用户名: 密码: 验证码:
基于亚硝化的全程自养脱氮工艺(CANON)效能及微生物特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于亚硝化的全程自养脱氮工艺(CANON)相比于传统的硝化/反硝化脱氮工艺具有诸多明显的优势,然而,目前对该工艺的研究成果和实践经验主要集中于低负荷、高氨氮浓度、高温废水的处理上;针对常温、低氨氮基质浓度的城市生活污水的处理方面存在若干亟待解决的问题,其中最为关键的问题在于如何在常温、低氨氮基质环境中快速启动并获取稳定、高效的脱氮性能。因此,本课题以温度和进水基质浓度作为两个重点考察因素,以实验室规模的数个CANON反应装置为研究对象,首次将宏观工艺运行性能和微观生物学特征两个方面相结合,研究了CANON反应器的启动策略和脱氮性能,并对CANON系统内的功能微生物在生理生化、形态特征、空间分布、种群数量、群落特征及遗传学等方面的特征进行了研究,以期加强对CANON工艺的机理及微生物动态变化规律的认知,并基于微生物研究结果指导并优化工艺运行,从而为CANON工艺应用于城市生活污水的脱氮处理提供技术支持。
     CANON工艺中的功能微生物为AOB和anammox菌,通过二者的协同作用实现氮素的去除。本文对不同工艺运行条件下的若干CANON反应装置内的微生物特征进行研究,结果表明不同的CANON系统在生物膜形态、功能微生物的空间分布、种属特征等方面具有共性:首先,火山岩填料表面的微生物以直径为0.2~1.0μm的球形及椭球形菌为主,易成簇生长。然而,生物膜在较强的水力剪切作用下容易受损,从而影响CANON的脱氮效能。其次,CANON内部的功能微生物彼此共生,并未呈现出分布在生物膜外层是AOB而内部是anammox菌的特征;第三,参与亚硝化作用的主要功能菌为亚硝化单胞菌属(Nitrosomonas),参与厌氧氨氧化作用的主要功能菌为待定布罗卡地菌属(Candidatus Brocadia),且AOB的生物多样性明显高于anammox菌,这种生物多样性保证了CANON系统一定的抗冲击能力;第四,CANON系统中还存在希瓦氏菌属(Shewanella)、假单胞菌属(Pseudomonas)、依格纳季氏菌属(Ignatzschineria)、脱氯单胞菌属(Dechloromonas)等,它们与AOB和anammox菌共同构成CANON系统内的微生物群落;最后,利用特定的AOB选择性培养基,从CANON反应器中筛选出4个AOB菌株。AOB的成功筛选为今后的微生物富集培养、固定化及基因工程的应用提供了理论基础。
     本文考察了不同温度对CANON的影响,研究表明:高温(30℃)和室温(16~23℃)条件下系统的总氮去除负荷分别为2.21kg N/(m3·d)和1.00kgN/(m3·d)。微生物试验表明:在常温下AOB和anammox菌的数量明显下降,而NOB数量有所增加,总细菌和AOB的群落多样性在常温条件下也略有降低,菌胶团的体积和间距变大,这些可能是造成反应器在常温条件下脱氮能力下降的主要原因。而温度对功能微生物的空间分布以及anammox菌的群落结构无显著影响。基于微生物学研究结果,笔者提出了可以通过补充CANON污泥、设置污泥截留装置、间歇曝气等方式提高常温下CANON的脱氮性能。
     除温度外,进水氨氮浓度也是影响CANON运行效果的另一重要因素。研究表明:常温下CANON在较低氨氮浓度时(NH_4~+-N>200mg/L)能够实现稳定的运行;当氨氮浓度降至100mg/L时,系统仍具有一定的脱氮性能,但此时生物膜被破坏,生物量流失严重,微生物菌团的间距增大,结构松散,且多以单细胞方式存在。在整个降基质运行过程中,AOB群落结构变化明显而anammox菌群落结构保持稳定。此外,系统内部总细菌和AOB数量随基质浓度的降低而减少,Nitrospira数量显著增加,anammox菌数量略有减少,而Nitrobacter很少检测到。基于微生物试验结果,本文提出了在常温、低基质浓度条件下,可以通过改用软性或者半软性填料、增设反冲洗、降低曝气、投加适量的亚硝态氮等途径来提高系统的脱氮性能。
     基于上述试验结果,本文在常温低氨氮条件下,通过接种污水处理厂(A~2/O工艺)曝气池回流污泥,经过好氧/间歇曝气/限氧三个阶段,在很短的时期内(180天)首次成功启动了CANON工艺,总氮去除负荷可达1.10kg N/(m~3·d)。相比于完全限氧方式,采用间歇曝气有利于维持系统内AOB和anammox的平衡关系,从而大大缩短了CANON的启动周期。在启动的全过程中Nitrobacter没有完全被淘汰,其群落结构变化明显,而AOB和anammox菌的群落结构相对稳定。
     为了使得CANON工艺发挥更好的脱氮效能,本文又进行了微生物优化控制方面的研究,结果表明:CANON滤层不同高度处微生物分布差异明显,在滤层下方微生物数量较多,易成簇生长,AOB的群落多样性很高,具有更强的脱氮能力和抗冲击负荷。为了使得功能微生物的沿程分布更为合理,建议定期改变进水方向,对不同滤层处进行均匀曝气或者对滤料进行重新排布;其次,常温条件下的生物膜厚度远未达到其理论最佳厚度值,因此,增加常温下的生物膜厚度或者适当降低系统内的DO浓度能够有效提高系统的脱氮效能。
Compared with traditional nitrification/denitrification nitrogen-removalprocess, completely autotrophic nitrogen-removal over nitrite (CANON) process hasmany distinct advantages. However, most of the research achievements and practicalexperiences are concerning wastewater that with low loading, high ammoniaconcentration and high temperature; and there are still some limitaions andchallenges of CANON to treat domestic sewage with low ammonia concentrationand ambient temperature, one of which is how to start up CANON quickly andobtain stable and effective nitrogen-removal performance at room temperature andlow ammonia concentration. Therefore, concerning of the two most importantfactors of temperature and influent ammonia concentration, this study combined themacroscopical process performance and microscopical biological characteristics forthe first time and investigated the physiology and biochemistry, morphologicalcharacteristics, spatial distribution, population, community structure and geneticsfeature of the functional microorganisms in CANON system based on a number oflab-scale CANON reactors. Except for the microbial characteristics, the start-upstrategy and nitrogen-removal performance were also analyzed, both of which mightstrengthen the awareness of the mechanism of CANON process and microbialcharacteristics, and provide theoretical guidance and technical support forCANON’s application to treat domestic sewage.
