用户名: 密码: 验证码:
BBSNP工艺性能及反硝化聚磷菌除磷特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过量富磷污水排入收纳受体已经被公认为是引起水体富营养化最重要的原因,随着日益严格的国家城市污水排放标准,磷的去除备受关注。从经济高效、节能环保的角度出发,生物除磷无疑是最佳的选择,不但可以节省大量的化学除磷药品消耗,同时也避免了经化学处理后污泥的二次污染,最重要的是生物法具有可持续性。而我国现有的多数污水处理厂仅靠生物除磷已经难以达到最新排放标准中较严格的出水磷浓度(<0.5mg/L),尤其是目前很多城市污水中碳源不足,污水中C、N、P的比例严重失调,很难实现同时除磷脱氮的目的,鉴于此,寻求一种能在此环境下具有高效、低耗的生物除磷技术迫在眉睫,而反硝化除磷技术似乎提供了这样的可能性,然而工程上的应用甚少。
     本研究以反硝化除磷理论为基础,在A/O工艺的基础上通过添加两个选择器开发了两级生物选择反硝化除磷脱氮工艺(BBSNP工艺),解决了传统A/O和A~2O工艺中污泥回流携带的硝酸盐对厌氧释磷的影响,通过缺氧区反硝化除磷菌的一碳两用解决了同时脱氮除磷碳源不足的问题,并且可有效控制污泥膨胀的发生。
     本文系统的研究了BBSNP工艺的常温和低温下处理实际城市生活污水的反硝化除磷脱氮效能,并采用FISH和DGGE等分子生物学手段跟踪了系统不同时期的菌群结构及其多样性,分析了主要功能菌群结构和同期处理效果之间的动态关联,并考察了BBSNP工艺运行的主要影响因素。结果表明:BBSNP最适宜的运行参数为污泥回流比100%、混合液回流比150%、硝化液回流比200%、DO1.0~1.5mg/L;常温下BBSNP工艺对低C/N比的城市污水处理效果较好,平均COD、氨氮和总磷的去除率分别为89%、90%和97%,出水可达到我国《城镇污水处理厂污染物排放标准》的一级A标准,而低温时COD和磷的去除效果较好,但脱氮效果较差;缺氧池中COD浓度在不超过50mg/L的情况下,不会引起普通的反硝化细菌与DPAO竞争,而且缺氧段硝酸盐氮量和缺氧吸磷量呈较好的线性关系,平均每消耗1mg NO_3~--N约吸收1.8mg TP,此参数可作为BBSNP系统反硝化除磷的一个重要参数。
     鉴于BBSNP工艺中主要的除磷菌为DPAO,因此本研究深入研究了DPAO在厌氧/缺氧和厌氧/好氧环境下的除磷特性、主要影响因素、竞争规律及其代谢特征。研究结果表明:乙酸为碳源时,DPAO在厌氧/缺氧环境下的反硝化除磷是通过PAO I、 PAO II和DGAO合作实现的,表现为PAO I和DGAO可以把硝酸盐还原为亚硝酸盐, PAO II可以利用亚硝酸盐为电子受体反硝化吸磷,而PAO I可同时利用硝酸盐和亚硝酸盐进行反硝化吸磷;Mg/Ca摩尔比对厌氧/缺氧环境下DPAO污泥EPS凝胶的形成影响较大,当Mg/Ca摩尔比≥5.0时,EPS凝胶受到严重破坏不能为聚磷菌提供较好的载体,从而导致除磷效果恶化;不同温度厌氧/好氧环境下Accumulibacter子群内部的竞争不影响系统的除磷效果,而且高度富集Accumulibacter的反应器中厌氧P/HAc比明显低于PAO模型中的比值, PAO模型有待修正;低温不但可以抑制GAO的生长,也可在短期范围内抑制PAO II的繁殖,但长期运行下PAOII比PAOI更具有竞争优势,且低温下污泥中较高的藻酸盐类EPS使污泥呈形态规则、粒径较大、机械强度很强的颗粒污泥;无论污泥中聚磷是否受限,PAO II厌氧环境下都可显现GAO的代谢特征,好氧环境下只表现为PAO的代谢特征; PAOI在厌氧和好氧环境下都不能表现为GAO的代谢特征,而是保持PAO的代谢特征。
Excessive phosphorus-rich waste water discharged into the river has beenconsidered to be the most important reason to cause―eutrophication‖, withincreasingly stringent discharge standards of national urban sewage, phosphorusremoval was highly concerned. From cost-effective, energy saving andenvironmental friendly point of views, biological phosphorus removal is the bestoption, since not only it can save the consumption of considerable chemicals, butalso can avoid the secondary contamination of the chemical sludge, expectially itpossess biological sustainability. However, the majority of our existing waste watertreatment plants can’t achieve the latest phosphorus discharge standard (<0.5mg/L).In particular, a lot of urban waste water characteristic with inadequate carboncource, resulting in the imbalance of C, N and P, thus it is different to achievesimultaneous nitrogen and phosphorus removal. Considering this, it is most pressingmatter of the moment to explore a high efficiency, low consumption biologicalphosphorus removal technology, luckly denitrifying dephosphatation technologyseemingly could offer the possibility though marginal engineering applications.
     On the basis of the denitrifying dephosphatation theory and A/O process,Bi-Bio-Selector for Nitrogen and Phosphorus removal process (BBSNP process)was developed. It can effectively solve the effect of nitrate in recycled sludge onanaerobic phosphorus release, and achieve simultaneous nitrogen and phosphorusremoval through denitrifying phosphorus accumulating organisms (DPAO)so-called―dual use of the carbon source‖. Moreover, this process can effectivelycontrol sludge bulking.
