用户名: 密码: 验证码:
温度对A~2/O系统的影响特征及脱氮除磷强化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城镇污水排放始终是地表水的主要污染源,对其进行有效处理是保护水环境的重要措施。在北方寒冷季节,污水处理系统的效能也会因微生物代谢水平下降而受到显著影响,主要污染物,尤其是氮磷的达标排放受到严重威胁。为解决北方污水处理设施在寒冷季节处理效能低,出水达标保障率大幅下降的问题,开发低温污水强化处理技术意义重大。本论文以具有良好脱氮除磷功能的厌氧-缺氧-好氧(A~2/O)污水处理系统的运行为基础,对比了23℃和14℃条件下A~2/O系统的处理效能,探讨了季节性水温变化对系统处理效能的影响规律和生物学机制,并进一步研究了14℃条件下A~2/O系统脱氮除磷效能的强化技术,以期为工程技术的应用提供理论指导和技术支持。
     A~2/O系统在水温为23℃和14℃条件下的启动运行结果表明,温度降低显著延长了A~2/O系统的启动过程,且降低了系统的处理效能。在HRT10h、MLSS2800~3000mg/L、好氧池DO2~3mg/L、二沉池污泥回流比50%、硝化液回流比200%和SRT15d的条件下,23℃运行的A~2/O污水处理系统可在24d内启动成功并达到稳定运行状态,而在14℃条件下运行的系统,其启动过程则需要28d。当系统处于稳定运行时,23℃和14℃的系统均能保持87%和92%以上的COD和TP去除率,能够满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准的要求。但在14℃条件下,即便通过污泥回流比和硝化液回流比的优化,系统出水NH_4~+-N和TN仍不能满足排放要求。对于北方寒冷季节的A~2/O污水处理系统的运行管理,应重点关注对NH_4~+-N氧化能力的调控。
     温度的季节性降低对A~2/O系统的处理效能具有显著影响。在水温从23℃阶段性降为18℃、14℃和11℃的过程中,A~2/O系统对污染物的去除效能总体表现为下降趋势。但是,即便是在11℃的条件下,系统出水COD和TP仍能满足GB18918-2002一级A标准。而温度降低到14℃以下时,系统对NH_4~+-N和TN的去除效能明显下降,甚至无法达标排放。对系统活性污泥微生物的检测发现,活性污泥微生物群落随着季节性温度变化发生了演替,在特定温度下均能检测到新的优势菌群的出现。尽管温度下降从整体上降低了活性污泥的代谢能力,但新的优势菌群的出现,从一定程度上弥补了活性污泥在低温条件下代谢能力的不足,使系统在14℃~18℃的较低温度下仍能表现出良好的污染物去除效能。然而,这一“补偿作用”是有一定限度的,当水温降低到14℃以下时,尽管也有新的耐冷菌群出现,但系统的整体处理效能仍然受到了很大限制,尤其是增殖缓慢的硝化细菌和反硝化细菌,当温度下降时,其代谢能力受到严重影响,造成系统出水NH_4~+-N和TN无法达标。
     驯化培养耐冷功能菌群并以其对A~2/O系统进行生物强化,是提高低温条件下污水处理效能的有效途径。以3.24%(w/w)的比例向14℃运行A~2/O系统投加耐冷硝化功能菌群,可使系统的NH_4~+-N和TN去除率从强化前的65%和59.4%提高到72.8%和67.2%,COD去除率也由88%提高到了91%。可见,耐冷硝化功能菌群的投加,不仅提高了系统的脱氮效率,同时也提高了COD去除能力。
     根据生物脱氮除磷的基本原理,设计出具有厌氧(包括缺氧)和好氧生物相分离功能的双污泥旁路A~2/O改良工艺,中间沉淀池和厌氧释磷池的增设,显著提高了A~2/O系统的脱氮除磷效能。在HRT10h、中间沉淀池污泥回流比50%、好氧污泥厌氧释磷12h、厌氧释磷池污泥回流比控制在75%等优化条件下,改良A~2/O系统在14℃运行时,其出水COD、NH_4~+-N、TN及TP平均浓度分别为20mg/L、7.8mg/L、18.9mg/L和0.3mg/L。其中,COD和TP达到了GB18918-2002一级A标准,而NH_4~+-N和TN也达到了一级B标准。
Urban sewage discharge is always the main source of pollution in cities andtowns, therefore, to deal effectively with it is the important measures to protect thewater environment. The biological sewage treatment effectiveness is significantlyaffected by the decreased microbial metabolism in north cold seasons, the majorpollutants-nitrogen and phosphorus discharge in particular is threatened. Theexisting sewage treatment facilities are almost ineffective during the cold season inthe North, sewage effluent quality is worse accordingly, and consequently, it is verysignificant to develop low-temperature sewage enhanced processing technology. Inthis study, based on the operation of a lab-scale A~2/O sewage treatment process, theperformance characteristics under23℃and14℃conditions were investigated. Atthe same time, the effect of seasonal temperature variation on A~2/O process systemeffectiveness and microbial mechanisms was analyzed. Moreover, the enhancementof nitrogen and phosphorus in A~2/O process system at14℃has been researched,with a view to provide theory guidance and technology support for engineeringtechnology application.
