用户名: 密码: 验证码:
长江口及其邻近海域氮稳定同位素特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以稳定氮同位素(δ~(15)N)技术为基础,对长江口海域氮的同位素特征及其环境意义进行了研究。以前人建立的一套完整的水体中氮的稳定同位素分析预处理方法为基础,通过一系列物理、化学改性处理制备选取了更适于水中溶解态硝酸盐δ~(15)N预处理的国产沸石。运用该方法对2009年和2010年长江口海域表层和断面水体中的溶解态硝酸盐和悬浮颗粒物的δ~(15)N特征进行分析,根据不同季节、不同区域内δ~(15)N的特征研究水体中氮的迁移、转化等生物地球化学过程,揭示其环境行为,从而对该海域的氮循环机制进行探索。主要结果如下:
     为选取更适于水中溶解态硝酸盐δ~(15)N预处理的沸石,通过多种改性方法(重力筛选、钠改性、酸改性、微波改性和超声波改性等)对几种天然沸石进行改性处理,提高其酸性条件下对低浓度铵氮吸附率。改性处理后,几种沸石在酸性条件下对低浓度铵氮吸附率达90%以上,氮同位素分馏系数为-0.8‰~-0.4‰,制备出符合海水硝酸盐氮同位素预处理的沸石材料。
     将选取好的沸石应用于本实验室前期确立了的水体氮的稳定同位素分析预处理方法,对2009年和2010年2、5、8、11月份长江口海域表层溶解态硝酸盐δ~(15)N值(δ~(15)NO_3)以及2010年2、5、8、11月份长江口海域断面水体15NO_3进行分析。研究发现,长江口海域表层和断面水体中15NO_3组成具有明显的时空分布特点,反映了不同区域受不同的物理、生物地球化学作用影响。口门内,15NO_3值的变化与浓度相一致,且离散程度较小,说明长江径流输入在该区域影响明显;通过河道δ~(15)NO_3值的变化可反映出排污口的排污影响。最大浑浊带,表层水域和底部水域各季节所受到影响作用复杂,5月份表层水体主要受同化吸收作用影响,外海区下层水体受固氮作用影响;8月份底部水体主要受硝化作用影响,表层在上升流作用下,受硝化作用和同化吸收的影响;11月份底层水体主要受硝化作用影响,表层受同化吸收和反硝化作用影响。外海区,底部水体主要受硝化作用影响,表层除受硝化作用影响外,还受同化吸收作用及反硝化作用的影响。同时,本文对长江口海域硝化反应的主要影响因子(温度、盐度、DO、可利用营养盐、硝化细菌等)进行探讨,并对硝化反应的同位素分馏效应进行了评估,利用瑞利公式计算得出长江口海域11月份水体中硝化作用的分馏系数为-8‰。发现低氧水体中由矿化作用和硝化作用再生而来的氮是长江口海域水体富营养化的一个重要来源。
     此外,本文对2009年和2010年2、5、8、11月份长江口海域表层悬浮颗粒物的δ~(15)N(δ~(15)Np以及2010年2、5、8、11月份长江口海域断面水体δ~(15)Np进行研究。发现长江口海域2009年和2010年表层和断面水体中δ~(15)Np组成具有明显的时空分布特点,说明长江口海域不同区域受不同的物理、生物地球化学作用影响。口门内,δ~(15)Np值的变化受长江径流输入影响明显,通过δ~(15)Np值特征反映出长江径流输入的氮2月份和5月份主要来源于农业化肥和大气沉降,8月份和11月份主要来源于工业与生活污水。同时,不同河道排污口附近的δ~(15)Np值不同,说明土地的利用方式可通过δ~(15)Np特征反映出来。口门外海域,不同深度水体发生的生物地球化学过程不同。一般来说,底部水体δ~(15)Np较高,发生了含氮有机物的矿化分解作用;2010年11月底部水体较低的δ~(15)Np是由生物的矿化分解作用和硝化作用、同化吸收作用共同造成的。除2月份外,各季节表层海水均发生了生物的同化吸收作用。2月份长江口海域δ~(15)Np分布受陆源海源物理混合和矿化作用共同影响。
     长江口海域水体中溶解态硝酸盐和悬浮颗粒有机氮之间存在相互转化,二者之间δ~(15)N的变化及其相互关系反映了一定的生物地球化学变化和环境信息。总体而言,长江口海域表层15NO_3的分布水平较δ~(15)Np略低,二者之间的分馏总体平均值偏正向。其中,15NO_3与δ~(15)Np的最低值均出现在2月份,该季节水体中溶解态硝酸盐和悬浮颗粒有机氮主要受长江径流的外源输入影响,同时还受同化吸收作用和矿化作用的影响;5月份水体中氮的生物地球化学作用程度明显升高,δ~(15)Np与15NO_3之间呈现明显的线性负相关,二者之间的分馏偏负,表明微藻的同化吸收作用在该季节作用明显,同时,外海区东部海域发生了颗粒物的矿化分解反应和硝化反应;8月份,δ~(15)NO_3与δ~(15)Np之间分馏为正,且底层水体比表层更大,说明8月份长江口海域中表层与底部水体生物地球化学过程不同,表层主要受生物的同化吸收和硝化作用影响,底部水体受颗粒物的矿化分解和硝化作用影响;11月份,除外海区表层有几个负值外,其余海区均为正值,且呈现出自表层向底层递增的趋势,表层主要受生物的同化吸收和硝化作用影响,底部水体受颗粒物的矿化分解和硝化作用影响。
Stable nitrogen isotope (δ~(15)N) can be used as fingerprints to study sources andsinks of nitrogen in aquatic environments. To reveal nitrogen dynamics in theChangjiang River estuary, variability of nitrogen isotope and its environmentalimplications were studied. Natural zeolites were modified to enhance theirperformances in acid environments for stable nitrogen isotopic analysis in waters. Theδ~(15)N of dissolved