     In this study, denitrifying phosphorus and nitrogen removal performance ofBBSNP process was systematically studied with real urban wastewater at room andlow temperatures, the population distribution and microbial diversity of differentperiods were traced by molecular biology methods(FISH and DGGE), dynamicassociation between the main functional bacterium was evaluated and the mainrunning factors were also studied. The results show that the most suitable operatingparameters in BBSNP process were100%of SRT,150%of mixed liquor recycle ratio,200%of nitrified liquor recycle ratio and DO of1.0~1.5mg/L; the COD,nitrogen and phosphorus removal efficiency of BBSNP process treating low C/Nwastewater at room temperature was89%、90%and97%, respectively, which canmeet the Grade A standards of urban sewage treatment plant emission standards(GB18918-2002). However, nitrogen removal peformance was highly influenced bylow temperature. In addition, less than50mg/L of anoxic COD concentration didnot cause the competition between ordinary denitrifying bacteria and DPAO, anoxicnitrate and anoxic P-uptake have a good linearship,1mg NO_3~--N consumptioncorresponding to1.8mg TP absorbtion, which can be used as one of the importantparameter in BBSNP system.
     The main phosphorus accumulating organisms in BBSNP process are DPAO,Hence, phosphorus removal characteristics, main influencing factors, competitionrules, sludge characteristic and metabolic stoichiometry of DPAO were furtherinvestigated in anaerobic/anoxic and anaerobic/aerobic environments. Theexperimental results show that anoxic denitrifying dephosphatation inanaerobic/anoxic environment contributed by the cooperation of PAO I, PAOII andDGAO when acetate as carbon source, where PAO I and DGAO reduced nitrate tonitrite, thus both PAO I and PAO II can use nitrite as electron acceptor of anoxicP-uptake, PAO I also can directly utilize nitrate as well. Mg/Ca molar ratios havesignificant impact on the formation of EPS gel, when the molar ratio of Mg/Ca≥5.0,the sludge can not provide a good carrier for the growth of DPAO/PAO since EPSgel formation has been severely damaged, resulting in the deterioration ofphosphorus removal. Under both room and low temperature, the competitionbetween Accumulibacter subclades do not influence the phosphorus removalefficiency, however, the anaerobic P/HAc ratios in so highly enrichedAccumulibacter cultures are significantly lower than in PAO models,suggesting thePAO model should be modified. In addition,low temperature have potentiality tosuppress the proliferation of GAO, and to some extent inhibit PAO II undershort-term conditions, while PAOII have a competitive advantage than PAOI underlong-term conditions. The granule sludge in low temperatue produced considerableamount of alginate-like EPS, which makes the gradule sludge regular morphology,big particle size and stronger mechanical strength. Regardless poly-phosphate is limited or not, PAO II can behave as GAO metabolism anaerobically and behave asPAO metabolism aerobically, but PAO I always behave PAO metabolism (not GAOmetabolism) under both anaerobic and aerobic conditions.
引文
[1] Conley DJ, Paerl HW, Howarth RW, et al. Ecology-Controlling eutrophication:Nitrogen and phosphorus [J]. Science.2009,323(5917):1014-1015.
    [2]支霞辉,黄霞,李朋,等.厌氧-好氧-缺氧短程硝化同步反硝化除磷工艺研究[J].环境科学学报.2009,29(9):1806-1812.
    [3]王晓莲. A2/O工艺运行优化及其过程控制的基础研究.北京工业大学博士学位论文.2007.
    [4] Rajasekhar P, Fan L, Nguyen T, et al. A review of the use of sonication tocontrol cyanobacterial blooms [J]. Water Research.2012,46(14):4319-4329.
    [5]水利部.2010年中国水资源公报[EB/OL].
    [6] stgaard K, Christensson M, Lie E, et al. Anoxic biological phosphorus removalin a full-scale UCT process [J]. Water Research.1997,31(11):2719-2726.
    [7] Kuba T, Van Loosdrecht MCM, Heijnen JJ. Phosphorus and nitrogen removalwith minimal COD requirement by integration of denitrifying dephosphatationand nitrification in a two-sludge system [J]. Water Research.1996,30(7):1702-1710.
    [8] Kuba T, van Loosdrecht MCM, Heijnen JJ. Biological dephosphatation byactivated sludge under denitrifying conditions pH influence and occurrence ofdenitrifying dephosphatation in a full-scale waste water treatment plant [J].Water Science and Technology.1997,36(12):75-82.
    [9] Osborn DW, Nicholls HA. Optimisation of the activated sludge process for thebiological removal of phosphorus [J]. Progress in Water Technology.1978,10(1-2):261-277.
    [10] Hascoet MC, Florentz M. Influence of nitrates on biological phosphorusremoval from wastewater [J]. Water SA.1985,11(1):1-8.
    [11] Vlekke GJFM, Comeau Y, Oldham WK. Biological phosphate remova l fromwastewater with oxygen or nitrate in sequencing batch reactors [J].Environmental Technology Letters.1988,9(8):791-796.
    [12] Wanner J, Cech JS, Kos M. New process design for biological nutrient removal[J]. Water Science and Technology.1992,25(4-5):445-448.
    [13] Kuba T, Smolders G, van Loosdrecht MCM, et al. Biological phosphorusremoval from wastewater by anaerobic-anoxic sequencing batch reactor [J].Water Science and Technology.1993,27(5-6):241-252.
    [14]王亚宜,彭永臻,王淑莹,等.反硝化除磷理论、工艺及影响因素[J].中国给水排水.2003,01:33-36.