     The function microorganisms in CANON system are AOB and anammoxbacteria, and the removal of nitrogen relies on the harmonious balance between thetwo kinds of function microorganisms. The microbiological characteristics havebeen investigated in a number of CANON reactors operated in different conditions.The results showed some common features in the biofilm morphology, spatialdistribution of function microorganisms and species identification in differentCANON reactors. First, most microorganisms on the volcanic filter surface werespherical or ellipsoidal with a diameter of0.2~1.0μm, which showed clusteredappearance. However, the biofilm might be broken as a result of the strong hydraulicshearing when the hydraulic load increased, which might affect nitrogen removalcapacity. Second, AOB and anammox bacteria were side by side with each other,which was not consistant with previous reports that AOB distributed in the outerlayer while anaerobic anammox bacteria was in the inner part of the biofilm. Third,the main functional bacteria contributing to short-cut nitrification process wasNitrosomonas while Candidatus Brocadia contributed to anammox process. Thebiodiversity of AOB was better than that of anammox bacteria, which enhanced the anti-impact capactiy of CANON. Fourth, except for AOB and anammox bacteria,some other kinds of bacteria like Shewanella, Pseudomonas, Ignatzschineria andDechloromonas existed in CANON system. Finally, four AOB strains were screenedsuccessfully from the CANON reactor by using specific selective medium for AOB,which provided theoretical guides for future microbial enrichment, immobilizationand application of genetic engineering.
     The study of the effect of different temperature on CANON indicated theaverage TN removal loading was2.21kg N/(m3·d) and1.00kg N/(m3·d) respectivelyat high temperature (30℃) and ambient temperature (16~23℃). Microbiologicalexperiments showed that the population of AOB and anammox bacteria decreasedwhile NOB increased at ambient temperature. Besides, the community diversity oftotal bacteria and AOB also lowered slightly and the volume and spacing ofzoogloea increased. All the changes of microbial features mentioned above might bethe main reason for the decrease of nitrogen-removal capacity of CANON atambient temperature. It was also worth mentioning that the change of temperaturehad little effect on the spatial distribution of the functional microorganisms or thecommunity structure of anammox bacteria. Based on the microbial experimentalresults, such strategies should be in consideration so as to improve nitrogen-removalcapacity at ambient temperature: to add some CANON sludge, to set sludgeintercept instrument or to aerating intermittently.
     Except for temperature, influent ammonia concentration is the other mostimportant factor to effect CANON. The study indicated that CANON showed abetter performance when the influent ammonia concentration was higher than200mg/L. When influent ammonia concentration reduced to100mg/L, thenitrogen-removal capacity still existed but the biofilm destroyed and some biomasslost, and the SEM pictures showed the increased zoogloea spacing and loosezoogloea structure. During the whole decreasing of influent ammonia concentration,the community structure of AOB changed obviously, which was not the same withanammox bacteria. Besides, the population of total bacteria and AOB decreasedwhile Nitrospira increased. The population of anammox bacteria decreased slightlywhiel little Nitrobacter could be detected. Based on the microbial experimentsresults, using soft or half-soft filter, adding backwash, reducing aeration or adding acertain amount of nitrite might be some feasible approaches to improve theperformance of CANON at ambient temperature and low substrate concentration.
     In this study, a lab-scale CANON reactor was started up successfully within avery few period (180days) by inoculating with activated sludge obtained fromaeration tank of WWTP (A2/O process) at ambient temperature and low substrateconcentration for the first time based on the results above. After three phases ofaeration/intermittent aeration/limited aeration, stable CANON process was achieved with the TN removal loading of1.10kg N/(m3·d). Compared to completely stopaerating, intermittent aeration was conducive to maintaining the balance betweenAOB and anammox bacteria, leading to a much shorter start-up period. Nitrobacterwas hard to eliminated completely through the whole process and the communitystructure of it changed sharply, which was not the same wtih AOB and anammoxbacteria.
     In order to improve nitrogen removal capacity of CANON, optimal microbialcontrol was investigated and the results showed that the population was much biggerin the lower part of the filter, which trended to cluster. While in the above layer, itshowed less the number of microorganisms, more loosely, larger spacing and lessdiversity of AOB. It was suggested to change the inflow direction, to aerate equallyalong the filter or to rearrange filter every once in a while so as to optimizemicrobial distribution along the filter. Besides, the biofilm thickness at ambienttemperature was far from the optimal thickness value. Therefore, it was suggested toincrease the biofilm thickness or reduce DO concentration to some degree so as toimprove nitrogen removal capacity of CANON at ambient temperature.