     The A~2/O reactor was started up and after reaching stable state at HRT10h,MLSS2800~3000mg/L, DO2~3mg/L, sludge return ratio50%, nitrification liquidreturn ratio200%and SRT15d conditions, the results showed that low temperaturenot only slowed down the startup process but also decreased sewage treatmentefficiency with time. The A~2/O system with a temperature of23℃reached its stablestate earlier than the lower temperature system, which was operated at a temperatureof14℃. The COD and TP concentration in effluent of the A~2/O systems stablyoperated both23℃and14℃could meet the First Grade (A) of the ChineseNational Discharge Standard of Pollutants for Municipal Wastewater (GB18918-2002), with a removal rate of87%and92%, respectively. In addition, undertemperature of14℃, even the sludge return ratio and nitrification liquid return ratiowas optimized, NH_4~+-N and TN concentration in effluent meet only the First GradeB. In future, the regulation and control of A~2/O sewage treatment process in coldweather should focus on the enhancement of ammonia oxidization.
     The seasonal change of temperature in north China has significant impact onthe performance of A~2/O process system. The efficiency of A~2/O process system wasoverall downward following the temperature drop from23℃to18℃,14℃and11℃,step by step. However, even at the temperature of11℃, the TP and COD concentration in effluent still meet the First Grade A, but when temperature wasbelow14℃, the NH_4~+-N and TN removal efficiency dropped significantly, unable tomeet the First Grade A. The activated sludge microbial community structurechanged with the seasonal temperature variation. The new groups of dominantbacteria were able to be detected under specific temperatures. Despite the decline intemperature reduced the metabolism of activated sludge, but the emergence of anew group of dominant bacteria, from a certain extent, make up for the insufficientmetabolism of activated sludge under low temperature conditions. So, the systemstill demonstrated better removal efficiency of pollutants when the watertemperature at14℃~18℃. However, this―compensation‖was a certain limit, whenthe water temperatures was below14℃, although there were new cold-resistantbacteria emerged, but the effectiveness of A~2/O process system was still subject toconsiderable restrictions. In particular, the metabolic and proliferative capacities ofnitrifying&denitrifying bacteria have been severely affected in low temperatureconditions.
     It is an effective measure to enhance A~2/O system efficiency operated underlower temperature by augmenting with cold-adapted functional flora. When thecold-adapted ammonia-oxidizing functional flora was put into the oxic tanks of theA~2/O process with a mass ratio of3.24%(w/w), the average NH_4~+-N and TNremoval increased from65%and59.4%to72.8%and67.2%, respectively. TheCOD removal also increased from88%to91%. Obviously, the cold-adaptedammonia-oxidizing functional flora not only enhanced the system nitrogen removalefficiency, simultaneously sharpened the COD removal ability.
     According to the basic principle of biological nitrogen and phosphorus removal,an anaerobic (including anoxic) and oxic bio-separation function of two-sludgebypass A~2/O improvement process was designed. Therefore, the conflicts onbiological nitrogen and phosphorus removal in metabolic rate and carbon sourcecompetition aspects were solved. The performance of improved A~2/O system hasbeen significantly enhanced by setting the middle sedimentation tank and the sludgeanaerobic phosphorus release tank. When the improved A~2/O system operated stablyat HRT10h, middle sedimentation tank sludge return ratio50%, anaerobic releasephosphorus tank SRT12h, phosphorus release tank sludge return ratio75%, and attemperature of14℃conditions, the effluent COD, NH_4~+-N, TN and TPconcentration were20mg/L,7.76mg/L,18.9mg/L and0.28mg/L, respectively.The COD and TP concentration in effluent meet the First Grade A, the NH_4~+-N andTN concentration in effluent meet the First Grade B.
引文
[1]江曙光.中国水污染现状及防治对策.现代农业科技[J].2010,7:312-315.
    [2]中华人民共和国环境保护部.2011年中国环境状况公报[M].2012,5:1-19.
    [3]李文杰,王冰.地表水中氨氮和总氮的相关性分析[J].环境保护科学.2012,38(3):79-81.
    [4]周群英,高廷耀.环境工程微生物学[M].第二版.北京:高等教育出版社,2000.
    [5]张自杰.排水工程(下册)[M].第四版.北京:中国建筑工业出版社,2002:308.