nitrate (δ~(15)NO_3) and suspended particulate matters (δ~(15)Np) in thesurface and transect water columns of the Changjiang River estuary were analyzed bythis method in2009and2010. According to the seasonal and spatial variations of15N, fate of nitrogen as well as the biogeochemical processing involved were studiedand its environmental implications were also discussed. Accordingly, the nitrogencycle and its evolution process were explored in the Changjiang River estuary.
     The main conclusions were listed below:
     Several Chinese natural zeolites were modified with multiple methods toincrease their ammonium adsorption efficiency for nitrogen isotope analyses. Beingtreated by gravity screen, sodium chloride, hydrochloric acid, microwave andultrasonic wave, their ammonium adsorption efficiency under acid conditions wereimproved even at low concentrations. The nitrogen isotope fraction factor of newlymodified zeolite was small and the modified zeolite is proper for nitrogen isotopeanalysis of nitrate in seawater.
     The15NO_3in surface and transect water of the Changjiang River estuary wereanalyzed in February, May, August and November of2009and2010. The distributionof15NO_3varied both spatially and temporally, which reflected that different physicaland biogeochemical processes might affect the15NO_3signatures in differentgeographic regions. In the inner estuary,15NO_3was mainly affected by the riverineinput from the Changjiang River. The15NO_3feature in the channel may reflect thedifferent pollution resources from drain outlets. In the Turbidity Maximum zone,complicated biogeochemical processes were found in different seasons. Assimilation was found in both surface and transects waters in May. Nitrification was found in thedeep waters in August. With upwelling current, surface water was influenced bynitrification and assimilation in August. In November, nitrification was found in thedeep waters while assimilation and denitrification was found in the surface water. Inthe adjacent marine area, deep waters were mainly controlled by nitrification, whilesurface waters were influenced by nitrification, assimilation and denitrification.Meanwhile, influence of environmental factors such as temperature, salinity,dissolved oxygen, nutrients of nitrification were discussed. The nitrogen isotopicfactor of nitrification was evaluated to be-8‰using Rayleigh equation. It is inferredthat newly regenerated nitrogen from mineralization and nitrification is an importantsource of eutrophication in the Changjiang River estuary.