引文
1K. A. Third,A. O. Sliekers,J. G. Kuenen,et al. The CANON system (completelyautotrophic nitrogen-removal over nitrite) under ammonium limitation:Interaction and competition between three groups of bacteria. Syst ApplMicrobiol.2001,24(4):588-596
    2A. O. Sliekers,K. A. Third,W. Abma,et al. CANON and Anammox in a gas-liftreactor. FEMS Microbiol. Lett.2003,218(2):339-344
    3W. R. L. van der Star,W. R. Abma,D. Blommers,et al. Startup of reactors foranoxic ammonium oxidation: Experiences from the first full-scale anammoxreactor in Rotterdam. Water Res.2007,41(18):4149-4163
    4王俊安,李冬,张杰.以城市污水再生全流程促进社会用水健康循环.北京工业大学学报.2009,35(4):522-526
    5王俊安,李冬,张杰.城市污水再生全流程优化理念与系统设计.现代化工.2009,29(3):60-63
    6孙衍增,蒋彬,殷琨.生物脱氮除磷机理及新工艺.云南环境科学.2006,25(01):54-56
    7叶建锋.废水生物脱氮处理新技术.北京:化学工业出版社.2006:3-5
    8王晓莲. A2/O法污水生物脱氮除磷处理技术与应用.北京:科学出版社.2009:39-45
    9王淑莹,孙洪伟,杨庆,等.传统生物脱氮反硝化过程的生化机理及动力学.应用与环境生物学报.2008,14(05):732-736
    10A. A. Van de graaf,A. Mulder,P. Debruijn,et al. Anaerobic oxidation ofammonium is a biologically mediated process. Appl Environ Microb.1995,61(4):1246-1251
    11A. Mulder,A. A. Van de graaf,L. A. Robertson,et al. Anaerobic ammoniumoxidation discovered in a denitrifying fluidized-bed reactor. Fems MicrobiolEcol.1995,16(3):177-183
    12郑平,胡宝兰.生物脱氮技术的研究进展.环境污染与防治.1997(04):25-28
    13郑平,张蕾.厌氧氨氧化菌的特性与分类.浙江大学学报(农业与生命科学版).2009,35(05):473-481
    14M. Nielsen,A. Bollmann,O. Sliekers,et al. Kinetics, diffusional limitation andmicroscale distribution of chemistry and organisms in a CANON reactor. FemsMicrobiol Ecol.2005,51(2):247-256
    15A. A. V. de Graaf,P. de Bruijn,L. A. Robertson,et al. Autotrophic growth ofanaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor.Microbiol-Uk.1996,142:2187-2196
    16付昆明.全程自养脱氮(CANON)反应器的启动及其脱氮性能.北京:北京工业大学学位论文.2010:5-7
    17L. Kuai,W. Verstraete. Autotrophic denitrification with elemental sulphur insmall-scale wastewater treatment facilities. Environ Technol.1999,20(2):201-209
    18J. G. Kuenen,L. A. Robertson. Combined nitrification-denitrification processes.Fems Microbiol Rev.1994,15(2-3):109-117
    19高秀花,刘宝林,李昌林,等.好氧反硝化生物脱氮研究进展.给水排水.2009,35(S1):58-62
    20冯爱坤.潜流型人工湿地脱氮功能的研究.广东:广东工业大学学位论文.2007:1-2
    21李峰,吕锡武,稻森悠平,等.氨氮废水处理过程中的好氧反硝化研究.给水排水.2000,26(4):17-20
    22I. Schmidt,O. Sliekers,M. Schmid,et al. New concepts of microbial treatmentprocesses for the nitrogen removal in wastewater. Fems Microbiol Rev.2003,27(4):481-492
    23田智勇.常温低基质浓度下生活污水的厌氧氨氧化生物脱氮研究.北京:北京工业大学学术论文.2008:8-12
    24D. Patureau,N. Bernet,T. Bouchez,et al. Biological nitrogen removal in asingle aerobic reactor by association of a nitrifying ecosystem to an aerobicdenitrifier, Microvirgula aerodenitrificans. J Mol Catal B-Enzym.1998,5(1-4):435-439
    25A. B. Gupta,S. K. Gupta. Simultaneous carbon and nitrogen removal in amixed culture aerobic RBC biofilm. Water Res.1999,33(2):555-561
    26F. Kazama. B. K. Pathak. Influence of temperature and organic carbon ondenammox process. Proceedings CD, Nutrient Removal.2007,Baltimore,March4:402-413
    27A. Hippen,C. Helmer,S. Kunst,et al. Six years' practical experience withaerobic/anoxic deammonification in biofilm systems. Water Sci Technol.2001,44(2-3):39-48
    28李泽兵,李军,李妍,等.短程硝化反硝化技术研究进展.给水排水.2011,37(9):163-168
    29A. O. Sliekers,N. Derwort,J. L. Campos-Gomez,et al. Completely autotrophicnitrogen removal over nitrite in one single reactor. Water Res.2002,36(10):2475-2482
    30J. P. Voets. Removal of nitrogen from high nitrogenous wastewater. JWPCF.1975,47:394-398
    31J. J. Ganczarczyk, S. Suthersan. Inhibition of nitrite oxidation duringnitrification. Some observations. Water pollution research journal of Canada.1986,21:257-266
    32O. Turk,D. S. Mavinic. Preliminary assessment of a shortcut in nitrogenremoval from waste-water. Can J Civil Eng.1986,13(6):600-605
    33J. T. Staley,M. P. Bryant,N. Pfennig,et al. Bergey's manual of systematicbacteriology. Baltimore: the Williams and wilkings Campany.1989:1807-1833
    34郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社.2004:1-2
    35L. Tao,L. Dong,Z. Jie. Phylogenetic and microbial community analysis basedon amoA gene and16SrDNA in nitrosification biofilm reactor. Adv MaterRes-Switz.2011,183-185:1051-1056