    [6]朱晓东,张根玉,朱雅珠,等.硝化细菌的生物学特性以及在水产养殖中的应用[J].水产科技情报.2009,36(5):221-224.
    [7]毛玉红,高军锋.生物脱氮机理及应用[J].中国资源综合利用,2008(6):21-23.
    [8]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水[J].2000,26(12):1-4.
    [9] Peng Y Z, Zhu G B.Biological nitrogen removal with nitrification anddenitrification via nitrite pathway[J]. Applied Microbiology and Biotechnology.2006,73:15-26.
    [10]王弘宇,马放,苏俊峰,等.好氧反硝化菌株的鉴定及其反硝化特性研究[J].环境科学,2007(7):1548-1552.
    [11]许晓毅,罗固源,吴淑媛,等. OGO工艺同步硝化-反硝化生物脱氮特性[J].水处理技术,2007(4):18-20.
    [12] Yang X P, Wang S M, Zhang D W, et al.Isolation and nitrogen removalcharacteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium,Bacillus subtilis A1[J]. Bioresource Technology,2011,102:854-862.
    [13]于淼. BICT工艺处理城市污水的特性及运行控制研究[D],苏州:苏州科技学院,2008,4-5.
    [14]毛玉红,高军锋.生物脱氮机理及应用[J].中国资源综合利用,2008(6):21-23.
    [15] Zhang P, Zhou Q.Simultaneous nitrification and denitrification in activatedsludge system under low oxygen concentration[J]. Frontiers of EnvironmentalScience and Engineering in China,2007,1(1):49-52.
    [16] Chuang S H, Ouyang C F. The biomass fraction of heterotrophs and phosphate-accumulating organisms in a nitrogen and phosphorus removal system [J].Water Research,2000,34(8):2238-2290.
    [17] Dea. S L, Che O J, Jong M P. Biological nitrogen removal with enhancedphosphate uptake in a sequencing batch reactor using single sludge system [J].Water Research,2001,35(16):3968-3976.
    [18]王晓莲,王淑莹,马勇,等. A2O工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报,2005,56(8):1565-1570.
    [19] Van Veen H W, Abee T, Kortstee G J J, et al. Characterization of TwoPhosphate Transport Systems in Acinerobacter Johnsonii.210A[J]. Journal ofBacteriology,1993,175:200-206.
    [20] Kuba T, Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removalwith minimal COD requirement by integration of denitrifying dephosphatationand nitrification in a two-sludge system [J]. Water Research,1996,30(7):1702-1710.
    [21] Wachtmeister A, Kuba T, Loosdrecht M, et al. A sludge characterization foraerobic and denitrifying phosphorus removing sludge [J]. Water Research,1997,31(3):471-478.
    [22] Gu, A Z, Saunders A, Neethling J B. Investigation of PAOs and GAOs andtheir effects on EBPR performance at full-scale wastewater treatment plants inU.S.[J]. Proceedings of the Water Environment Federation,2005,30(14):1985-1998.
    [23]戴镇生,张杰.厌氧-好氧活性污泥法的应用前景[J].中国给水排水.1994,10(4):35-37.
    [24]汪大翚,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001.
    [25] Lindrea K C, Seviour R J. Activated sludge-the process. Encyclopaedia ofEnvironmental Microbiology[M].New York: Wiley Scientific publishing,2002:74-81.
    [26] Toerien D F, Gerber A, Lotter L H, et al. Enhanced Biological PhosphorusRemoval in Activated Sludge[J]. Advances in Microbial Ecology,2003,11:173-230.
    [27] Turo M A, Joanna W, Robert F H, et al. Channel Structures in Aerobic Biofilms ofFixed-film Reactors Treating Contaminated Groundwater[J]. Applied andEnvironment Microbiology,1995,61(2):769-777.
    [28]王凯军,宋英豪. SBR工艺的发展类型及其应用特性.中国给水排水[J].2002,18(7):23-26.
    [29] Steinmetz H, Wiese J, Schmitt T G. Efficiency of SBR technology in municipalwastewater treatment plants [J]. Water Science and Technology,2002,46(4/5):293-299.
    [30] Cassidy D P, Efendiev S, White D M. A comparison of CSTR and SBRbioslurry reactor performance [J]. Water Research,2000,34(18):4333-4342.
    [31]熊红权,李文彬. CASS工艺在国内的应用现状.中国给水排水[J].2003,19(2):34-35
    [32]廖钧.2种改进型SBR工艺的特点及浅析[J].环境污染治理技术与设备,2005,6(7):80-83.
    [33] Ma J, Peng Y Z, Wang S Y, et al. Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy [J]. Journal ofEnvironmental Sciences,2009,21:1169-1174.