    [15] Kuba T, Van Loosdrecht MCM, Heijnen JJ. Biological dephosphatation byactivated sludge under denitrifying conditions: pH influence and occurrence ofdenitrifying dephosphatation in a full-scale waste water treatment plant [J].Water Science and Technology.1997,36(12):75-82.
    [16] Lee DS, Jeon CO, Park JM. Biological nitrogen removal with enhancedphosphate uptake in a sequencing batch reactor using single sludge system [J].Water Research.2001,35(16):3968-3976.
    [17]王秀蘅.同步脱氮除磷新工艺开发与运行效能研究.哈尔滨工业大学工学博士学位论文.2006,12-15.
    [18] Kerrn-Jespersen JP, Henze M. Biological phosphorus uptake under anoxic andaerobic conditions [J]. Water Research.1993,27(4):617-624.
    [19] Hao X, Loosdrecht MCMV, Meijer SCF, et al. Model-based evaluation of twoBNR processes-UCT and A2N [J]. Water Research.2001,35(12):2851-2860.
    [20] Kuba T, Van Loosdrecht MCM, Brandse FA, et al. Occurrence of denitrifyingphosphorus removing bacteria in modified UCT-type wastewater treatmentplants [J]. Water Research.1997,31(4):777-786.
    [21] Lee H, Han J, Yun Z. Biological nitrogen and phosphorus removal in UCT-typeMBR process [J]. Water Science and Technology.2009,59(11):2093-2099.
    [22] Van Loosdrecht MCM, Brandse FA, De Vries AC. Upgrading of waste watertreatment processes for integrated nutrient removal the BCFS process [J].Water Science and Technology.1998,37(9):209-217.
    [23] Brdjanovic D, Van Loosdrecht MCM, Versteeg P, et al. Modeling COD, N andP removal in a full-scale wwtp Haarlem Waarderpolder [J]. Water Research.2000,34(3):846-858.
    [24]郝晓地,汪慧贞,MarkvanLoosdrecht.可持续除磷脱氮工艺[J].给水排水.2002,28(9):7-9.
    [25] Bortone G, Libelli SM, Tilche A, et al. Anoxic phosphate uptake in theDEPHANOX process [J]. Water Science and Technology.1999,40:177-185.
    [26]卢峰,杨殿海.反硝化除磷工艺的研究开发进展[J].中国给水排水.2003,09:32-34.
    [27]马勇,彭永臻,王晓莲,等.新型高效反硝化除磷工艺[J].环境污染与防治.2004,01:51-53.
    [28]罗固源,罗宁,吉芳英,等.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水.2002,09:4-7.
    [29] Carucci A, Kühni M, Brun R, et al. Microbial competition for the organicsubstrates and its impact on EBPR systems under conditions of changingcarbon feed [J]. Water Science and Technology.1999,39:75-85.
    [30] Mino T, Van Loosdrecht MCM, Heijnen JJ. Microbiology and biochemistry ofthe enhanced biological phosphate removal process [J]. Water Research.1998,32(11):3193-3207.
    [31] Kuba T, Murnleitner E, Van Loosdrecht MCM, et al. A metabolic model forbiological phosphorus removal by denitrifying organisms [J]. Biotechnologyand Bioengineering.1996,52(6):685-695.
    [32] Brdjanovic D, Logemann S, Van Loosdrecht MCM, et al. Influence oftemperature on biological phosphorus removal: Process and molecularecological studies [J]. Water Research.1998,32(4):1035-1048.
    [33] Smolders GJ, van der Meij J, van Loosdrecht MC, et al. A structured metabolicmodel for anaerobic and aerobic stoichiometry and kinetics of the biologicalphosphorus removal process [J]. Biotechnol Bioeng.1995,47(3):277-287.
    [34] Filipe CDM, Daigger GT, Grady Jr CPL. A metabolic model for acetate uptakeunder anaerobic conditions by glycogen accumulating organisms:Stoichiometry, kinetics, and the effect of pH [J]. Biotechnology andBioengineering.2001,76(1):17-31.
    [35] Satoh H, Mino T, Matsuo T. Deterioration of enhanced biological phosphor usremoval by the domination of microorganisms without polyphosphateaccumulation [J]. Water Science and Technology.1994,30(6pt6):203-211.
    [36] Oehmen A, Lemos PC, Carvalho G, et al. Advances in enhanced biologicalphosphorus removal: From micro to macro scale [J]. Water Research.2007,41(11):2271-2300.
    [37] McMahon KD, Dojka MA, Pace NR, et al. Polyphosphate kinase fromactivated sludge performing enhanced biological phosphorus removal [J]. ApplEnviron Microbiol.2002,68(10):4971-4978.
    [38] He S, Gu AZ, McMahon KD. Fine-scale differences betweenAccumulibacter-like bacteria in enhanced biological phosphorus removalactivated sludge [J]. Water Science and Technology.2006,54:111-117.
    [39] Beer M, Stratton HM, Griffiths PC, et al. Which are the polyphosphateaccumulating organisms in full-scale activated sludge enhanced biologicalphosphate removal systems in Australia?[J]. Journal of Applied Microbiology.2006,100(2):233-243.
    [40]荣宏伟,陈志强,吕炳南.有机碳源对生物除磷的影响[J].南京理工大学学报:自然科学版.2004,28(004):440-444.
    [41] Oehmen A, Yuan Z, Blackall LL, et al. Comparison of acetate and propionateuptake by polyphosphate accumulating organisms and glycogen accumulatingorganisms [J]. Biotechnology and Bioengineering.2005,91(2):162-168.