    36M. G. Klotz,J. Alzerreca,J. M. Norton. A gene encoding a membrane proteinexists upstream of the amoA/amoB genes in ammonia oxidizing bacteria: Athird member of the amo operon?. FEMS Microbiol. Lett.1997,150(1):65-73
    37U. Purkhold,A. Pommerening-Roser,S. Juretschko,et al. Phylogeny of allrecognized species of ammonia oxidizers based on comparative16S rRNA andamoA sequence analysis: Implications for molecular diversity surveys. ApplEnviron Microb.2000,66(12):5368-5382
    38周娟,李君文,郑金来,等.环境样品中亚硝酸细菌amoA基因的克隆与测序.环境科学研究.2004,17(02):77-80
    39明镇寰,陈岭.硝化池中氨氧化细菌amoA基因的检测及其多样性研究.浙江大学学报(理学版).2004,31(05):565-569
    40周娟,李君文,王新为,等.亚硝酸细菌amoA基因的克隆、测序与表达.应用与环境生物学报.2004,10(03):345-348
    41施永生.亚硝酸型生物脱氮技术.给水排水.2000,26(11):21-24
    42J. E. Alleman. Elevated nitrite occurrence in biological wastewater treatmentsystems. Water Science&Technology.1984,17(2-3):409-419
    43支霞辉,丁峰,彭永臻,等.常温条件下短程硝化反硝化生物脱氮影响因素的研究.环境污染与防治.2006,28(04):254-256
    44彭永臻,李勇智,王淑滢.高氨氮制药废水短程生物脱氮.化工学报.2003,54(10):1482-1485
    45H. J. Laanbroek,P. Bodelier,L. S. Gerards. Oxgen consumption kinrtics ofnitrosomonas europaea and nitrobacter hamburgensis grown in mixedcontinuous cultures at different oxygen concentrations. Arch Microbiol.1994,161:156-162
    46姚阔为,杨健,聂静,等.短程硝化-反硝化生物脱氮技术研究.油气田环境保护.2006,16(04):19-23
    47L. P. Kuai, W. Verstraete. Ammonium removal by the oxygen-limitedautotrophic nitrification-denitrification system. Appl Environ Microb.1998,64(11):4500-4506
    48E. Broda. Two kinds of lithotrphs missing in nature. Z. Allg. Microbiol.1977,17:491-493
    49叶建锋.废水生物脱氮处理新技术.北京:化学工业出版社.2006:90-91
    50M. Schmid,K. Walsh,R. Webb,et al. Candidatus "Scalindua brodae", sp nov.,Candidatus "Scalindua wagneri", sp nov., two new species of anaerobicammonium oxidizing bacteria. Syst Appl Microbiol.2003,26(4):529-538
    51B. Kartal,L. van Niftrik,J. Rattray,et al. Candidatus 'Brocadia fulgida': anautofluorescent anaerobic ammonium oxidizing bacterium. Fems MicrobiolEcol.2008,63(1):46-55
    52M. Strous,J. J. Heijnen,J. G. Kuenen,et al. The sequencing batch reactor asa powerful tool for the study of slowly growing anaerobicammonium-oxidizing microorganisms. Appl Microbiol Biot.1998,50(5):589-596
    53M. Strous,J. A. Fuerst,E. H. M. Kramer,et al. Missing lithotroph identifiedas new planctomycete. Nature.1999,400(6743):446-449
    54J. C. de Araujo,A. P. Campos,M. M. D. Correa,et al. Enrichment of anaerobicammonium oxidizing bacteria-Anammox. Eng Sanit Ambient.2010,15(2):205-212
    55H. Bae,K. S. Park,Y. C. Chung,et al. Distribution of anammox bacteria indomestic WWTPs and their enrichments evaluated by real-time quantitativePCR. Process Biochem.2010,45(3):323-334
    56田智勇.常温低基质浓度下生活污水的厌氧氨氧化生物脱氮研究.北京:北京工业大学学术论文.2008:13-14
    57M. Strous,J. G. Kuenen,M. S. M. Jetten. Key physiology of anaerobicammonium oxidation. Appl Environ Microb.1999,65(7):3248-3250
    58B. Kartal,J. Rattray,L. A. van Niftrik,et al. Candidatus "Anammoxoglobuspropionicus" a new propionate oxidizing species of anaerobic ammoniumoxidizing bacteria. Syst Appl Microbiol.2007,30(1):39-49
    59D. Guven,A. Dapena,B. Kartal,et al. Propionate oxidation by and methanolinhibition of anaerobic ammonium-oxidizing bacteria. Appl Environ Microb.2005,71(2):1066-1071
    60A. O. Sliekers,S. Haaijer,M. Schmid,et al. Nitrification and Anammox withurea as the energy source. Syst Appl Microbiol.2004,27(3):271-278
    61L. A. van Niftrik,J. A. Fuerst,J. S. S. Damste,et al. The anammoxosome: anintracytoplasmic compartment in anammox bacteria. FEMS Microbiol. Lett..2004,233(1):7-13
    62S. Schouten,M. Strous,M. M. M. Kuypers,et al. Stable carbon isotopicFractionations associated with inorganic carbon fixation by anaerobicammonium-oxidizing bacteria. Appl Environ Microb.2004,70(6):3785-3788
    63K. Egli,U. Fanger,P. J. J. Alvarez,et al. Enrichment and characterization ofan anammox bacterium from a rotating biological contactor treatingammonium-rich leachate. Arch Microbiol.2001,175(3):198-207