    [34] Ventura J S, Seo S, Chung I, et al. Enhanced reduction of excess sludge andnutrient removal in a pilot-scale A(2)O-MBR-TAD system [J]. Water Scienceand Technology,2011,63(8):1547-1556
    [35]杨云龙,闫鸿远.A2/O脱氮除磷工艺[J].山西建筑,2004,30(22):85-86.
    [36]高岩,戴兴春,黄民生. A2/O工艺的改进[J].上海化工,2007,32(7):1-5.
    [37] Carucci A, Kuhni M, Brun R, et al.Microbial competition for the organic substratesand its impact on Ebpr system under conditions of changing carbon feed [J]. WaterScience and Technology,1997,36(12):19-27.
    [38]张波.城市污水生物脱氮除磷工艺与机理研究[D].上海:同济大学,1996.
    [39]毕学军,赵桂芹,毕海峰.污水生物除磷原理及其生化反应机制研究进展[J].青岛理工大学学报,2006,27(2):9-13.
    [40]李捷,熊必永,张树德,等.亚硝酸盐对聚磷菌吸磷效果影响[J].环境科学,2006,27(4):701-703.
    [41]吴若愚,李勇,陈宇,刘玉杰.改进A2/O工艺的研究现状与进展[J].环境科技,2009,22(2):86-89.
    [42]吕炳南,陈志强.污水生物处理新技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [43]任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究[J].给水排水,2000,26(6):7-10.
    [44]邹伟国.新型双污泥脱氮除磷工艺处理生活污水[J].中国给水排水,2004,20(6):16-18.
    [45] Vieno N M, Tuhkanen T, Kronberg L. Seasonal Variation in the Occurrence ofPharmaceuticals in Effluents from a Sewage Treatment Plant and in theRecipient Water[J]. Environmental Science and Technology,2005,39(21):8220-8226.
    [46]韩晓云,姜安玺,何丽蓉.低温菌及其在环境工程中的应用[J].东北林业大学学报.2003,33(02):50-52.
    [47] A. Tremier, A. de Guardia, C. Massiani. A respirometric method forcharacterising the organic composition and biodegradation kinetics and thetemperature influence on the biodegradation kinetics, for a mixture of sludgeand bulking agent to be co-composted[J]. Bioresource Technology,2005,96:169-180.
    [48] Gerday C. Psychrophilic Enzymes: a Thermodynamic Challenge[J]. Biochimicaet Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1997,1342(2):119-131.
    [49] Leslie Grady C P, Glen T D, Henry C L.废水生物处理[M].张锡辉,刘勇等译.北京:化学工业出版社,2002:612-634.
    [50]林学政,边际,何培青.极地微生物低温适应性的分子机制[J].极地研究.2003,15(1):75-82.
    [51]刘长青,毕学军,张峰.低温对生物脱氮除磷系统影响的试验研究[J].水处理技术.2006,132(8):45-49.
    [52]李田,刘光,安黎哲.低温微生物的适冷特性研究进展及其应用前景[J].冰川冻土.2006,28(3):450-455.
    [53]尹军,王建辉,王雪峰,解艳萃等.污水生物除磷若干影响因素分析[J].环境工程学报.2007,(14):6-11.
    [54] Helmer C, Kunst S. Low Temperature Effects on Phosphorus Release andUptake by Microorganisms in EBPR Plants [J]. Water Science and Technology.1998,37(4-5):531-539.
    [55] Head M A, Oleszkiewicz J A. Bioaugmentation for Nitrification at ColdTemperatures[J]. Water Research,2004,38(3):523-520.
    [56] Hyung S Y. Nitrogen Removal from Synthetic Wastewater by SimultaneousNitrification and Denitrification (SND) via Nitrite in a Intermittently AeratedReactor[J]. Water Research,1999,33(1):145-154.
    [57] Tramper J, Grootjen D R J. Operating Performances of Nitrobacter AgilisImmobilized in Carrageenan [J]. Enzyme and Microbial Technology,1986,8:472-476.
    [58]白晓慧,陈英旭,王宝贞.活性污泥法低温硝化及其运行控制条件研究[J].环境科学学报.2002,(5):569-5721997,13(3):334-338.
    [59]张素荣,丁卫华,王成,等.水温及污泥龄对生物处理系统运行的影响[J].工业安全与环保.2002,23(5):22-24.
    [60]姜安玺,何丽荣,韩晓云,等.几种固定化耐冷菌载体的比较研究[J].哈尔滨工业大学学报,2003,35(4):412-415.
    [61]韩晓云.低温生物膜及其微生物特性的研究[D].哈尔滨:哈尔滨工业大学,2006:6.
    [62]国家环保局.GB18918-2002城镇污水处理厂污染物排放标准[S].北京:中国环境科学出版社,2002:3-5.
