泥主要由AOB组成,NOB数量远远低于AOB。长期实验结果显示,在温度和溶解氧未加控制的条件下,当进水pH、NH4+-N和COD分别为7.8-8.2、100mg/L和400mg/L时,间歇地添加氯酸钾能使SBR内快速出现NO2--N积累,其积累率达到93%,NH4+-N和COD的去除率也分别达到99%和79%。同时90%以上的的氯酸钾被分解为无毒的氯离子,不会给生态环境带来二次污染。
     (2)通过间歇地投加羟胺能够快速启动颗粒污泥系统的短程硝化反硝化,三周即可完成短程硝化中试装置启动。在常温条件下,当进水NH4+-N和COD浓度分别为100mg/L和400mg/L,pH控制在8.0左右时,投加10mg/L羟胺后SBR中快速呈现NO2--N积累现象,NO2--N的平均积累率达到99.8%,TN和COD的去除率分别为57%和79%。SEM结果显示亚硝化颗粒污泥结构致密,主要由短杆菌和球菌组成,且表面有很多利于传质作用的微孔。FISH结果显示亚硝化颗粒污泥主要有AOB组成,而NOB的量远远低于AOB的量。
     (3)厌氧氨氧化和亚硝酸盐型反硝化耦合过程中,异养反硝化菌优于厌氧氨氧化菌竞争NO2--N,厌氧氨氧化/异养反硝化协同作用关系主要受COD/NO2--N比例的制约,当C/N≤1.9,NO2--N/NH4+-N为2:1时,反应器以ANAMMOX反应为主,NO2--N、NH4+-N、 COD和TN的去除率分别达到96%、93%、87%和94%。
     (4)在室温(18-25℃)、接种少量ANAMMOX污泥(100mg/L)和pH为7.0的情况下,能够快速启动无纺布生物转盘中试装置。经过90多天的运行,ANAMMOX中试装置处理负荷达到1kg N m-3d-1, ANAMMOX细菌生物膜由黄色逐渐变成红色,生物量增加了20多倍。利用HZO和16S rRNA基因分别进行PCR扩增并构建DNA克隆文库,结果显示ANAMMOX细菌主要由Candidatus Jettenia和Candidatus Brocadia组成。利用本装置处理污泥消化液,表明该工艺处理高氨氮废水具有可行性。
At present, some new biological nitrogen removal methods, such as simultaneous nitritation and denitritation and anaerobic ammonium oxidation (ANAMMOX) are invented according to the treatment of low C/N wastewaters, which could not be well treated by conventional nitrification and denitrification. Partial nitritation/ANAMMOX has been successfully applied to treat sludge digester liquid, landfill leachate, livestock wastewater and monosodium glutamate wastewater. The key of nitritation and ANAMMOX is to control ammonia oxidation to nitrite but not nitrate. Some control parameters of nitritation, such as medium temperature, pH, alkalinity, HRT and DO, have been successfully used to inhibit ammonia oxidation to nitrite. However, it is difficult to operate through these control parameters, and the nitritation system is seriously influenced by the water quality, organic loading and environmental conditions. Therefore, it is necessary to find an economical, simple, and easy method for the nitritation process, which has important theoretical significance and application value.
     This article attempts to cultivate nitrosifying granules by chemical method, and simultaneous nitritation and denitritation adjusted by chemical reagent is successfully in the aerobic granular system. Aerobic nitrosifying granules are cultured by dosing NOB-selective inhibitors (chlorate and hydroxylamine). In the SBR, most of the organic matters could be removed, reducing or eliminating the inhibitory effect of organic matters on the ANAMMOX bacteria. Thus, ANAMMOX bacteria and denitrifiers can coupled well for treating of low COD contained wastewaters. Then, a lab-scale nitrosifying granules/ANAMMOX experiment is conducted for the treatment of low ammonia and low C/N wastewaters.
     In the pilot-scale MBBR, partial nitritation is quickly established with hydroxylamine addition. Then the NOB inhibitor is not added into the MBBR, but nitritation could be well maintained using the other control parameters, such as FA, FNA, SRT and temperature, etc. Most of the biodegradable organics are removed and the effluent nitrite/ammonia ratio is also suitable for the ANAMMOX.