    [42] Chen Y, Randall AA, McCue T. The efficiency of enhanced biologicalphosphorus removal from real wastewater affected by different ratios of aceticto propionic acid [J]. Water Research.2004,38(1):27-36.
    [43] Pijuan M, Saunders AM, Guisasola A, et al. Enhanced Biological Pho sphorusRemoval in a Sequencing Batch Reactor Using Propionate as the Sole CarbonSource [J]. Biotechnology and Bioengineering.2004,85(1):56-67.
    [44] Oehmen A, Zeng RJ, Yuan Z, et al. Anaerobic metabolism of propionate bypolyphosphate-accumulating organisms in enhanced biological phosphorusremoval systems [J]. Biotechnology and Bioengineering.2005,91(1):43-53.
    [45] Vargas M, Casas C, Baeza JA. Maintenance of phosphorus removal in an EBPRsystem under permanent aerobic conditions using propionate [J]. BiochemicalEngineering Journal.2009,43(3):288-296.
    [46]鲁文敏,王亚宜,高乃云,等.不同基质的聚磷菌和聚糖菌竞争的代谢模型[J].中国资源综合利用.2009,01:37-40.
    [47]吴昌永,彭永臻,彭轶.碳源类型对A2/O系统脱氮除磷的影响[J].环境科学.2009,30(003):798-802.
    [48] Beer M, Kong YH, Seviour RJ. Are some putative glycogen accumulatingorganism (GAO) in anaerobic: Aerobic activated sludge systems members ofthe-Proteobacteria?[J]. Microbiology.2004,150(7):2267-2275.
    [49] Meyer RL, Saunders AM, Blackall LL. Putative glycogen-accumulatingorganisms belonging to the Alphaproteobacteria identified throughrRNA-based stable isotope probing [J]. Microbiology.2006,152(2):419-429.
    [50] Carvalho G, Lemos PC, Oehmen A, et al. Denitrifying phosphorus removal:Linking the process performance with the microbial community structure [J].Water Research.2007,41(19):4383-4396.
    [51] Lopez-Vazquez CM, Oehmen A, Hooijmans CM, et al. Modeling thePAO-GAO competition: Effects of carbon source, pH and temperature [J].Water Research.2009,43(2):450-462.
    [52] Lanham AB, Moita R, Lemos PC, et al. Long-term operation of a reactorenriched in Accumulibacter clade I DPAOs: Performance with nitrate, nitriteand oxygen [J]. Water Science and Technology.2011,63(2):352-359.
    [53] Cech JS, Hartman P. Glucose induced break down of enhan ced biologicalphosphate removal [J]. Environmental Technology.1990,11(7):651-656.
    [54] Liu WT, Mino T, Nakamura K, et al. Role of glycogen in acetate uptake andpolyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with aminimized polyphosphate content [J]. Journal of Fermentation andBioengineering.1994,77(5):535-540.
    [55] Liu WT, Mino T, Nakamura K, et al. Glycogen accumulating population and itsanaerobic substrate uptake in anaerobic-aerobic activated sludge withoutbiological phosphorus removal [J]. Water Research.1996,30(1):75-82.
    [56] Wang N, Peng J, Hill G. Biochemical model of glucose induced enhancedbiological phosphorus removal under anaerobic condition [J]. Water Research.2002,36(1):49-58.
    [57] Matsuo Y. Effect of the anaerobic solids retention time on enhanced biologicalphosphorus removal [J]. Water Science and Technology.1994,30(6pt6):193-202.
    [58] Jeon CO, Lee DS, Park JM. Enhanced biological phosphorus removal in ananaerobic-aerobic sequencing batch reactor: Characteristics of carbonmetabolism [J]. Water Environment Research.2001,73(3):295-300.
    [59] Wang Y, Jiang F, Zhang Z, et al. The long-term effect of carbon source on thecompetition between polyphosphorus accumulating organisms and glycogenaccumulating organism in a continuous plug-flow anaerobic/aerobic (A/O)process [J]. Bioresource Technology.2010,101(1):98-104.
    [60] Ng WJ, Ong SL, Hu JY. Denitrifying phosphorus removal by anaerobic/anoxicsequencing batch reactor [J]. Water Science and Technology.2001,43:139-146.
    [61] Wang Yy, Pan Ml, Yan M, et al. Characteristics of anoxic phosphors removal insequence batch reactor [J]. Journal of Environmental Sciences.2007,19(7):776-782.
    [62] Merzouki M, Bernet N, Deigenès JP, et al. Biological denitrifying phosphorusremoval in SBR: Effect of added nitrate concentration and sludge retentiontime [J]. Water Science and Technology.2001,43:191-194.
    [63] Merzouki M, Bernet N, Delgenes JP, et al. Effect of operating parameters onanoxic biological phosphorus removal in anaerobic anoxic sequencing batchreactor [J]. Environmental Technology.2001,22(4):397-408.
    [64] Liu W-T, Nakamura K, Matsuo T, et al. Internal energy-based competitionbetween polyphosphate-and glycogen-accumulating bacteria in biologicalphosphorus removal reactors—Effect of PC feeding ratio [J]. Water Research.1997,31(6):1430-1438.
    [65] Schuler AJ, Jenkins D. Enhanced biological phosphorus removal fromwastewater by biomass with different phosphorus contents, part I:Experimental results and comparison with metabolic models [J]. WaterEnvironment Research.2003,75(6):485-498.