    [63] Panswad T, Doungchai A, Anotai J. Temperature effect on microbialcommunity of enhanced biological phosphorus removal system [J]. WaterResearch,2003,37(2):409-415.
    [64]马娟,彭永臻,王丽,等.温度对反硝化过程的影响以及pH值变化规律[J].中国环境科学,2008,28(11):1004-1008.
    [65] Cui D, Li A, Zhang S, et al. Microbial community analysis of three municipalwastewater treatment plants in winter and spring using culture-dependent andculture-independent methods[J]. World Journal of Microbiology andBiotechnology.2012,28(3):2341-2353.
    [66] Li J Z, Liu S L, He J G, et al. Ammonia oxidation activity and potential ofacclimatized activated sludge in a sequencing batch reactor at low temperature[J]. Acta Scientiae Circumstantiae,2012:32(9):2077-2083.
    [67]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002.
    [68]沈萍,陈向东.微生物学实验[M].第四版.北京:高等教育出版社,2007:21-25.
    [69] Parkers R J. Analysis of Microbial Communities within Sediments UsingBiomarkers, in: Ecology of Microbial Communities [M].Cambridge. England:Cambridge University Press,2004:147-177.
    [70] Raskin L, Stromley J M, Rittmann B E, et al. Group-specific16S rRNAHybridization Probes to Describe Natural Communities of Methanogens [J].Applied and Environment Microbiology,2004,(60):1232-1240.
    [71] Xia S Q, Wang F, Fu Y G, et al. Biodiversity analysis of microbial communityin the chem-bioflocculation treatment process[J]. Biotechnology andBioengineering,2005,89(6):656-659.
    [72] Banu J R, Uan D K, Yeom I T. Nutrient removal in an A2O-MBR reactor withsludge reduction [J]. Bioresource Technology,2009,100(16):3820-3824.
    [73]李捷,张杰.温度对A/O工艺反硝化除磷效果的影响[J].中国给水排水,2008,24(19):99-105.
    [74]桑义敏,尹炜,何绪文. CASS工艺在处理低温生活污水中的应用研究[J].环境工程,2002,20(2):16-18.
    [75]姜苏,周集体,郭海燕,等.一体化A/O生物膜法处理生活污水[J].中国给水排水,2004,20(5):56-58.
    [76]杜彦武,郝轶鹏.寒冷地区城市污水处理的工艺与强化措施[J].低温建筑技术,2008,123(3):133-134.
    [77]王丹,吕炳南,赫俊国,等.泥膜共生复合式生物反应器的低温启动[J].给水排水,2006,32(12):41-45.
    [78] Yang Q, Peng Y Z, Liu X H, et al. Nitrogen removal via nitrite from municipalwastewater at low temperatures using real-time control to optimize nitrifyingcommunities[J]. Environmental Science&Technology,2007,41(23):8159-8164.
    [79] Alvarez J A, Ruiz I, Gomez M, et al. Start-up alternatives and performance ofan UASB pilot plant treating diluted municipal wastewater at lowtemperature[J]. Bioresource Technology,2006,97:1640-1649.
    [80]王春丽,马放,王立立,等.耐低温聚磷菌的研究[J].哈尔滨工业大学学报,2007,39(8):1327-1330.
    [81] Ma J A, Peng C Y, Takigawa A, et al. Effect of influent nutrient ratios andtemperature on simultaneous phosphorus and nitrogen removal in a step-feedCAST [J]. Water Science and Technology,2010,62(9):2028-2036.
    [82] Di T D, Christensso M, Odegaard H. Hybrid activated sludge/biofilm processfor the treatment of municipal wastewater in a cold climate region: a case study[J]. Water Science and Technology,2011,63(6):1121-1129.
    [83] Farrell J, Rose A.Temperature Effects on Microorganisms [J]. Annual Reviewof Microbiology,1967,21:101-120.
    [84] Nam H U, Lee J H, Kim Y O, et al. Comparison of COD, nitrogen andphosphorus removal between anaerobic/anoxic/aerobic and anoxic/aerobicfixed biofilm reactor using SAC media[J]. Korean Journal of ChemicalEngineering,1998,15(4):429-433.
    [85] Chiemchaisri C, Yamamoto K. Biological Nitrogen Removal under LowTemperature in a Membrane Separation Bioreactor [J]. Water Science andTechnology,1994,28(10):325-333.
    [86] Peng Y Z, Zhu G B. Biological nitrogen removal with nitrification anddenitrification via nitrite pathway[J]. Applied Microbiology and Biotechnology,2006,73:15-26.
    [87] Thamdrup B, Dalsgaard T. Production of N through anaerobic ammoniaoxidation coupled to nitrate reduction in marine sediments [J]. Applied andEnvironmental Microbiology,2002,68(3):1312-1318.