     Moreover, quick start-up of ANAMMOX is studied in a pilot-scale no-woven RBC, and then it is applied to treat sludge digester liquid. Some innovative findings have been made as follows:
     (1)Partial nitrification was successfully achieved with addition of5mM chlorate in the aerobic granular system. Chlorate with concentrations ranged from1mM to10mM is beneficial for the nitrite accumulation. This chemical inhibitor selectively inhibited NOB over AOB. FISH analysis revealed that AOB became the dominant nitrifying bacteria, whereas NOB was detected only in low abundance. During stable partial nitrification, the influent pH was kept at7.8-8.2, while the DO and temperature were not controlled in the SBR. When the NH4+-N and COD levels were kept at100mg/l and400mg/1in the influent, the NH4+-N and COD removal efficiencies reached99%and79%, respectively. The NO2--N accounted for93%of the NOx--N (NO2--N+NO3--N) in the effluent. Furthermore, about90%of the chlorate was reduced to nontoxic chloride, thus it would not cause environmental problem.
     (2)Simultaneous nitritation and denitritation was successfully achieved by hydroxylamine dosing, and it just took3weeks to start up a pilot nitritation reactor. Nitrite accumulation was quickly detected after10mg/L hydroxylamine addition, treating synthetic wastewater containing100mg/1NH4+-N and400mg/1COD under conditions of room temperature ad pH7.8-8.2. TN removal efficiency was57%with a NO2--N/NO-X-N ratio of99.8%. Meanwhile,79%COD was removed by aerobic granules. SEM detection showed that the main composition of aerobic granules was coccus and bacilli bacteria. FISH results indicated that AOB were the dominant bacteria of aerobic granules.
     (3)Heterotrophic denitrifying bacteria were competitive with ANAMMOX bacteria for the NO2--N in the simultaneous ANAMMOX and denitritation. When the COD/NO2--N decreased to1.9, and NO2--N/NH4+-N was2:1, NO2--N, NH4+-N, COD and TN removal efficiencies reached93%,96%,87%and94%, respectively. ANAMMOX was the main reaction.
     (4)Results shows ANAMMOX reaction was quickly detected with little ANAMMOX seed sludge in the non-woven rotating biological contactor (NRBC), under the conditions of temperature18~25℃, pH7.0. During the first90days, the TN removal rate reached about1kg·N·m-3·d-1. The color of ANAMMOX biofilm changed from pale yellow to dark red, with a biomass improvement of20folds. Clone library analysis of HZO gene and16S rRNA showed that ANAMMOX bacteria in the pilot RBC were mainly composed of Candidatus Jettenia, Candidatus Brocadia. Then the NRBC was applied to treat digester liquid, and the results demonstrated that it had feasibility to remove nitrogen from high-ammonia wastewater by ANAMMOX.
引文
[1]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003,36-44.
    [2]李志瑞,高会杰,孙丹凤.含氨废水生物脱氮工艺的研究进展[J].当代化工,2010,39(6):664-666.
    [3]王淑莹,孙洪伟.杨庆,等.传统生物脱氮反硝化过程的生化机理及动力学[J].应用与环境生物学报.2008,14(5):732-736.
    [4]Park J, Yoo Y. Biological nitrate removal in industrial wastewater treatment:which electron donor we can choose [J]. Applied Microbiology and Biotechnology,2009,82(3): 415-429.
    [5]van Dongen U, Jetten M S, van Loosdrecht M C. The SHARON-Anammox process for treatment of ammonium rich wastewater [J]. Water science and technology,2001,44(1): 153-160.
    [6]Zhu G, Peng Y, Li B, et al. Biological removal of nitrogen from wastewater[J]. Reviews of environmental contamination and toxicology,2008,192:159-195.
    [7]Voets J P, Vanstaen H, Verstraete W. Removal of nitrogen from highly nitrogenous wastewaters [J]. Water Pollution Control Federation,1975,47(2):394-398.
    [8]Hellinga C, Schellen A A J C, Mulder J W, et al.The sharon process:An innovative method for nitrogen removal from ammonium-rich waste water [J].Water Science and Technology,1998,37(9):135-142.
    [9]Wiesmann U. Biological nitrogen removal from wastewater [J]. Biotechnics Wastewater, 1994,51:113-154.
    [10]Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen between nitrosomanas europaea and nitrobacteria winogradskyi grown in mixed continuous cultures [J]. Archives of Microbiology,1993,159(5):453-459.