    [66] Zeng RJ, van Loosdrecht MCM, Yuan ZG, et al. Metabolic model forglycogen-accumulating organisms in anaerobic/aerobic activated sludgesystems [J]. Biotechnology and Bioengineering.2003,81(1):92-105.
    [67] Dai Y, Yuan Z, Wang X, et al. Anaerobic metabolism of Defluviicoccus vanusrelated glycogen accumulating organisms (GAOs) with acetate and propionateas carbon sources [J]. Water Research.2007,41(9):1885-1896.
    [68] Oehmen A, Zeng RJ, Saunders AM, et al. Anaerobic and aerobic metabolism ofglycogen-accumulating organisms selected with propionate as the sole carbonsource [J]. Microbiology.2006,152(9):2767-2778.
    [69] Kuba T, Murnleitner E, vanLoosdrecht MCM, et al. A metabolic model forbiological phosphorus removal by denitrifying organisms [J]. Biotechnologyand Bioengineering.1996,52(6):685-695.
    [70] Brdjanovic D, van Loosdrecht MCM, Hooijmans CM, et al. Effect ofpolyphosphate limitation on the anaerobic metabolism ofphosphorus-accumulating microorganisms [J]. Applied Microbiology andBiotechnology.1998,50(2):273-276.
    [71] Filipe CDM, Daigger GT, Grady Jr CPL. Stoichiometry and kinetics of acetateuptake under anaerobic conditions by an enriched culture ofphosphorus-accumulating organisms at different pHs [J]. Biotechnology andBioengineering.2001,76(1):32-43.
    [72] Panswad T, Doungchai A, Anotai J. Temperature effect on microbialcommunity of enhanced biological phosphorus removal system [J]. WaterResearch.2003,37(2):409-415.
    [73]王亚宜,王淑莹,彭永臻,等.污水有机碳源特征及温度对反硝化聚磷的影响[J].环境科学学报.2006,02:186-192.
    [74] Erdal UG, Erdal ZK, Randall CW. The mechanism of enhanced biologicalphosphorus removal washout and temperature relationships [J]. WaterEnvironment Research.2006,78(7):710-715.
    [75] Krishna C, Van Loosdrecht MCM. Effect of temperature on storage polymersand settleability of activated sludge [J]. Water Research.1999,33(10):2374-2382.
    [76] Lopez-Vazquez CM, Hooijmans CM, Brdjanovic D, et al. Temperature effectson glycogen accumulating organisms [J]. Water Research.2009,43(11):2852-2864.
    [77] Lopez-Vazquez CM, Song YI, Hooijmans CM, et al. Temperature effects on theaerobic metabolism of glycogen-accumulating organisms [J]. BiotechnolBioeng.2008,101(2):295-306.
    [78] Li N, Ren N-Q, Wang X-H, et al. Effect of temperature on intracellularphosphorus absorption and extra-cellular phosphorus removal in EBPR process[J]. Bioresource Technology.2010,101(15):6265-6268.
    [79] Whang LM, Park JK. Competition between polyphosphate-andglycogen-accumulating organisms in biological phosphorus removal systems-Effect of temperature [J]. Water Science and Technology.2002,46:191-194.
    [80]姜涛.温度与碳源对生物除磷系统中PAO和GAO影响及除磷效能研究.哈尔滨工业大学工学博士学位论文.2011.
    [81] Winkler MKH, Bassin JP, Kleerebezem R, et al. Selective sludge removal in asegregated aerobic granular biomass system as a strategy to control PAO-GAOcompetition at high temperatures [J]. Water Research.2011,45(11):3291-3299.
    [82] Schneider T, Riedel K. Environmental proteomics: Analysis of structure andfunction of microbial communities [J]. PROTEOMICS.2010,10(4):785-798.
    [83] Erdal UG, Erdal ZK, Daigger GT, et al. Is it PAO-GAO competition ormetabolic shift in EBPR system? Evidence from an experimental study [J].Water Science and Technology.2008,58(6):1329-1334.
    [84] Smolders GJF, Vandermeij J, Vanloosdrecht MCM, et al. MODEL OF THEANAEROBIC METABOLISM OF THE BIOLOGICAL PHOSPHORUSREMOVAL PROCESS-STOICHIOMETRY AND PH INFLUENCE [J].Biotechnology and Bioengineering.1994,43(6):461-470.
    [85] Smolders GJF, Vandermeij J, Vanloosdrecht MCM, et al. STOICHIOMETRICMODEL OF THE AEROBIC METABOLISM OF THE BIOLOGICALPHOSPHORUS REMOVAL PROCESS [J]. Biotechnology and Bioengineering.1994,44(7):837-848.
    [86] Filipe CDM, Daigger GT, Grady Jr CPL. Effects of pH on the rates of aerobicmetabolism of phosphate-accumulating and glycogen-accumulating organisms[J]. Water Environment Research.2001,73(2):213-222.
    [87]王亚宜.反硝化除磷脱氮机理及工艺研究.哈尔滨工业大学博士学位论文.2004,114-115.
    [88] Liu Y, Chen Y, Zhou Q. Effect of initial pH control on enhanced biologicalphosphorus removal from wastewater containing acetic and propionic acids [J].Chemosphere.2007,66(1):123-129.
    [89] Zhang C, Chen Y, Liu Y. The long-term effect of initial pH control on theenrichment culture of phosphorus-and glycogen-accumulating organisms witha mixture of propionic and acetic acids as carbon sources [J]. Chemosphere.2007,69(11):1713-1721.
    [90] Serafim LS, Lemos PC, Reis MAM. Effect of pH control on EBPR stabilityand efficiency [J]. Water Science and Technology.2002,46:179-184.