     Meanwhile, theδ~(15)Npin surface and transect water of the Changjiang Riverestuary were analyzed in February, May, August and November of2009and2010. Itwas observed that the distribution ofδ~(15)Npvaried seasonally in different regions,which reflected that different physical and biogeochemical processes affected theδ~(15)Npsignatures. In the inner estuary,δ~(15)Npwas mainly affected by riverine inputfrom the Changjiang River. Chemical fertilizer and atmospheric precipitation wasbelieved to be the main source of nitrogen from the Changjiang River in February andMay, while industrial and domestic sewage were the main source of nitrogen from theChangjiang River in August and November. In the turbidity maximum zone and theadjacent marine area, different biogeochemical processes were found in the surfaceand deep waters. Normally,δ~(15)Npvalues were high in the deep waters, whichindicated that mineralization occurred in deep waters. However, in November of2010,δ~(15)Npvalues were low in the deep waters. Mineralization, nitrification andassimilation occurred in the deep waters and caused the lowδ~(15)Npvalues.Assimilation was found in the surface waters throughout the whole year except inFebruary. The distribution ofδ~(15)Npin February was influenced mainly bymineralization and mixing between river and ocean.
     The reciprocal transformation of dissolved nitrate and suspended particulatematters was observed in the Changjiang River estuary. The correlations betweenδ~(15NO_3andδ~(15)Npreflected biogeochemical processing and evolution of nitrogen. Ingeneral,15NO_3was slightly lower thanδ~(15)Npin the surface waters. The nitrogenfractionation () between them was positive in average. The lowest values of15NO_3andδ~(15)Npwere both observed in February. Dissolved nitrate and suspendedparticulate materials were mainly influenced by riverine input from the ChangjiangRiver. The15N distributions were also affected by assimilation and mineralization. InMay, biogeochemical processes were significantly increased. Negative correlationswere found between15NO_3and15Np, and values were mainly negative.Assimilation contributed greatly in this season, while mineralization and nitrificationwere also found in the east area of the adjacent marine area. In August, values weremainly positive; and were higher in the deep waters than those in the surface waters.The results indicated different biogeochemical processes between surface and deepwaters. Assimilation and nitrification dominated in the surface waters whilemineralization and nitrification played important roles in the deep waters. InNovember, values were mainly positive expect some negative values in the adjacentmarine area. values increased from surface to deep layers. Surface waters weremainly influenced by assimilation and nitrification, while mineralization andnitrification were found in the deep waters.
引文
Ahad, J. M. E., R. S. Ganeshram, et al.(2006)."Evaluating the sources and fateof anthropogenic dissolved inorganic nitrogen (DIN) in two contrasting North Seaestuaries." Science of the Total Environment372(1):317-333.
    Altabet, M.(2006)."Isotopic tracers of the marine nitrogen cycle: Present andpast." Marine organic matter: biomarkers, isotopes and DNA:251-293.
    Altabet, M. A.(1988)."Variations in Nitrogen Isotopic Composition betweenSinking and Suspended Particles-Implications for Nitrogen Cycling and ParticleTransformation in the Open Ocean." Deep-Sea Research Part a-OceanographicResearch Papers35(4):535-554.
    Altabet, M. A.(2001)."Nitrogen isotopic evidence for micronutrient control offractional NO3-utilization in the equatorial Pacific." Limnology and Oceanography46(2):368-380.
    Altabet, M. A., W. G. Deuser, et al.(1991)."Seasonal and depth-related changesin the source of sinking particles in the North Atlantic." Nature354(6349):136-139.