    [11]Tchobanoglous G, Burton F L, Stensel H D, et al. Wastewater Engineering:Treatment and Reuse [M]. New York:McGraw-Hill,2003.
    [12]Khin T, Annachhatre A P. Novel microbial nitrogen removal processes [J]. Biotechnology Advances,2004,22(7):519-532.
    [13]Hunik J H. Engineering aspects of nitrification with immobilized cells [D]. Wageningen: Wageningen Campus,1993.
    [14]Anthonisen A C, Loehr R C, Prakasam T B, et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Water Pollution Control Federation,1976,48(5):835-852.
    [15]VADIVELU, M. V, KELLER, et al. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter [J]. Water Science and Technology,2007,56(7):89-97.
    [16]Campos J L, Garrido-Fernandez J M, Mendez R, et al. Nitrification at high ammonia loading rates in an activated sludge unit [J]. Bioresource Technology,1999,68(2): 141-148.
    [17]郭建华,彭永臻,黄惠臖,等.好氧曝气时间实时控制实现短程硝化[J].清华大学学报:自然科学版.2009,49(12):1997-2000.
    [18]Yang Q, Peng Y, Liu X, et al.Nitrogen Removal via Nitrite from Municipal Wastewater at Low Temperatures using Real-Time Control to Optimize Nitrifying Communities [J]. Environmental Science & Technology,2007,41(23):8159-8164.
    [19]宋学起,彭永臻,王淑莹,等.投加抑制剂实现短程硝化反硝化[J].水处理技术,2005,31(4):38-40.
    [20]Belser L W, Mays E L. Specific Inhibition of Nitrite Oxidation by Chlorate and Its Use in Assessing Nitrification in Soils and Sediments [J]. Applied and Environmental Microbiology,1980,39(3):505-510.
    [21]Erguder T H, Boon N, Vlaeminck S E, et al. Partial Nitrification Achieved by Pulse Sulfide Doses in a Sequential Batch Reactor [J]. Environmental Science & Technology, 2008,42(23):8715-8720.
    [22]Hao O, Chen J. Factors Affecting Nitrite Buildup in Submerged Filter System [J]. Journal of Environmental Engineering,1994,120(5):1298-1307.
    [23]Eilersen A M, Henze M, Kloft L. Effect of volatile fatty acids and trimethylamine on nitrification in activated sludge [J]. Water Research,1994,28(6):1329-1336.
    [24]Dahl C, Sund C, Kristensen G H, et al. Combined biological nitrification and denitrification of high-salinity wastewater [J]. Water Science and Technology,1997, 36(2-3):345-352.
    [25]Campos J L, Mosquera-Corral A, Sanchez M, et al. Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit [J]. Water Research,2002, 36(10):2555-2560.
    [26]Moussa M S, Sumanasekera D U, Ibrahim S H, et al.Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers [J].Water Research,2006,40(7):1377-1388.
    [27]Broda E.Two kinds of lithotrophs missing in nature [J].Zeitschrift fur allgemeine Mikrobiologie,1977,17(6):491-493.
    [28]Mulder A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J].FEMS Microbiology Ecology,1995, 16(3):177-184.
    [29]van de Graaf A A, de Bruijn P, Robertson L A, et al.Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor [J]. Microbiology,1997,143(7):2415-2421.
    [30]Strous M, Pelletier E, Mangenot S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature,2006,440(7085): 790-794.
    [31]van Niftrik L A, Fuerst J A, Damste J S S, et al.The anammoxosome:an intracytoplasmic compartment in anammox bacteria [J]. FEMS Microbiology Letters, 2006,233(1):7-13.
    [32]Mike, Strous M, Katinka, et al.The anaerobic oxidation of ammonium [J].FEMS Microbiology Reviews,1998,22(5):421-437.
    [33]Dalsgaard T, Thamdrup B, Canfield D E.Anaerobic ammonium oxidation (anammox) in the marine environment [J].Research in Microbiology,2005,156(4):457-464.
    [34]Jetten M S M, Niftrik L V, Strous M, et al.Biochemistry and molecular biology of anammox bacteria [J].Critical Reviews in Biochemistry and Molecular Biology,2009, 44(2-3):65-84.
    [35]Kartal B, Kuenen J G, van Loosdrecht M C M.Sewage Treatment with Anammox [J].Science,2010,328 (5979):702-703.