    [91] Ji Z, Chen Y. Using sludge fermentation liquid to improve wastewater short-cutnitrification-denitrification and denitrifying phosphorus removal via nitrite [J].Environmental Science and Technology.2010,44(23):8957-8963.
    [92] Li J, Xiong B, Zhang S, et al. Effects of nitrite on phosphate uptake inanaerobic-oxic process [J]. Frontiers of Environmental Science andEngineering in China.2007,1(1):39-42.
    [93] Vargas M, Guisasola A, Artigues A, et al. Comparison of a nitrite-basedanaerobic-anoxic EBPR system with propionate or acetate as electron donors[J]. Process Biochemistry.2011,46(3):714-720.
    [94] Zhou S, Zhang X, Feng L. Effect of different types of electron acceptors on theanoxic phosphorus uptake activity of denitrifying phosphorus removingbacteria [J]. Bioresource Technology.2010,101(6):1603-1610.
    [95] Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate upta ke inbiological phosphorus removal activated sludge [J]. Water Research.1999,33(8):1871-1883.
    [96] Zhou Y, Ganda L, Lim M, et al. Free nitrous acid (FNA) inhibition ondenitrifying poly-phosphate accumulating organisms (DPAOs)[J]. AppliedMicrobiology and Biotechnology.2010,88(1):359-369.
    [97] Pijuan M, Ye L, Yuan Z. Could nitrite/free nitrous acid favour GAOs overPAOs in enhanced biological phosphorus removal systems?[J]. Water Scienceand Technology.2011,63(2):345-351.
    [98] Zhou Y, Ganda L, Lim M, et al. Response of poly-phosphate accumulatingorganisms to free nitrous acid inhibition under anoxic and aerobic conditions[J]. Bioresource Technology.2012,116:340-347.
    [99] Sch nborn C, Bauer HD, R ske I. Stability of enhanced biological phosph orusremoval and composition of polyphosphate granules [J]. Water Research.2001,35(13):3190-3196.
    [100] Montoya Martínez T, Aguado García D, Ferrer Polo J, et al. Requirements ofmagnesium and potassium for enhanced biological phosphorus removalprocess [J]. Requisitos de magnesio y potasio, iones necesarios en los procesosde eliminación biológica de fósforo.2005,25(265):84-90.
    [101] Pattarkine VM, Randall CW. The requirement of metal cations for enhancedbiological phosphorus removal by activated sludge [J]. Water Science andTechnology.1999,40:159-165.
    [102] Bonting CFC, Kortstee GJJ, Boekestein A, et al. The elemental compositiondynamics of large polyphosphate granules in Acinetobacter strain210A [J].Archives of Microbiology.1993,159(5):428-434.
    [103] Carlsson H, Aspegren H, Lee N, et al. Calcium phosphate precipitation inbiological phosphorus removal systems [J]. Water Research.1997,31(5):1047-1055.
    [104] Barat R, Montoya T, Borrás L, et al. Interactions between calciumprecipitation and the polyphosphate-accumulating bacteria metabolism [J].Water Research.2008,42(13):3415-3424.
    [105] Brdjanovic D, Hooijmans CM, Van Loosdrecht MCM, et al. The dynamiceffects of potassium limitation on biological phosphorus removal [J]. WaterResearch.1996,30(10):2323-2328.
    [106] Whang LM, Filipe CDM, Park JK. Model-based evaluation of competitionbetween polyphosphate-and glycogen-accumulating organisms [J]. WaterResearch.2007,41(6):1312-1324.
    [107] Smolders GJF, Klop JM, Van Loosdrecht MCM, et al. A metabolic model ofthe biological phosphorus removal process: I. Effect of the sludge retentiontime [J]. Biotechnology and Bioengineering.1995,48(3):222-233.
    [108] Merzouki M, Bernet N, Delgenès JP, et al. Effect of prefermentation ondenitrifying phosphorus removal in slaughterhouse wastewater [J]. BioresourceTechnology.2005,96(12):1317-1322.
    [109] Chuang SH, Ouyang CF, Yuang HC, et al. Phosphorus andpolyhydroxyalkanoates variation in a combined process with activated sludgeand biofilm [J]. Water Science and Technology.1998,37(4-5):593-597.
    [110] Henze M, Gujer W, Mino T, et al. Activated Sludge Model No.2d, ASM2d [J].Water Science and Technology.1999,39:165-182.
    [111] Murnleitner E, Kuba T, Van Loosdrecht MCM, et al. An integrate d metabolicmodel for the aerobic and denitrifying biological phosphorus removal [J].Biotechnology and Bioengineering.1997,54(5):434-450.
    [112] Smolders GJ, van der Meij J, van Loosdrecht MC, et al. Model of theanaerobic metabolism of the biological phosphorus removal process:Stoichiometry and pH influence [J]. Biotechnol Bioeng.1994,43(6):461-470.
    [113] Gujer W, Henze M, Mino T, et al. Activated Sludge Model No.3[J]. WaterScience and Technology.1999,39:183-193.
    [114] Oehmen A, Vives MT, Lu H, et al. The effect of pH on the competitionbetween polyphosphate-accumulating organisms and glycogen-accumulatingorganisms [J]. Water Research.2005,39(15):3727-3737.
    [115] Karahan-Gül, Van Loosdrecht MCM, Orhon D. Modification of activatedsludge model no.3considering direct growth on primary substrate [J]. WaterScience and Technology.2003,47:219-225.
    [116] Iacopozzi I, Innocenti V, Marsili-Libelli S, et al. A modified Activated SludgeModel No.3(ASM3) with two-step nitrification-denitrification [J].Environmental Modelling and Software.2007,22(6):847-861.