    [88]白王军,黄波,李梦侠.厌氧氨氧化脱氮及影响因素研究[J].科技信息,2009,3:127-128.
    [89] Baeza J A, Gabriel D, Lafuente J. Effect of internal recycle on the nitrogenremoval efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatmentplant (WWTP)[J]. Process Biochemistry,2004,39:1615-1624.
    [90] Zhu G B, Peng Y Z, Li B K. Biological Removal of Nitrogen fromWastewater[J]. Reviews of Environmental Contamination and Toxicology,2008,192:159-195.
    [91] Christine H, Sabine K. Low temperature effects on phosphorus release anduptake by microorganisms in ebpr plants [J]. Water Science and Technology,1998,37(4-5):531-539.
    [92] Ammary B Y. Nutrient requirements in biological industrial wastewatertreatment [J]. African Journal of Biotechnology,2004,3(4):236-238.
    [93] Xia Y, Kong Y, Thomsen T R, et al. Identification and ecophysiologicalcharacterization of epiphytic protein-hydrolyzing saprospiraceae (CandidatusEpiflobacter spp.) in activated sludge [J]. Applied and EnvironmentMicrobiology,2008,74(7):2229-2238.
    [94] Heylen K, Vanparys B, Wittebolle L, et al. Cultivation of denitrifying bacteria:optimization of isolation conditions and diversity study [J]. Applied andEnvironment Microbiology,2006,72(4):2637-2643.
    [95] Riviere D, Desvignes V, Pelletier E, et al. Towards the definition of a core ofmicroorganisms involved in anaerobic digestion of sludge [J]. The ISMEjournal,2009,3(6):700-714.
    [96] Magic K A, Wullings B, Vander K D, et al. Polaromonas and Hydrogenophagaspecies are the predominant bacteria cultured from granular activated carbonfilters in water treatment [J]. Journal of Applied Microbiology,2009,107(5):1457-1467.
    [97] O'Sullivan L A, Rinna J, Humphreys G, et al. Fluviicola taffensis gen. nov., sp.nov., a novel freshwater bacterium of the family Cryomorphaceae in thephylum 'Bacteroidetes'[J]. International journal of systematic and evolutionarymicrobiology,2005,55(5):2189-2194.
    [98] Vardhan Reddy P V, Shiva Nageswara Rao S S, Pratibha M S,et al. Bacterialdiversity and bioprospecting for cold-active enzymes from culturable bacteriaassociated with sediment from a melt water stream of Midtre Lovenbreenglacier, an Arctic glacier[J]. Research in Microbiology,2009,160(8):538-546.
    [99] Kulichevskaya I S, Ivanova A O, Belova, S E, et al. Schlesneria paludicola gen.nov., sp. nov., the first acidophilic member of the order Planctomycetales,from Sphagnum-dominated boreal wetlands [J]. International journal ofsystematic and evolutionary microbiology,2007,57(11):2680-2687.
    [100] Cheng S M, Foght J M. Cultivation independent and dependentcharacterization of Bacteria resident beneath John Evans Glacier [J]. FEMSMicrobiology Ecology,2007,59(2):318-330.
    [101] Spieck E, Hartwig C, McCormack I, et al. Selective enrichment andmolecular characterization of a previously uncultured Nitrospira-likebacterium from activated sludge [J]. Environmental Microbiology,2006,8(3):405-415.
    [102] Rotthauwe J H, Boer W, Liesack W. Comparative analysis of gene sequencesencoding ammonia monooxygenase of Nitrosospira sp. AHB1andNitrosolobus multiformis C-71[J]. FEMS Microbiology Letters,1995,133(1-2):131-135.
    [103]Yoshimi Y, Hiraishi A, Nakamura K. Isolation and characterization ofmicrosphaera multipartita gen. nov., sp. nov., a polysaccharide-accumulating gram-positive bacterium from activated sludge [J].International Journal of Systematic Bacteriology,1996,46:519-525.
    [104]Yagi O, Hashimoto A, Iwasaki K, et al. Aerobic degradation of1,1,1-trichloroethane by Mycobacterium spp. isolated from soil [J]. Applied andEnvironment Microbiology,1999,65(10):4693-4696.
    [105] Gontang E A, Fenical W, Jensen P R. Phylogenetic diversity of gram-positivebacteria cultured from marine sediments [J]. Applied and EnvironmentMicrobiology,2007,73(10):3272-3282.
    [106] Bae H S, Im W T, Lee S T. Lysobacter concretionis sp. nov., isolated fromanaerobic granules in an upflow anaerobic sludge blanket reactor[J].International journal of systematic and evolutionary microbiology,2005,55(3):1155-1161.