    64M. R. Lindsay,R. I. Webb,M. Strous,et al. Cell compartmentalisation inPlanctomycetes: novel types of structural organisation for the bacterial cell.Arch Microbiol.2001,175(6):413-429
    65M. S. M. Jetten,O. Sliekers,M. Kuypers,et al. Anaerobic ammonium oxidationby marine and freshwater planctomycete-like bacteria. Appl Microbiol Biot.2003,63(2):107-114
    66J. Schalk, S. de Vries, J. G. Kuenen, et al. Involvement of a novelhydroxylamine oxidoreductase in anaerobic ammonium oxidation.Biochemistry-Us.2000,39(18):5405-5412
    67L. van Niftrik,W. J. C. Geerts,E. G. van Donselaar,et al. Cell division ring,a new cell division protein and vertical inheritance of a bacterial organelle inanammox planctomycetes. Mol Microbiol.2009,73(6):1009-1019
    68胡宝兰,郑平,徐向阳,等.厌氧氨氧化电子受体的研究.应用与环境生物学报.1998,4(01):74-76
    69周少奇.厌氧氨氧化的微生物反应机理.华南理工大学学报.2000,28(11):16-19
    70阮晓红,张瑛.分子生物学技术及其在环境样品微生物分析中的应用.河海大学学报(自然科学版).2005,33(03):241-245
    71胡勇有,雒怀庆.厌氧氨氧化污泥中效应菌的分子生物学研究.微生物学报.2005,45(03):335-338
    72Y. J. Qin,S. Q. Zhou. Enrichment and molecular diversity of Anammoxbacteria in uasb reactor. Environ Prot Eng.2009,35(3):17-26
    73郑平,胡宝兰,胡安辉,等. Anammox反应器的启动及其菌群演变的研究.农业工程学报.2005,21(07):107-110
    74赵志宏,李小明.厌氧氨氧化菌的微生物学研究进展.微生物学通报.2007,34(01):138-142
    75路青,华兆哲,李秀芬,等. MBR中厌氧氨氧化运行特性及微生态结构.食品与生物技术学报.2010,29(04):581-588
    76H. Y. Dang,R. P. Chen,L. Wang,et al. Environmental factors shape sedimentAnammox bacterial communities in hypernutrified Jiaozhou Bay, China. ApplEnviron Microb.2010,76(21):7036-7047
    77胡宝兰,郑平.厌氧氨氧化菌混培物生长及代谢动力学研究.生物工程学报.2001,17(02):193-198
    78M. M. M. Kuypers,A. O. Sliekers,G. Lavik,et al. Anaerobic ammoniumoxidation by anammox bacteria in the Black Sea. Nature.2003,422(6932):608-611
    79郑平.厌氧氨生物氧化技术的研究.杭州:淅江大学学位论文.1999
    80M. S. M. Jetten,M. Strous,K. T. van de Pas-Schoonen,et al. The anaerobicoxidation of ammonium. Fems Microbiol Ecol.1998,22(5):421-437
    81左剑恶,杨洋,蒙爱红,等.厌氧氨氧化工艺在UASB反应器中的启动运行研究.上海环境科学.2003,22(10):665-669
    82袁怡,黄勇.厌氧氨氧化细菌的筛选试验研究.苏州科技学院学报(工程技术版).2004,17(4):6-10
    83T. Dalsgaard,D. E. Canfield,J. Petersen,et al. N2production by the anammoxreaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature.2003,442:606-608
    84M. Strous,E. Van Gerven,J. G. Kuenen,et al. Effects of aerobic andmicroaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge.Appl Environ Microb.1997,63(6):2446-2448
    85T. Liu,D. Li,H. P. Zheng,et al. Microbial characteristics of a CANON reactorduring the start-up period seeding conventional activated sludge. Water SciTechnol.2012,67(3):635-643
    86王全,张克峰,王洪波,等.厌氧氨氧化技术研究进展.山东建筑大学学报.2011,26(1):80-84
    87M. S. M. Jetten,S. J. Horn,M. C. M. vanLoosdrecht. Towards a moresustainable municipal wastewater treatment system. Water Sci Technol.1997,35(9):171-180
    88路青,李秀芬,华兆哲,等.接种污泥源对厌氧氨氧化启动效能的影响.生态与农村环境学报.2009,25(4):60-65
    89R. van Kempen,J. W. Mulder,C. A. Uijterlinde,et al. Overview: full scaleexperience of the SHARON (R) process for treatment of rejection water ofdigested sludge dewatering. Water Sci Technol.2001,44(1):145-152
    90汪慧贞,郝晓地,钱易,等.欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺(上).给水排水.2002,28(06):6-11
    91C. Helmer,S. Kunst,S. Juretschko,et al. Nitrogen loss in a nitrifying biofilmsystem. Water Sci Technol.1999,39(7):13-21
    92J. Vazquez-Padin, A. Mosquera-Corral, J. L. Campos, et al. Microbialcommunity distribution and activity dynamics of granular biomass in aCANON reactor. Water Res.2010,44(15):4359-4370
    93S. T. Liu,F. L. Yang,Z. Gong,et al. Assessment of the positive effect ofsalinity on the nitrogen removal performance and microbial composition duringthe start-up of CANON process. Appl Microbiol Biot.2008,80(2):339-348
    94Z. Gong,S. T. Liu,F. L. Yang,et al. Characterization of functional microbialcommunity in a membrane-aerated biofilm reactor operated for completelyautotrophic nitrogen removal. Bioresource Technol.2008,99(8):2749-2756
    95E. Attard,F. Poly,C. Commeaux,et al. Shifts between Nitrospira-andNitrobacter-like nitrite oxidizers underlie the response of soil potential nitriteoxidation to changes in tillage practices. Environ Microbiol.2010,12(2):315-326