    [117] Ostace GS, Cristea VM, Agachi PS. Evaluation of different control strategiesof the waste water treatment plant based on a modified activated sludge modelno.3[J]. Environmental Engineering and Management Journal.2012,11(1):147-164.
    [118] Makinia J, Rosenwinkel KH, Phan LC. Modification of ASM3for thedetermination of biomass adsorption/storage capacity in bulking sludge control[J]. Water Science and Technology.2006,53:91-99.
    [119] Cho J, Ahn KH, Seo Y, et al. Modification of ASM No.1for a submergedmembrane bioreactor system: Including the effects of soluble microbialproducts on membrane fouling [J]. Water Science and Technology.2003,47:177-181.
    [120] Manga J, Ferrer J, Garcia-Usach F, et al. A modification to the ActivatedSludge Model No.2based on the competition betweenphosphorus-accumulating organisms and glycogen-accumulating organisms [J].Water Science and Technology.2001,43:161-171.
    [121] Mino T, Liu WT, Kurisu F, et al. Modelling glycogen storage anddenitrification capability of microorganisms in enhanced biological phosphateremoval processes [J]. Water Science and Technology.1995,31(2):25-34.
    [122] Hollender J, Van der Krol D, Kornberger L, et al. Effect of different carbonsources on the enhanced biological phosphorus removal in a sequencing batchreactor [J]. World Journal of Microbiology and Biotechnology.2002,18(4):355-360.
    [123] Daigger GT. A practitioner's perspective on the uses and future developmentsfor wastewater treatment modelling [J]. Water Science and Technology.2011,63(3):516-526.
    [124] Fuhs GW, Chen M. Microbiological basis of phosphate removal in theactivated sludge process for the treatment of wastewater [J]. MICROBIALECOL.1975,2(2):119-138.
    [125] Deinema MH, Van Loosdrecht M, Scholten A. Some physiologicalcharacteristics of Acinetobacter spp. accumulating large amounts of phosphate[J]. Water Science and Technology.1985,17(11-12):119-125.
    [126] Brodisch KEU, Joyner SJ. The role of micro-organisms other thanAcinetobacter in biological phosphate removal in activated sludge processes[J]. Water Science and Technology.1983,15(3-4):117-125.
    [127] Stephenson T. Acinetobacter: Its Role in Biological PhosphorusRemoval. In Advances in Water Pollution Control: BiologicalPhosphate Removal front Wastewaters, Ramadori, R.(Ed.)[M]. Oxford,United Kingdom: Pergamon Press,1987.
    [128] Wentzel MC, Lotter LH, Loewenthal RE, et al. Metabolic behaviour ofAcinetobacter spp. in enhanced biological phosphorus removal-a biochemicalmodel [J]. Water SA.1986,12(4):209-224.
    [129] Wentzel MC, Dold PL, Ekama GA, et al. Enhanced polyphosphate organismcultures in activated sludge systems. Part III: Kinetic model [J]. Water SA.1989,15(2):89-102.
    [130] Wentzel MC, Ekama GA, Loewenthal RE, et al. Enhanced polyphosphateorganism cultures in activated sludge systems. Part II: Experimental behaviour[J]. Water SA.1989,15(2):71-88.
    [131] Wentzel MC, Lotter LH, Ekama GA, et al. Evaluation of biochemical modelsfor biological excess phosphorus removal [J]. Water Science and Technology.1991,23(4-6):567-576.
    [132] Bonting CFC, Kortstee GJJ, Zehnder AJB. Properties of polyphosphate:AMPphosphotransferase of Acinetobacter strain210A [J]. J Bacteriol.1991,173(20):6484-6488.
    [133] Van Veen HW, Abee T, Kortstee GJJ, et al. Substrate specificity of the twophosphate transport systems of acinetobacter johnsonii210A in relation tophosphate speciation in its aquatic environment [J]. Journal of BiologicalChemistry.1994,269(23):16212-16216.
    [134] Van Niel EWJ, De Best JH, Kets EPW, et al. Polyphosphate formation byAcinetobacter johnsonii210A: Effect of cellular energy status andphosphate-specific transport system [J]. Applied Microbiology andBiotechnology.1999,51(5):639-646.
    [135] Nakamura K, Hiraishi A, Yoshimi Y, et al. Microlunatus phosphovorus gen.nov., sp. nov., a new gram-positive polyphosphate-accumulating bacteriumisolated from activated sludge [J]. Int J Syst Bacteriol.1995,45(1):17-22.
    [136] Santos MM, Lemos PC, Reis MAM, et al. Glucose metabolism and kinetics ofphosphorus removal by the fermentative bacterium Microlunatus phosphovorus[J]. Appl Environ Microbiol.1999,65(9):3920-3928.
    [137] Kawaharasaki M, Tanaka H, Kanagawa T, et al. In situ identification ofpolyphosphate-accumulating bacteria in activated sludge by dual staining withrRNA-targeted oligonucleotide probes and4',6-diaimidino-2-phenylindol(DAPI) at a polyphosphate-probing concentration [J]. Water Research.1999,33(1):257-265.
    [138] Blackall LL, Stratton H, Bradford D, et al."Candidatus microthrixparvicella," a filamentous bacterium from activated sludge sewage treatmentplants [J]. Int J Syst Bacteriol.1996,46(1):344-346.
    [139] Maszenan AM, Seviour RJ, Patel BKC, et al. Tessaracoccus bendigoensis gen.nov., sp. nov., a Gram-positive coccus occurring in regular packages or tetrads,isolated from activated sludge biomass [J]. Int J Syst Bacteriol.1999,49(2):459-468.