    [36]Fux C, Marchesi V, Brunner I, et al. Anaerobic ammonium oxidation of ammonium-rich waste streams in fixed-bed reactors [J]. Water science and technology:a journal of the International Association on Water Pollution Research,2004,49(11-12):77-82.
    [37]Egli K, Fanger U, Alvarez P J J, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate [J]. Archives of Microbiology,2001,175(3):198-207.
    [38]Van Hulle S W H, Vandeweyer H J P, Meesschaert B D, et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams [J]. Chemical Engineering Journal,2010,162(1):1-20.
    [39]Third K A, Sliekers A O, Kuenen J G, et al.The CANON System (Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium Limitation:Interaction and Competition between Three Groups of Bacteria[J]. Systematic and Applied Microbiology,2001,24(4):588-596.
    [40]Kuai L, Verstraete W. Ammonium Removal by the Oxygen-Limited Autotrophic Nitrification-Denitrification System [J]. Applied and Environmental Microbiology,1998, 64(11):4500-4506.
    [41]Furukawa K, Lieu P K, Tokitoh H, et al. Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances[J]. Water science and technology,2006,53(6):83-90.
    [42]Wett B. Development and implementation of a robust deammonification process [J]. Water science and technology,2007,56(7):81-88.
    [43]Kalyuzhnyi S, Gladchenko M, Mulder A, et al. DEAMOX-new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite[J]. Water research,2006,40(19):3637-3645.
    [44]Kartal B, Keltjens J T, Jetten M S. The Metabolism of Anammox [J]. eLS,2008.
    [45]Abma W R, Schultz C E, Mulder J W, et al. Full-scale granular sludge Anammox process [J]. Water science and technology,2007,55(8-9):27-33.
    [46]van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam [J].Water Research,2007,41(18):4149-4163.
    [47]PAQUES:ANAMMOX(?),2012 [EB/OL]. http://en.paques.nl/pageid=66/ANAMMOX%C2%E.html.
    [48]郭文艳.采用Anammox颗料污泥工艺对酵母废水进行脱氮处理的研究[J].北方环境,2011,23(5):134-136.
    [49]Ni B, Yu H. Mathematical modeling of aerobic granular sludge:A review [J]. Biotechnology Advances,2010,28(6):895-909.
    [50]Heijnen J J, Van Loosdrecht M C M. Method for acquiring grain-shaped growth of a microorganism in a reactor [P]. European patent EP0826639,1998.
    [51]Show K Y, Lee D J, Tay J H. Aerobic Granulation:Advances and Challenges [J]. Applied biochemistry and biotechnology,2012,167(6):1622-1640.
    [52]McSwain B S, Irvine R L, Hausner M, et al. Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge [J]. Applied and Environmental Microbiology,2005,71(2):1051-1057.
    [53]Wilen B, Onuki M, Hermansson M, et al. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability [J].Water Research,2008,42(8-9):2300-2308.
    [54]Qin L, Tay J, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors [J]. Process Biochemistry,2004,39(5):579-584.
    [55]McSwain B S, Irvine R L, Wilderer P A. The influence of settling time on the formation of aerobic granules [J]. Water science and technology:a journal of the International Association on Water Pollution Research,2004,50(10):195.
    [56]Qin L, Liu Y, Tay J. Effect of settling time on aerobic granulation in sequencing batch reactor [J]. Biochemical Engineering Journal,2004,21(1):47-52.
    [57]Sanin S L, Sanin F D, Bryers J D. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria [J]. Process Biochemistry,2003,38(6):909-914.
    [58]Wang F, Yang F, Zhang X, et al. Effects of Cycle Time on Properties of Aerobic Granules in Sequencing Batch Airlift Reactors [J]. World Journal of Microbiology and Biotechnology,2005,21(8):1379-1384.
    [59]McSwain B S, Irvine R L, Wilderer P A. The effect of intermittent feeding on aerobic granule structure [J]. Water Sci Technol,2004,49(11-12):19-25.
    [60]Liu Y, Tay J. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors [J]. Enzyme and Microbial Technology,2007, 41(4):516-522.
    [61]Tay J H T, Liu Q S L, Liu Y L. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. Applied Microbiology and Biotechnology,2001, 57(1):227-233.
    [62]Adav S, Lee D, Lai J. Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances [J]. Applied Microbiology and Biotechnology,2007,77(1):175-182.