    Andersson, M. G. I., N. Brion, et al.(2006)."Comparison of nitrifier activityversus growth in the Scheldt estuary-a turbid, tidal estuary in northern Europe."Aquatic Microbial Ecology42(2):149–158.
    Barford, C. C., J. P. Montoya, et al.(1999)."Steady-state nitrogen isotope effectsof N2and N2O production in Paracoccus denitrificans." Applied and EnvironmentalMicrobiology65(3):989-994.
    Beman, J. M., B. N. Popp, et al.(2008)."Molecular and biogeochemical evidencefor ammonia oxidation by marine Crenarchaeota in the Gulf of California." The ISMEJournal2(4):429-441.
    Bentaleb, I., C. Martin, et al.(2011)."Foraging ecology of Mediterranean finwhales in a changing environment elucidated by satellite tracking and baleen platestable isotopes." Marine Ecology-Progress Series438:285-302.
    Bie, M. J. M., M. Starink, et al.(2002)."Nitrification in the Schelde estuary:methodological aspects and factors influencing its activity." FEMS microbiologyecology42(1):99-107.
    Brandes, J. A. and A. H. Devol (1997)."Isotopic fractionation of oxygen andnitrogen in coastal marine sediments." Geochimica Et Cosmochimica Acta61(9):1793-1801.
    Caffrey, J. M., N. Bano, et al.(2007)."Ammonia oxidation andammonia-oxidizing bacteria and archaea from estuaries with differing histories ofhypoxia." Isme Journal1(7):660-662.
    Casciotti, K. L., D. M. Sigman, et al.(2003)."Linking diversity and stableisotope fractionation in ammonia-oxidizing bacteria." Geomicrobiology Journal20(4):335-353.
    Clark, D. R., P. I. Miller, et al.(2011)."Inorganic nitrogen assimilation andregeneration in the coastal upwelling region of the Iberian Peninsula." Limnology andOceanography56(5):1689-1702.
    Cole, L., P. L. Staddon, et al.(2004)."Soil animals influence microbialabundance, but not plant-microbial competition for soil organic nitrogen." FunctionalEcology18(5):631-640.
    Dahnke, K., K. Emeis, et al.(2010)."Stable isotope composition and turnover ofnitrate in the German Bight." Marine Ecology-Progress Series408:7-26.
    Dang, H., X. Zhang, et al.(2008)."Diversity and spatial distribution of sedimentammonia-oxidizing crenarchaeota in response to estuarine and environmentalgradients in the Changjiang Estuary and East China Sea." Microbiology154(7):20-84.
    Deutsch, B., M. Voss, et al.(2009)."Nitrogen transformation processes in theElbe River: Distinguishing between assimilation and denitrification by means ofstable isotope ratios in nitrate." Aquatic Sciences71(2):228-237.
    Drake, D. C., B. J. Peterson, et al.(2009)."Salt marsh ecosystem biogeochemicalresponses to nutrient enrichment: a paired15N tracer study." Ecology90(9):2535-2546.
    Edmond, J. M., A. Spivack, et al.(1985)."Chemical-Dynamics of the ChangjiangEstuary." Continental Shelf Research4(1-2):17-36.
    Emeis, K. C., P. Mara, et al.(2010)."External N inputs and internal N cyclingtraced by isotope ratios of nitrate, dissolved reduced nitrogen, and particulate nitrogenin the eastern Mediterranean Sea." Journal of Geophysical Research-Biogeosciences115:15-25.
    Eriksson, P. G., J. M. Svensson, et al.(2003)."Temporal changes and spatialvariation of soil oxygen consumption, nitrification and denitrification rates in a tidalsalt marsh of the Lagoon of Venice, Italy." Estuarine Coastal and Shelf Science58(4):861-871.
    Erler, D. V., B. D. Eyre, et al.(2010)."Temporal and spatial variability in thecycling of nitrogen within a constructed wetland: A whole-systemstable-isotope-addition experiment." Limnology and Oceanography55(3):1172-1187.