    [107]Yamada T, Sekiguchi Y, Imachi H, et al. Diversity, localization, andphysiological properties of filamentous microbes belonging to Chloroflexisubphylum I in mesophilic and thermophilic methanogenic sludge granules [J].Applied and Environment Microbiology,2005,71(11):7493-7503.
    [108] Shao Y, Chung B S, Lee S S, et al. Zoogloea caeni sp. nov., a floc-formingbacterium isolated from activated sludge [J]. International journal ofsystematic and evolutionary microbiology,2009,59(3):526-530.
    [109] Bowman J P, McCammon S A, Brown J L,et al. Psychroserpens burtonensisgen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilicbacteria isolated from antarctic lacustrine and sea ice habitats [J].International Journal of Systematic Bacteriology,1997,47(3):670-677.
    [110] Yoon D N, Park S J, Kim S J, et al.Isolation, characterization, and abundanceof filamentous members of Caldilineae in activated sludge [J]. The Journal ofMicrobiology,2010,48(3):275-283.
    [111] Pikuta E V, Hoover R B, Bej A K, et al.Trichococcus patagoniensis sp. nov., afacultative anaerobe that grows at-5degrees C, isolated from penguin guanoin Chilean Patagonia[J]. International journal of systematic and evolutionarymicrobiology,2006,56(9):2055-2062.
    [112] Davolos D, Pietrangeli B. Molecular and phylogenetic analysis on bacterialstrains isolated from a PAHs wastewater treatment plant [M]. Currentresearch topics in applied microbiology and microbial biotechnology, WorldScientific Publishing Co. Pte. Ltd., United Kingdom,2009,313-316.
    [113] Wartiainen I, Hestnes A G, McDonald I R, et al.Methylobacter tundripaludumsp. nov., a methane-oxidizing bacterium from Arctic wetland soil on theSvalbard islands, Norway (78degrees N)[J]. International journal ofsystematic and evolutionary microbiology,2006,56(1):109-113.
    [114] Etchebehere C, Tiedje J. Presence of two different active nirS nitrite reductasegenes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor[J]. Applied and Environment Microbiology,2005,71(9):5642-5645.
    [115] Hashimoto T, Koga M, Masaoka Y. Advantages of a diluted nutrient brothmedium for isolating N2-producing denitrifying bacteria of a-Proteobacteriain surface and subsurface upland soils[J]. Soil Science&Plant Nutrition,2009,55:647-659.
    [116] Heylen K, Vanparys B, Wittebolle L, et al.Cultivation of denitrifying bacteria:optimization of isolation conditions and diversity study [J]. Applied andEnvironment Microbiology,2006,72(4):2637-2643.
    [117] Phuong K, Kakii K, Nikata T. Intergeneric coaggregation of non-flocculatingAcinetobacter spp. isolates with other sludge-constituting bacteria [J]. Journalof Bioscience and Bioengineering,2009,107(4):394-400.
    [118] Levantesi C, Rossetti S, Thelen K, et al. Phylogeny, physiology anddistribution of 'Candidatus Microthrix calida', a new Microthrix speciesisolated from industrial activated sludge wastewater treatment plants[J].Environmental Microbiology,2006,8(9):1552-1563.
    [119]Schauer M, Hahn M W. Diversity and phylogenetic affiliations ofmorphologically conspicuous large filamentous bacteria occurring in thepelagic zones of a broad spectrum of freshwater habitats [J]. EnvironmentalMicrobiology,2005,71(4):1931-1940.
    [120]杨文艳.小韦荣球菌及其乙酸生成基因缺失工程菌对瘤胃微生物发酵的影响[D].长春:吉林大学,2007.
    [121] Spring S, Wagner M, Schumann P, et al. Malikia granosa gen. nov., sp. nov.,a novel polyhydroxy–alkanoate and polyphosphate-accumulating bacteriumisolated from activated sludge, and reclassification of Pseudomonas spinosaas Malikia spinosa comb. Nov [J]. International journal of systematic andevolutionary microbiology,2005,55(2):621-629.
    [122] Brian P H, John J G, James T S.Verrucomicrobia div. nov., a new division ofthe Bacteria containing three new species of Prosthecobacter [J]. Antonie vanLeeuwenhoek,1997,72:29-38.
    [123] Sait M, Hugenholtz P, Janssen P H. Cultivation of globally distributed soilbacteria from phylogenetic lineages previously only detected in cultivation-independent surveys[J]. Environmental Microbiology,2002,4(11):654-666.
    [124]曹新垲,杨琦,郝春博.厌氧污泥降解萘动力学与生物多样性研究[J].环境科学,2012,33(10):3535-3541.
    [125]李全霞,范丙全,龚明波,等.降解芘的分枝杆菌M11的分离鉴定和降解特性[J].环境科学,2008,29(3):763-768.