    96K. Furukawa,P. K. Lieu,H. Tokitoh,et al. Development of single-stagenitrogen removal using anammox and partial nitritation (SNAP) and itstreatment performances. Water Sci Technol.2006,53(6):83-90
    97王盼盼,陈建中. CANON工艺中的微生物及其相互关系.环境科学与管理.2007,32(8):97-100
    98K. A. Third,J. Paxman,M. Schmid,et al. Treatment of nitrogen-richwastewater using partial nitrification and Anammox in the CANON process.Water Sci Technol.2005,52(4):47-54
    99A. Hippen,K. Rosenwinkel,G. Baumgarten,et al. Aerobic deammonification:A new experience in the treatment of waste waters. Water Sci Technol.1997,35(10):111-120
    100李小明,廖德祥,曾光明,等.单级SBR生物膜中全程自养脱氮的研究.中国环境科学.2005,25(02):222-225
    101K. Egli,F. Bosshard,C. Werlen,et al. Microbial composition and structure ofa rotating biological contactor biofilm treating ammonium-rich wastewaterwithout organic carbon. Microbial Ecol.2003,45(4):419-432
    102C. Hellinga,A. A. J. C. Schellen,J. W. Mulder,et al. The SHARON process:An innovative method for nitrogen removal from ammonium-rich waste water.Water Sci Technol.1998,37(9):135-142
    103郭劲松,杨国红,方芳,等.温度和pH值对CANON工艺的影响试验研究.环境工程学报.2009,03(01):22-26
    104张杰,付昆明,曹相生,等.序批式生物膜CANON工艺的运行与温度的影响.中国环境科学.2009,29(08):850-855
    105X. D. Hao,J. J. Heijnen,M. C. M. Van Loosdrecht. Model-based evaluation oftemperature and inflow variations on a partial nitrification-ANAMMOXbiofilm process. Water Res.2002,36(19):4839-4849
    106J. R. Vazquez-Padin,M. J. Pozo,M. Jarpa,et al. Treatment of anaerobicsludge digester effluents by the CANON process in an air pulsing SBR. JHazard Mater.2009,166(1):336-341
    107W. R. L. van der Star,A. I. Miclea,U. G. J. M. van Dongen,et al. Themembrane bioreactor: A novel tool to grow anammox bacteria as free cells.Biotechnol Bioeng.2008,101(2):286-294
    108王俊安,李冬,张杰,等.常温低氨氮污水生物滤池CANON工艺的实现.化工学报.2010,61(06):1528-1533
    109付昆明.全程自养脱氮(CANON)反应器的启动及其脱氮性能.北京:北京工业大学学位论文.2010:93-94
    110T. L. G. Hendrickx,Y. Wang,C. Kampman,et al. Autotrophic nitrogenremoval from low strength waste water at low temperature. Water Res.2012,46(7):2187-2193
    111H. De Clippeleir,X. G. Yan,W. Verstraete,et al. OLAND is feasible to treatsewage-like nitrogen concentrations at low hydraulic residence times. ApplMicrobiol Biot.2011,90(4):1537-1545
    112B. Szatkowska,G. Cema,E. Plaza,et al. A one-stage system with partialnitritation and Anammox processes in the moving-bed biofilm reactor. WaterSci Technol.2007,55(8-9):19-25
    113J. R. Va′zquez-Pa′din,I. Ferna′ndez,N. Morales,et al. Autotrophic nitrogenremoval at low temperature. Water Sci Technol.2011,63(6):1282-1288
    114G. Innerebner,H. Insam,I. H. Franke-Whittle,et al. Identification ofanammox bacteria in a full-scale deammonification plant making use ofanaerobic ammonia oxidation. Syst Appl Microbiol.2007,30(5):408-412
    115赵焱.生物固锰除锰工艺中锰氧化菌群结构功能及锰代谢机制分析.黑龙江:哈尔滨工业大学学位论文.2009:27-28
    116L. Chen,Z. H. Ming. Detecting and diversity analysis of amoA gene fromammonia-oxidizing bacteria in a nitrifying pool. Journal of ZhejiangUniversity(Science Edition).2004,31(5):565-569
    117G. A. Kowalchuk, J. Stephen, W. DeBoer, et al. Analysis ofammonia-oxidizing bacteria of the beta subdivision of the classProteobacteria in coastal sand dunes by denaturing gradient gelelectrophoresis and sequencing of PCR-amplified16S ribosomal DNAfragments. Appl Environ Microb.1997,63(4):1489-1497
    118A. Neef,R. Amann,H. Schlesner,et al. Monitoring a widespread bacterialgroup: in situ detection of planctomycetes with16S rRNA-targeted probes.Microbiol-Uk.1998,144:3257-3266
    119G. Muyzer, E. C. Dewaal, A. G. Uitterlinden. Profiling of complexmicrobial-populations by denaturing gradient gel-electrophoresis analysis ofpolymerase chain reaction-amplified genes-coding for16s ribosomal-rna.Appl Environ Microb.1993,59(3):695-700
    120B. J. Bassam,G. Caetanoanolles,P. M. Gresshoff. Fast and sensitive silverstaining of DNA in polyacrylamide gels. Anal Biochem.1991,196(1):80-83
    121T. Watanabe,S. Asakawa,A. Nakamura,et al. DGGE method for analyzing16S rDNA of methanogenic archaeal community in paddy field soil. FEMSMicrobiol. Lett..2004,232(2):153-163