    Farquhar, G. D., J. R. Ehleringer, et al.(1989)."Carbon Isotope Discriminationand Photosynthesis." Annual Review of Plant Physiology and Plant MolecularBiology40:503-537.
    Fogel, M. and L. Cifuentes (1993)."Isotope fractionation during primaryproduction." Organic Geochemistry:73-98.
    Freyer, H.(1991)."Seasonal variation of15N/14N ratios in atmospheric nitratespecies." Tellus B43(1):30-44.
    Graham, M. C., M. A. Eaves, et al.(2001)."A study of carbon and nitrogen stableisotope and elemental ratios as potential indicators of source and fate of organicmatter in sediments of the Forth Estuary, Scotland." Estuarine Coastal and ShelfScience52(3):375-380.
    Herbert, R. A.(1999)."Nitrogen cycling in coastal marine ecosystems." FemsMicrobiology Reviews23(5):563-590.
    Herfort, L., S. Schouten, et al.(2007)."Variations in spatial and temporaldistribution of Archaea in the North Sea in relation to environmental variables."FEMS microbiology ecology62(3):242-257.
    Horrigan, S. G., J. P. Montoya, et al.(1990)."Natural Isotopic Composition ofDissolved Inorganic Nitrogen in the Chesapeake Bay." Estuarine Coastal and ShelfScience30(4):393-410.
    Hubner, H.(1986)."Isotope effects of nitrogen in the soil and biosphere."Handbook of environmental isotope geochemistry2:361-425.
    Kanda, J., T. Itoh, et al.(2003)."Environmental control of nitrate uptake in theEast China Sea." Deep Sea Research Part II: Topical Studies in Oceanography50(2):403-422.
    Kendall, C. and J. J. McDonnell (1998). Isotope tracers in catchment hydrology,Elsevier Science839.
    Kusaka, S., F. Hyodo, et al.(2010)."Carbon and nitrogen stable isotope analysison the diet of Jomon populations from two coastal regions of Japan." Journal ofArchaeological Science37(8):1968-1977.
    Li, J.(2009). Nitrification and Denitrification Processes in Sediment of TypicalEstuarine Sea Area. PhD, Ocean University of China.
    Li, M. T., K. Q. Xu, et al.(2007)."Long-term variations in dissolved silicate,nitrogen, and phosphorus flux from the Yangtze River into the East China Sea andimpacts on estuarine ecosystem." Estuarine Coastal and Shelf Science71(1-2):3-12.
    Liu, X. J., Z. M. Yu, et al.(2009)."The nitrogen isotopic composition ofdissolved nitrate in the Yangtze River (Changjiang) estuary, China." Estuarine Coastaland Shelf Science85(4):641-650.
    Liu, X. J., Z. M. Yu, et al.(2009)."Pretreatment Method for Nitrogen IsotopicAnalysis of Nitrate in Seawater." Chinese Journal of Analytical Chemistry37(5):643-647.
    Mackey, K. R. M., L. Bristow, et al.(2011)."The influence of light on nitrogencycling and the primary nitrite maximum in a seasonally stratified sea." Progress inOceanography91(4):545-560.
    Mariotti, A., J. C. Germon, et al.(1981)."Experimental-Determination ofNitrogen Kinetic Isotope Fractionation-Some Principles-Illustration for theDenitrification and Nitrification Processes." Plant and Soil62(3):413-430.
    McClelland, J. W., I. Valiela, et al.(1997)."Nitrogen-stable isotope signatures inestuarine food webs: A record of increasing urbanization in coastal watersheds."Limnology and Oceanography42(5):930-937.
    Middelburg, J. J. and J. Nieuwenhuize (2001)."Nitrogen isotope tracing ofdissolved inorganic nitrogen behaviour in tidal estuaries." Estuarine Coastal and ShelfScience53(3):385-391.