    [126]周律,李哿, Shin H S,等.生物膜复合系统脱氮除磷的特征及微生物群落结构分析[J].环境科学学报,2012,32(6):1312-1318.
    [127]张艾晓.脱氮细菌混合去除水相氮污染的条件与机理[D].杭州:浙江工业大学,2009:27-30.
    [128] Shi H P, Chi M L. Phosphate removal under denitrifying conditions byBrachymonas sp. strain P12and Paracoccus denitrificans PP15[J]. CanadianJournal of Microbiology.2007,53(6):727-737.
    [129]刘晖,孙彦富,周康群,等. PCR-DGGE法研究Sludge biomembrane(SB)系统中反硝化聚磷菌的变化[J].中南大学学报(自然科学版),2011,42(4):1167-1174.
    [130]雒怀庆,胡勇有.厌氧氨氧化污泥中效应菌的分子生物学研究[J].微生物学报,2005,45(3):335-38.
    [131] Banu J R, Uan D K, Yeom I T. Nutrient removal in an A2O-MBR reactor withsludge reduction [J]. Bioresource Technology,2009,100(16):3820-3824.
    [132] Kumar P, Mehrotra I, Viraraghavan T. Biological phosphorus removal: effectof low temperature [J]. Journal of Cold Regions Engineering,1996,10(2):63-76.
    [133] Di T D, Christensso M, Odegaard H. Hybrid activated sludge/biofilm processfor the treatment of municipal wastewater in a cold climate region: a casestudy [J]. Water Science and Technology,2011,63(6):1121-1129.
    [134] Koji M, Takahiko N, Masahide G, Noboru K. Characteristics of Nitrificationand Denitrification of the Media-Anaerobic-Anoxic-Oxic Process [J]. WaterScience and Technology,1996,34(1):137-143.
    [135] Shuai Y G, Feng L Y. Nitrogen removal via short-cut simultaneousnitrification and denitrification in an intermittently aerated moving bedmembrane bioreactor [J]. Journal of Hazardous Materials,2011,195:318-323.
    [136] Miyoko W, Tomoko Y, Kazuyoshi S, et al. Rate determination anddistribution of anammox activity in activated sludge treating swinewastewater [J]. Bioresource Technology,2010,101:2685-2690.
    [137] Tsushima I, Ogasawara Y, Shimokawa M, et al. Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function[J].Water Science and Technology,2007,55(8):9-17.
    [138] Head M A, Oleszkiewicz J A. Biouagmentation for nitrification at coldtemperatures [J]. Water Research,2004,38:523-530.
    [139]荣宏伟,陈志强,吕炳南.有机碳源对生物除磷的影响[J].南京理工大学学报(自然科学版),2004,28(4):440-444.
    [140] Sudarno U, Winter J, Gallert C. Effect of varying salinity, temperature,ammonia and nitrous acid concentrations on nitrification of saline wastewaterin fixed-bed reactors [J]. Bioresource Technology,2011,102(10):5665-5673.
    [141] Toh S K, Webb R I, Ashbolt N J. Enrichment of autotrophic anaerobicammonium-oxidizing consortia from various wastewaters [J]. MicrobialEcology,2002,43(1):154-167.
    [142] Zhang L, Miao Y, Jiang A X. Immobilization and nitrogen removal effect oflow-temperature resistant nitrobacteria[J].Chemical Industry and EngineeringProgress,2010,29(8):1567-1570.
    [143] Nia B J,Yu H Q, Sun Y J. Modeling simultaneous autotrophic andheterotrophic growth in aerobic granules[J].Water Research,2008,42:1583-1594.
    [144] Chen S L,Ling J,Blancheton J P. Nitrification kinetics of biofilm as affectedby water quality factors[J].Aquacultural Engineering,2006,34:179-197.
    [145] Than K, Ajit P. A. Novel microbial nitrogen removal processes [J].Biotechnology Advances,2004,22(7):519-532.
    [146] Li H J, Chen Y G, Gu GW. The effect of propionic to acetic acid ratio onanaerobic-aerobic(low dissolved oxygen)biological phosphorus and nitrogenremoval[J]. Bioresource Technology,2008,99(10):4400-4407.
    [147] Wu H Y, Gao J Y, Yang D H, et al. Improved nitrogen removal effect incontinuous flow A2/O process using typical extra carbon source[C].2ndInternational Symposium on Aqua science, Water Resource and low CarbonEnergy.2010,1251:57-60.
    [148]许莉,徐高田,王国华,等.污泥处理过程中厌氧再释磷的影响因素研究[J].环境科学学报,2010,30(4):789-794.
    [149] Zhou S Q, Zhang X J, Feng L Y. Effect of different types of electron acceptorson the anoxic phosphorus uptake activity of denitrifying phosphorusremoving bacteria[J]. Bioresource Technology.2010,101(6):1603-1610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700