    122A. Hermansson,P. E. Lindgren. Quantification of ammonia-oxidizing bacteriain arable soil by real-time PCR. Appl Environ Microb.2001,67(2):972-976
    123T. Liu,D. Li,H. P. Zeng,et al. Biodiversity and quantification of functionalbacteria in completely autotrophic nitrogen-removal over nitrite (CANON)process. Bioresource Technol.2012,118:399-406
    124G. S. Sayler, H. M. Dionisi, A. C. Layton, et al. Quantification ofNitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospiraspp. from full-scale wastewater treatment plants by competitive PCR. ApplEnviron Microb.2002,68(1):245-253
    125H. Q. Yu,B. J. Ni,B. L. Hu,et al. Microbial and physicochemicalcharacteristics of compact anaerobic ammonium-oxidizing granules in anUpflow Anaerobic Sludge Blanket reactor. Appl Environ Microb.2010,76(8):2652-2656
    126B. K. Mobarry,M. Wagner,V. Urbain,et al. Phylogenetic probes foranalyzing abundance and spatial organization of nitrifying bacteria. ApplEnviron Microb.1996,62(6):2156-2162
    127M. Wagner,G. Rath,H. P. Koops,et al. In situ analysis of nitrifying bacteriain sewage treatment plants. Water Sci Technol.1996,34(1-2):237-244
    128W Manz,R Amann,W Ludwig,et al. Phylogenetic oligodeoxynucleotideprobes for the major subclasses of Proteobacteria: problems and solutions.Syst Appl Microbiol.1992,15(4):593-600
    129H. S. Yoo,K. H. Ann,H. J. Lee,et al. Nitrogen removal from syntheticwastewater by simultaneous nitrification and denitrification (SND) via nitritein an intermit-tently aerated reactor. Water Res.1999,33(1):145-154
    130Y. Z. Peng,G. B. Zhu. Biological nitrogen removal with nitrification anddenitrification via nitrite pathway. Appl Microbial Biotechnol.2006,73:15-26
    131张杰,付昆明,曹相生,等.序批式生物膜CANON工艺的运行与温度的影响.中国环境科学.2009,29(8):850-855
    132付昆明.全程自养脱氮(CANON)反应器的启动及其脱氮性能.北京:北京工业大学学位论文.2010
    133H. P. Chuang,A. Ohashi,H. Imachi,et al. Effective partial nitrification tonitrite by down-flow hanging sponge reactor under limited oxygen condition.Water Res.2007,41(2):295-302
    134C. Paungfoo,P. Prasertsan,N. Intrasungkha,et al. Enrichment of nitrifyingmicrobial communities from shrimp farms and commercial inocula. Water SciTechnol.2003,48(8):143-150
    135K. Sakai,H. Nisijima,Y. Ikenaga,et al. Purification and characterization ofnitrite-oxidizing enzyme from heterotrophic Bacillus badius1-73, withspecial concern to catalase. Biosci Biotech Bioch.2000,64(12):2727-2730
    136张胜华.水生理微生物学.北京:化学工业出版社.2005:98-99
    137段莎丽,孙亚琴,伍阳,等.两株耐碱性亚硝化细菌的初步鉴定和特性研究.农业环境科学学报.2007(S2):406-409
    138L. Tao,L. Dong,Z. Jie. Phylogenetic and microbial community analysis basedon amoA gene and16SrDNA in nitrosification biofilm rReactor. Adv MaterRes-Switz.2011,183-185:1051-1056
    139L. Zhang,J. Jiang,J. C. Yang,et al. High rate nitrogen removal by theCANON process at ambient temperature. Water Sci Technol.2012,65(10):1826-1833
    140郭建华,王淑莹,郑雅楠,等.实时控制实现短程硝化过程中种群结构的演变.哈尔滨工业大学学报.2010,42(08):1259-1263
    141秦玉洁,周少奇,朱明石.厌氧氨氧化反应器微生态的研究.环境科学研究.2008,29(06):1638-1643
    142K. Pynaert,B. F. Smets,S. Wyffels,et al. Characterization of an autotrophicnitrogen-removing biofilm from a highly loaded lab-scale rotating biologicalcontactor. Appl Environ Microb.2003,69(6):3626-3635
    143史瑞,刘飞,霍贵成,等.基于DNA扣除法的Real-time RT-PCR对工程乳酸菌外源基因表达的绝对定量分析.生物工程学报.2009,25(08):1240-1246
    144方芳,秦宇,郭劲松,等.单级自养脱氮反应器效能与微生物群落结构的相关性.土木建筑与环境工程.2010,03:113-118
    145张斌,孙宝盛,刘慧娜,等.处理不同废水MBR系统中微生物群落结构的比较.环境科学.2008,29(10):2944-2949
    146王惠,易鹏,张树军,等.短程硝化-ANAMMOX反应器处理城市污水过程中脱氮微生物的群落解析.中国科学院研究生院学报.2012,29(01):38-46
    147K. Venkateswaran,D. P. Moser,M. E. Dollhopf,et al. Polyphasic taxonomyof the genus Shewanella and description of Shewanella oneidensis sp. nov.International Journal of Systematic Bacteriology.1999,49:705-724
    148K. Venkateswaran,M. E. Dollhopf,R. Aller,et al. Shewanella amazonensissp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelfmuds. International Journal of Systematic Bacteriology.1998,48:965-972
    149李哿.活性污泥—生物膜复合系统脱氮除磷试验研究.济南:山东建筑大学学位论文.2011
    150陈奇辉,刘祝祥,彭清忠,等.小溪自然保护区非盐环境土壤中嗜盐和耐盐菌多样性.微生物学报.2010,50(11):1452-1459
    151B. L. Hu,P. Zheng,C. J. Tang,et al. Identification and quantification ofanammox bacteria in eight nitrogen removal reactors. Water Res.2010,44(17):5014-5020