    Minagawa, M. and E. Wada (1986)."Nitrogen isotope ratios of red tide organismsin the East China Sea: a characterization of biological nitrogen fixation." MarineChemistry19(3):245-259.
    Miyajima, T., C. Yoshimizu, et al.(2009)."Longitudinal distribution of nitrate15N and18O in two contrasting tropical rivers: implications for instream nitrogencycling." Biogeochemistry95(2-3):243-260.
    Miyake, Y. and E. Wada (1971)."The isotope effect on the nitrogen inbiochemical, oxidation-reduction reactions." Rec. Oceanogr. Works Jpn11(1):1-6.
    Ostrom, N. E., S. A. Macko, et al.(1997)."Seasonal variation in the stable carbonand nitrogen isotope biogeochemistry of a coastal cold ocean environment."Geochimica Et Cosmochimica Acta61(14):2929-2942.
    Owens, N.(1986)."Estuarine nitrification: a naturally occurring fluidized bedreaction?" Estuarine, Coastal and Shelf Science22(1):31-44.
    Paerl, H. W.(1997)."Coastal eutrophication and harmful algal blooms:Importance of atmospheric deposition and groundwater as ''new'' nitrogen and othernutrient sources." Limnology and Oceanography42(5):1154-1165.
    Peterson, B. J. and B. Fry (1987)."Stable Isotopes in Ecosystem Studies." AnnualReview of Ecology and Systematics18:293-320.
    Russell, K. M., J. N. Galloway, et al.(1998)."Sources of nitrogen in wetdeposition to the Chesapeake Bay region." Atmospheric Environment32(14-15):2453-2465.
    Rysgaard, S., P. Thastum, et al.(1999)."Effects of salinity on NH4+adsorptioncapacity, nitrification, and denitrification in Danish estuarine sediments." Estuariesand Coasts22(1):21-30.
    Shen, Z. L.(1993)."A study on the relationships of the nutrients near theChangjiang River estuary with the flow of the Changjiang River water." ChineseJournal of Oceanology and Limnology11(3):260-267.
    Sherwood, O. A., M. F. Lehmann, et al.(2011)."Nutrient regime shift in thewestern North Atlantic indicated by compound-specific15N of deep-sea gorgoniancorals." Proceedings of the National Academy of Sciences of the United States ofAmerica108(3):1011-1015.
    Southwell, M. W., B. N. Popp, et al.(2008)."Nitrification controls on fluxes andisotopic composition of nitrate from Florida Keys sponges." Marine Chemistry108(1-2):96-108.
    Stevenson, J. C., W. R. Boynton, et al.(1981)."Nitrogen Cycling in BrackishSubmerged Macrophytic Communities." Estuaries4(3):301-301.
    Sugimoto, R., A. Kasai, et al.(2011)."Assessment of nitrogen loading from theKiso-Sansen Rivers into Ise Bay using stable isotopes." Journal of Oceanography67(2):231-240.
    Sugimoto, R., A. Kasai, et al.(2008)."Nitrogen isotopic discrimination by watercolumn nitrification in a shallow coastal environment." Journal of Oceanography64(1):39-48.
    Sugimoto, R., A. Kasai, et al.(2009)."Controlling factors of seasonal variation inthe nitrogen isotope ratio of nitrate in a eutrophic coastal environment." EstuarineCoastal and Shelf Science85(2):231-240.
    Sugimoto, R., A. Kasai, et al.(2009)."Nitrogen isotope ratios of nitrate as a clueto the origin of nitrogen on the Pacific coast of Japan." Continental Shelf Research29(10):1303-1309.
    Tabayashi, Y. and K. Koba (2011)."Heterogeneous Atmospheric NitrogenDeposition Effects Upon the Nitrate Concentration of Stream Waters in a ForestedMountain Area." Water Air and Soil Pollution216(1-4):105-115.
    Voss, M., G. Nausch, et al.(1997)."Nitrogen stable isotope dynamics in thecentral Baltic Sea: influence of deep-water renewal on the N-cycle changes." MarineEcology-Progress Series158:11-21.