    [63]王芳SBAR中好氧颗粒污泥的培养及其特性研究[D].大连理工大学,2004.
    [64]Li A, Yang S, Li X, et al. Microbial population dynamics during aerobic sludge granulation at different organic loading rates [J]. Water Research,2008,42(13):3552-3560.
    [65]刘宏波,杨昌柱.濮文虹,等.有机负荷对颗粒化SBR反应器的影响研究[J].环境科学,2009,30(5):1449-1453.
    [66]Kim I S, Kim S, Jang A. Characterization of aerobic granules by microbial density at different COD loading rates [J]. Bioresource Technology,2008,99(1):18-25.
    [67]Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor [J]. Water Research,1999,33(10):2283-2290.
    [68]Jiang H, Tay J, Liu Y, et al. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors [J]. Biotechnology Letters,2003,25(2):95-99.
    [69]Wang S, Shi W, Yu S, et al. Formation of aerobic granules by Mg2+ and Al3+ augmentation in sequencing batch airlift reactor at low temperature. Bioprocess and Biosystems Engineering.2012,35(7):1049-1055.
    [70]Liu Y, Liu Y, Tay J.The effects of extracellular polymeric substances on the formation and stability of biogranules [J]. Applied Microbiology and Biotechnology,2004,65(2): 143-148.
    [71]Di Iaconi C, Ramadori R, Lopez A, et al.Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor [J]. Biochemical Engineering Journal,2006,30(2):152-157.
    [72]Zhang L, Feng X, Zhu N, et al.Role of extracellular protein in the formation and stability of aerobic granules [J]. Enzyme and Microbial Technology,2007,41(5):551-557.
    [73]Wang Z, Liu Y, Tay J. Biodegradability of extracellular polymeric substances produced by aerobic granules [J]. Applied Microbiology and Biotechnology,2007,74(2): 462-466.
    [74]Kim D, Sco D. Selective enrichment and granulation of ammonia oxidizers in a sequencing batch airlift reactor [J]. Process Biochemistry,2006,41(5):1055-1062.
    [75]Jang A, Yoon Y, Kim I S, et al. Characterization and evaluation of aerobic granules in sequencing batch reactor [J]. Journal of Biotechnology,2003,105(1-2):71-82.
    [76]Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge [J]. Water Research,2005,39(19):4817-4823.
    [77]郑雄,陈银广,刘晨晨,等.剩余活性污泥碱性发酵液用于厌氧交替好氧-缺氧序批式反应器生物除磷脱氮的碳源的研究[J].中国化学工程学报(英文版),2010,18(3):478-485.
    [78]Saha N C, Bhunia F, Kaviraj A. Toxicity of phenol to fish and aquatic ecosystems [J]. Bull Environ Contam Toxicol,1999,63(2):195-202.
    [79]Tay J H, Jiang H L, Tay S T L. High-rate biodegradation of phenol by aerobically grown microbial granules [J]. Journal of environmental engineering,2004,130(12):1415-1423.
    [80]Adav S S, Chen M Y, Lee D J, et al. Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis[J]. Biotechnology and bioengineering,2007,96(5): 844-852.
    [81]Ho K L, Chen Y Y, Lin B, et al. Degrading high-strength phenol using aerobic granular sludge[J]. Applied microbiology and biotechnology,2010,85(6):2009-2015.
    [82]Adav S S, Lee D J, Ren N Q. Biodegradation of pyridine using aerobic granules in the presence of phenol[J]. Water research,2007,41(13):2903-2910.
    [83]刘风华,曾萍,宋永会,等.ABR-好氧颗粒污泥处理黄连素废水的启动研究[J].环境工程学报,2011,05(9):1937-1942
    [84]杨娜.生化处理利福平抗生素制药废水的实验研究[MS thesis].东北大学,2009.
    [85]Liu Y, Yang S, Xu H, et al. Biosorption kinetics of cadmium(Ⅱ) on aerobic granular sludge [J]. Process Biochemistry,2003,38(7):997-1001.
    [86]Liu Y, Xu H, Yang S, et al. A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules[J]. Journal of Biotechnology,2003,102(3):233-239.
    [87]詹婧,孙庆业,石先阳.好氧颗粒污泥吸附孔雀绿研究[J].安徽大学学报(自然科学版),2009,33(6):78-82.