    152陈际达,际志胜,张光辉,等.含氨废水亚硝化型硝化的研究.重庆大学学报.2000,23(3):74-76
    153祝贵兵,彭永致,郭建华.短程硝化反硝化生物脱氮技术.哈尔滨工业大学学报.2008,40(10):1552-1556
    154操家顺,蔡娟.新型生物脱氮工艺——CANON工艺.中国给水排水.2005,08:26-29
    155S. T. Liu,F. L. Yang,Y. Xue,et al. Evaluation of oxygen adaptation andidentification of functional bacteria composition for anammox consortium innon-woven biological rotating contactor. Bioresource Technol.2008,99(17):8273-8279
    156Y. Date,K. Isaka,H. Ikuta,et al. Microbial diversity of anammox bacteriaenriched from different types of seed sludge in an anaerobiccontinuous-feeding cultivation reactor. J Biosci Bioeng.2009,107(3):281-286
    157H. Park,A. Rosenthal,R. Jezek,et al. Impact of inocula and growth mode onthe molecular microbial ecology of anaerobic ammonia oxidation (anammox)bioreactor communities. Water Res.2010,44(17):5005-5013
    158J. M. Regan,G. W. Harrington,H. Baribeau,et al. Diversity of nitrifyingbacteria in full-scale chloraminated distribution systems. Water Res.2003,37(1):197-205
    159S. Lucker,M. Wagner,F. Maixner,et al. A Nitrospira metagenome illuminatesthe physiology and evolution of globally important nitrite-oxidizing bacteria.P Natl Acad Sci USA.2010,107(30):13479-13484
    160J. H. Ahn,R. Yu,K. Chandran. Distinctive microbial ecology and biokineticsof autotrophic ammonia and nitrite oxidation in a partial nitrificationBioreactor. Biotechnol Bioeng.2008,100(6):1078-1087
    161A. Schramm,D. de Beer,J. C. van den Heuvel,et al. Microscale distributionof populations and activities of Nitrosospira and Nitrospira spp. along amacroscale gradient in a nitrifying bioreactor: Quantification by in situhybridization and the use of microsensors. Appl Environ Microb.1999,65(8):3690-3696
    162F. Haijuan,F. Ma,Y. L.Shen. Effects of DO and pH on nitrosification.Techniques and Equipment for Environmnetal Pollution Control.2006,7(1):37-41
    163H. P. Chuang,A. Ohashi,H. Imachi,et al. Effective partial nitrification tonitrite by down-flow hanging sponge reactor under limited oxygen condition.Water Res.2007,41(2):295-302
    164N. Bernet,P. Dangcong,J. P. Delgenes,et al. Nitrification at low oxygenconcentration in biofilm reactor. Journal of Environmental Engineering-Asce.2001,127(3):266-271
    165S. Cho,N. Fujii,T. Lee,et al. Development of a simultaneous partialnitrification and anaerobic ammonia oxidation process in a single reactor.Bioresource Technol.2011,102(2):652-659
    166曹建平,杜兵,刘寅,等.原生颗粒污泥单级自养脱氮工艺处理污泥压滤液的研究.环境科学.2009,30(10):2988-2994
    167S. J. You,S. H. Chuang,C. F. Ouyang. Nitrification efficiency and nitrifyingbacteria abundance in combined AS-RBC and A2O systems. Water Res.2003,37(10):2281-2290
    168A. K. Rowan,J. R. Snape,D. Fearnside,et al. Composition and diversity ofammonia-oxidising bacterial communities in wastewater treatment reactors ofdifferent designtreating identical wastewater. Fems Microbiol Ecol.2003,43(2):195-206
    169H. D. Ryu,S. I. Lee. Comparison of4-stage biological aerated filter (BAF)with MLE process in nitrogen removal from low carbon-to-nitrogenwastewater. Environ Eng Sci.2009,26(1):163-170
    170张文艺,夏绍凤,翟建平,等.曝气生物滤池反应器的沿程生化特性研究.中国给水排水.2006,22(15):71-74
    171M. S. M. Jetten,M. Wagner,J. Fuerst,et al. Microbiology and application ofthe anaerobic ammonium oxidation ('anammox') process. Curr Opin Biotech.2001,12(3):283-288
    172Q. X. Yang,Z. J. Jia,R. Y. Liu,et al. Molecular diversity and anammoxactivity of novel planctomycete-like bacteria in the wastewater treatmentsystem of a full-scale alcohol manufacturing plant. Process Biochem.2007,42(2):180-187
    173冯素萍,朱英,邹晓东.生物膜厚度影响含酚废水处理效果的研究.工业水处理.2004,24(6):23-25
    174X. D. Hao,J. J. Heijnen,M. C. M. van Loosdrecht. Sensitivity analysis of abiofilm model describing a one-stage completely autotrophic nitrogenremoval (CANON) process. Biotechnol Bioeng.2002,77(3):266-277
    175J. W. T. Wimpenny,R. Colasanti. A unifying hypothesis for the structure ofmicrobial biofilms based on cellular automaton models. Fems Microbiol Ecol.1997,22(1):1-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700