    Wada, E.(1980)."Nitrogen isotope fractionation and its significance inbiogeochemical processes occurring in marine environments." Isotope marinechemistry:375-398.
    Wada, E. and A. Hattori (1976)."Natural abundance of15N in particulate organicmatter in the North Pacific Ocean." Geochimica Et Cosmochimica Acta40(2):249-251.
    Waldron, S., P. Tatner, et al.(2001)."The impact of sewage discharge in a marineembayment: A stable isotope reconnaissance." Estuarine Coastal and Shelf Science52(1):111-115.
    Wang, F. H., S. K. Juniper, et al.(2003)."Denitrification in sediments of theLaurentian Trough, St. Lawrence Estuary, Quebec, Canada." Estuarine Coastal andShelf Science57(3):515-522.
    Wang, H., H. Y. Zhou, et al.(2009)."Denitrification in Qi' ao Island coastal zone,the Zhujiang Estuary in China." Acta Oceanologica Sinica28(1):37-46.
    Wankel, S. D., C. Kendall, et al.(2009)."Using nitrate dual isotopic composition(15N and18O) as a tool for exploring sources and cycling of nitrate in an estuarinesystem: Elkhorn Slough, California." Journal of Geophysical ResearchBiogeosciences114: G01011
    Wannicke, N., I. Liskow, et al.(2010)."Impact of diazotrophy on N stable isotopesignatures of nitrate and particulate organic nitrogen: case studies in the north-easterntropical Atlantic Ocean." Isotopes in Environmental and Health Studies46(3):337-354.
    Waser, N. A., Z. M. Yu, et al.(1999)."Nitrogen isotopic fractionation during asimulated diatom spring bloom: importance of N-starvation in controllingfractionation." Marine Ecology-Progress Series179:291-296.
    Wong, G. T. F., G. C. Gong, et al.(1998)."'Excess nitrate' in the East China Sea."Estuarine Coastal and Shelf Science46(3):411-418.
    Wu, Y., T. Dittmar, et al.(2007)."Tracing suspended organic nitrogen from theYangtze River catchment into the East China Sea." Marine Chemistry107(3):367-377.
    Wu, Y., J. Zhang, et al.(2003)."Isotope variability of particulate organic matter atthe PN section in the East China Sea." Biogeochemistry65(1):31-49.
    Wu, Y., J. Zhang, et al.(2007)."Sources and distribution of carbon within theYangtze River system." Estuarine Coastal and Shelf Science71(1-2):13-25.
    Yan, W., S. Zhang, et al.(2003)."How do nitrogen inputs to the Changjiang basinimpact the Changjiang River nitrate: A temporal analysis for1968–1997." GlobalBiogeochem. Cycles17(4):1091.
    Zhou, J., Y. Wu, et al.(2006)."Carbon and nitrogen composition and stableisotope as potential indicators of source and fate of organic matter in the salt marsh ofthe Changjiang Estuary, China." Chemosphere65(2):310-317.
    Zhou, S., Z. Shen, et al.(2007)."Distribution features of nutrients in themaximum turbid zone of the Changjiang estuary and its adjacent sea areas." MarineSciences31(6):34-42.
    曹吉林,邢冬强等(2007)."超声波合成磁性4A沸石分子筛."物理化学学报(12):1893-1898.
    陈吉余(1988).上海市海岸帶和海涂资源綜合调查报告,上海科学技术出版社390.
    陈家宽(2003).上海九段沙湿地自然保护区科学考察集,科学出版社261.
    崔茂常(1984)."长江冲淡水转向研究."海洋与湖沼15(3):222-229.
    段水旺,章申等(2000)."长江下游氮,磷含量变化及其输送量的估计."环境科学21(1):53-56.
    顾玉荷(1985)."长江冲淡水转向原因的探讨."海洋与湖沼16(5):354-363.