    [88]Sun X, Wang S, Liu X, et al. Biosorption of Malachite Green from aqueous solutions onto aerobic granules:Kinetic and equilibrium studies [J]. Bioresource Technology, 2008,99(9):3475-3483.
    [89]Kolekar Y M, Nemade H N, Markad V L, et al. Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules [J]. Bioresource Technology,2012,104(0): 818-822.
    [90]Gao J, Zhang Q, Su K, et al. Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge [J]. Journal of Hazardous Materials,2010,174(1-3): 215-225.
    [91]郝晓地,孙晓明.好氧颗粒污泥技术工程化进展一瞥[J].中国给水排水,2011,27(20):9-12.
    [92]Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria [J]. Journal of Biotechnology,2004,108(2):161-169.
    [93]Amann R I, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology [J]. Journal of Bacteriology,1990,172(2):762-770.
    [94]Mobarry B K, Wagner M, Urbain V, et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria[J]. Applied and Environmental Microbiology,1996,62(6):2156-2162.
    [95]Wagner M, Rath G, Koops H P, et al. In situ analysis of nitrifying bacteria in sewage treatment plants [J]. Water Science and Technology,1996,34(1):237-244.
    [96]Daims H, Nielsen P H, Nielsen J L, et al. Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants:diversity and in situ physiology[J]. Water science and technology,2000,41(4-5):85-90.
    [97]Schmid M C, Maas B, Dapena A, et al. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria [J]. Applied and environmental microbiology, 2005,71(4):1677-1684.
    [98]Harmsen H, Prieur D, Jeanthon C. Group-Specific 16S rRNA-Targeted Oligonucleotide Probes To Identify Thermophilic Bacteria in Marine Hydrothermal Vents [J]. Applied and environmental microbiology,1997,63(10):4061-4068.
    [99]Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic and applied microbiology,2000,23(1):93-106.
    [100]Manochai P, Sruamsiri P, Wiriya-alongkorn W, et al. Year around offseason flower induction in longan (Dimocarpus longan. Lour.) trees by KClO3 applications:potentials and problems [J]. Scientia horticulturae,2005,104(4):379-390.
    [101]Germgard U. Chlorate discharges from bleach plants:how to handle a potential environmental problem [J]. Paperi ja puu,1989,71(3):255-260.
    [102]Jiang C, Li H, Lin C. Effects of activated sludge on the degradation of chlorate in soils under varying environmental conditions[J]. Journal of hazardous materials,2009,162(2): 1053-1058.
    [103]Bedzyk L, Wang T, Ye R W. The Periplasmic Nitrate Reductase inPseudomonas sp. Strain G-179 Catalyzes the First Step of Denitrification [J]. Journal of bacteriology, 1999,181(9):2802-2806.
    [104]Rusmana I, Nedwell D B. Use of chlorate as a selective inhibitor to distinguish membrane-bound nitrate reductase (Nar) and periplasmic nitrate reductase (Nap) of dissimilative nitrate reducing bacteria in sediment[J]. FEMS microbiology ecology, 2004,48(3):379-386.
    [105]Lees H, Simpson J R. The biochemistry of the nitrifying organisms.5. Nitrite oxidation by Nitrobacter [J]. Biochemical Journal,1957,65(2):297.
    [106]Hynes R K, Knowles R. Inhibition of chemoautotrophic nitrification by sodium chlorate and sodium chlorite:a reexamination [J]. Applied and environmental microbiology,1983,45(4):1178-1182.
    [107]Perchlorate Environmental Contamination-Toxicological Review and Risk Characterization:External Review Draft [M/OL]. Washington, DC:United States Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment,2002. http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=36247.
    [108]Lees H, Quastel J H. Bacteriostatic effects of potassium chlorate on soil nitrification [J]. Nature,1945.155(3930):276-278.
    [109]Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria [J]. Journal of Biotechnology,2004,108(2):161-169.
    [110]李志华,付进芳,李胜,等.好氧颗粒污泥处理综合城市污水的中试研究[J].中国给水排水,2011,27(15):4-8.
    [111]Coates J D, Michaelidou U, Bruce R A, et al. Ubiquity and diversity of dissimilatory (per) chlorate-reducing bacteria[J]. Applied and Environmental Microbiology,1999, 65(12):5234-5241.