    焦念志,王荣等(1998)."东海春季初级生产力与新生产力的研究."海洋与湖沼(02):135-140.
    金海燕(2009).近百年来长江口浮游植物群落变化的沉积记录研究博士,浙江大学.
    乐肯堂(1984)."长江冲淡水路径的初步研究——Ⅰ.模式."海洋与湖沼15(2):157-167.
    李忠,符瞰等(2007)."改性天然沸石的制备及对氨氮的吸附."华南理工大学学报:自然科学版35(004):6-10.
    刘敏,侯立军等(2004)."长江口潮滩有机质来源的C、N稳定同位素示踪."地理学报(06):918-926.
    刘秀娟(2009).长江口海域氮的同位素特征及其环境意义,博士,中国科学院研究生院海洋研究所.
    刘秀娟,俞志明等(2010)."长江口海域悬浮颗粒有机物的稳定氮同位素分布及其生物地球化学意义."海洋科学(01):11-17.
    毛汉礼,甘子钧等(1963)."长江冲淡水及其混合问题的初步探讨."海洋与湖沼5(3):183-206.
    裴绍峰(2007).长江口上升流区营养盐动力学硕士,中国科学院研究生院海洋研究所.
    浦泳修(1983)."夏季长江冲淡水扩展机制的初析."东海海洋1:43-51.
    宋飞,宋秀贤等(2007)."长江口海域表层水体颗粒有机物15N的分布特征."海洋与湖沼(06):521-528.
    苏波,韩兴国等(1999)."15N自然丰度法在生态系统氮素循环研究中的应用."生态学报(03):120-128.
    田雨,胡克伟等(2006)."天然沸石与几种改性沸石对NH4+吸附解吸特性的研究."中国农学通报(01):197-199.
    佟小薇和朱义年(2009)."沸石改性及其去除水中氨氮的实验研究."环境工程学报3(04):635-638.
    王东启,陈振楼等(2007)."长江口潮滩沉积物反硝化作用及其时空变化特征."中国科学: B辑37(6):604-611.
    王东升(1997)."氮同位素比(15N/14N)在地下水氮污染研究中的应用基础."地球学报:中国地质科学院院报18(002):220-223.
    吴莹,张经等(2002)."长江悬浮颗粒物中稳定碳、氮同位素的季节分布."海洋与湖沼5(33):546-552.
    许敏和章钢娅(2009)."超声波十六烷基三甲基溴化铵改性斜发沸石的制备及其对水体中六六六的吸附."土壤41(01):133-138.
    杨慧芬(1996)."天然沸石的选矿提纯新工艺研究."建材地质3:44-47.
    杨胜科,王文科等(2000)."沸石去除地下水中氨氮的影响因素分析及作用机理探讨."西安工程学院学报22(03):69-72.
    余婕(2008).河口潮滩湿地有机质来源、组成与食物链传递研究博士,华东师范大学.
    俞志明(2004)."不同氮源对海洋微藻氮同位素分馏作用的影响."海洋与湖沼35(006):524-529.
    俞志明,沈志良等(2011)."长江口水域富营养化."北京:科学出版社559
    张瑛洁,陈雷等(2009)."微波强化NaCl改性沸石的除氨氮效果研究."中国给水排水25(001):72-74.
    赵保仁(1991)."长江冲淡水的转向机制问题."海洋学报(中文版)5:12-22.
    赵瑞华,商平等(2008)."超声波改性沸石去除油田废水COD的实验研究."天津科技大学学报23(03):45-48.
    周芳,周荣敏等(2008)."沸石微波改性及其吸附废水中氨氮性能的研究."安全与环境工程15(03):65-68.
    周俊丽(2005).长江口湿地生态系统中有机质的生物地球化学过程研究博士,华东师范大学.
    朱保安,郭新峰等(2009)."超声波条件下膨润土合成4A沸石."化工矿物与加工7:9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700