    [112]Gao D, Liu L, Liang H, et al. Aerobic granular sludge:characterization, mechanism of granulation and application to wastewater treatment [J]. Critical reviews in biotechnology,2011,31(2):137-152.
    [113]Hu S. Acute substrate-intermediate-product related inhibition of nitrifiers [D]. Purdue University,2002.
    [114]Yang L, Alleman J E. Investigation of batchwise nitrite build-up by an enriched nitrification culture [J]. Water Science & Technology,1992,26(5-6):997-1005.
    [115]van der Star W R L, van de Graaf M J, Kartal B, et al.Response of Anaerobic Ammonium-Oxidizing Bacteria to Hydroxylamine [J].Applied and Environmental Microbiology,2008,74(14):4417-4426.
    [116]Bottcher B, Koops H. Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine [J]. FEMS Microbiology Letters,1994,122(3):263-266.
    [117]de Bruijn P, van de Graaf A A, Jetten M S M, et al.Growth of Nitrosomonas europaea on hydroxylamine [J]. FEMS Microbiology Letters,1995,125(2-3):179-184.
    [118]DETURK W E, BERNHEIM F. Effects of ammonia, methylamine, and hydroxylamine on the adaptive assimilation of nitrite and nitrate by a Mycobacterium [J].Journal of bacteriology,1958,75(6):691-696.
    [119]Toh S T, Tay J T, Moy B M, et al.Size-effect on the physical characteristics of the aerobic granule in a SBR [J].Applied Microbiology and Biotechnology,2003,60(6): 687-695.
    [120]Yang S, Tay J, Liu Y.Inhibition of free ammonia to the formation of aerobic granules [J]. Biochemical Engineering Journal,2004,17(1):41-48.
    [121]朱明石,周少奇ANAMMOX与反硝化协同作用及氮素负荷研究[J].环境工程学报,2008,2(6):737-742.
    [122]Guven D, Dapena A, Kartal B, et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria[J]. Applied and environmental microbiology, 2005,71(2):1066-1071.
    [123]Van de Graaf A A, de Bruijn P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor [J]. Microbiology,1996, 142(8):2187-2196.
    [124]Dapena-Mora A, Fernandez I, Campos J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme and Microbial Technology,2007,40(4):859-865.
    [125]Guo J, Peng Y, Wang S, et al. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure[J]. Bioresource technology, 2009,100(11):2796-2802.
    [126]Jensen M M, Thamdrup B, Dalsgaard T. Effects of specific inhibitors on anammox and denitrification in marine sediments [J]. Applied and environmental microbiology,2007, 73(10):3151-3158.
    [127]解英丽,耿大伟,吕楠.亚硝酸盐与硝酸盐反硝化对比试验研究[J].给水排水,2009,35(S2):213-215.
    [128]刘牡,彭永臻,吴莉娜,等.FA与FNA对两级UASB-A/O处理垃圾渗滤液短程硝化的影响[J].化工学报,2010,61(1):172-179.
    [129]Tang C J, Zheng P, Wang C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge [J]. Water research,2011,45(1):135-144.
    [130]J Jetten M S M, Strous M, Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium [J]. FEMS Microbiology Reviews,2006,22(5):421-437.
    [131]van der Star W R L, Abma W R, Blommers D, et al.Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam [J].Water Research,2007,41(18):4149-4163.
    [132]Wett B. Solved upscaling problems for implementing deammonification of rejection water [J]. Water science and technology,2006,53(12):121-128.
    [133]Joss A, Salzgeber D, Eugster J, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR[J]. Environmental science & technology,2009,43(14):5301-5306.
    [134]唐崇俭,郑平,陈建伟,等.中试厌氧氨氧化反应器的启动与调控[J].生物工程学报,2009,25(3):406-412.
    [135]Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation [J]. Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [136]Strous M, Van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge [J]. Applied and environmental microbiology,1997,63(6):2446-2448.
    [137]Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [138]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].科学出版社,2004.
    [139]Quan Z X, Rhee S K, Zuo J E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor [J]. Environmental microbiology,2008,10(11):3130-3139.
    [140]Neef A, Amann R, Schlesner H, et al. Monitoring a widespread bacterial group:in situ detection of planctomycetes with 16S rRNA-targeted probes [J]. Microbiology,1998, 144(12):3257-3266.
    [141]Lane D J.16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics [M]. John Wiley & Son Ltd,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700