    [140] Maszenan AM, Seviour RJ, Patel BKC, et al. Friedmanniella spumicola sp.nov. and Friedmanniella capsulata sp. nov. from activated sludge foam:Gram-positive cocci that grow in aggregates of repeating groups of cocci [J].Int J Syst Bacteriol.1999,49(4):1667-1680.
    [141] Hanada S, Liu WT, Shintani T, et al. Tetrasphaera elongata sp. nov., apolyphosphate-accumulating bacterium isolated from activated sludge [J].International Journal of Systematic and Evolutionary Microbiology.2002,52(3):883-887.
    [142] Maszenan AM, Seviour RJ, Patel BKC, et al. Three isolates of novelpolyphosphate-accumulating Gram-positive cocci, obtained from activatedsludge, belong to a new genus, Tetrasphaera gen. nov., and description of twonew species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp.nov [J]. International Journal of Systematic and Evolutionary Microbiology.2000,50(2):593-603.
    [143] McKenzie CM, Seviour EM, Schumann P, et al. Isolates of 'CandidatusNostocoida limicola' Blackall et al.2000should be described as three novelspecies of the genus Tetrasphaera, as Tetrasphaera jenkinsii sp. nov.,Tetrasphaera vanveenii sp. nov. and Tetrasphaera veronensis sp. nov [J].International Journal of Systematic and Evolutionary Microbiology.2006,56(10):2279-2290.
    [144] Kong Y, Nielsen JL, Nielsen PH. Identity and ecophysiology of unculturedactinobacterial polyphosphate-accumulating organisms in full-scale enhancedbiological phosphorus removal plants [J]. Appl Environ Microbiol.2005,71(7):4076-4085.
    [145] Tandoi V, Majone M, May J, et al. The behaviour of polyphosphateaccumulating acinetobacter isolates in an anaerobic-aerobic chemostat [J].Water Research.1998,32(10):2903-2912.
    [146] Weltin D, Hoffmeister D, Dott W, et al. Studies on polyphosphate andpoly-β-hydroxyalkanoate accumulation in Acinetobacterjohnsonii120andsome other bacteria from activated sludge in batch and continuous culture [J].Acta Biotechnologica.1996,16(2-3):91-102.
    [147] Liu WT, Nielsen AT, Wu JH, et al. In situ identification of polyphosphate-andpolyhydroxyalkanoate-accumulating traits for microbial populations in abiological phosphorus removal process [J]. Environmental Microbiology.2001,3(2):110-122.
    [148] Nguyen HTT, Nielsen JL, Nielsen PH.'Candidatus Halomonas phosphati s', anovel polyphosphate-accumulating organism in full-scale enhanced biologicalphosphorus removal plants [J]. Environmental Microbiology.2012,14(10):2826-2837.
    [149] G ü nther S, Trutnau M, Kleinsteuber S, et al. Dynamics ofpolyphosphate-accumulating bacteria in wastewater treatment plant microbialcommunities detected via DAPI (4′,6′-diamidino-2-phenylindole) andtetracycline labeling [J]. Appl Environ Microbiol.2009,75(7):2111-2121.
    [150] Kong Y, Xia Y, Nielsen JL, et al. Structure and function of the microbialcommunity in a full-scale enhanced biological phosphorus removal plant [J].Microbiology.2007,153(12):4061-4073.
    [151] Bond PL, Hugenholtz P, Keller J, et al. Bacterial community structures ofphosphate-removing and non-phosphate-removing activated sludges fromsequencing batch reactors [J]. Appl Environ Microbiol.1995,61(5):1910-1916.
    [152] Hesselmann RPX, Werlen C, Hahn D, et al. Enrichment, phylogeneticanalysis and detection of a bacterium that performs enhanced biologicalphosphate removal in activated sludge [J]. Systematic and AppliedMicrobiology.1999,22(3):454-465.
    [153] Crocetti GR, Hugenholtz P, Bond PL, et al. Identification ofpolyphosphate-accumulating organisms and design of16S rRNA-directedprobes for their detection and quantitation [J]. Appl Environ Microbiol.2000,66(3):1175-1182.
    [154] Kawaharasaki M, Manome A, Kanagawa T, et al. Flow cytometric sorting andRFLP analysis of phosphate accumulating bacteria in an enhanced biologicalphosphorus removal system [J]. Water Science and Technology.2002,46:139-144.
    [155] Jeon CO, Lee DS, Park JM. Microbial communities in activated sludgeperforming enhanced biological phosphorus removal in a sequencing batchreactor [J]. Water Research.2003,37(9):2195-2205.
    [156] Onuki M, Satoh H, Mino T. Analysis of microbial community that performsenhanced biological phosphorus removal in activated sludge fed with acetate[J]. Water Science and Technology.2002,46:145-153.
    [157] Kong Y, Nielsen JL, Nielsen PH. Microautoradiographic study ofRhodocyclus-related polyphosphate-accumulating bacteria in full-scaleenhanced biological phosphorus removal plants [J]. Appl Environ Microbiol.2004,70(9):5383-5390.
    [158] Zilles JL, Peccia J, Kim MW, et al. Involvement of Rhodocyclus-relatedorganisms in phosphorus removal in full-scale wastewater treatment plants [J].Appl Environ Microbiol.2002,68(6):2763-2769.
    [159] Saunders AM, Oehmen A, Blackall LL, et al. The effect of GAOs (glycogenaccumulating organisms) on anaerobic carbon requirements in full-scaleAustralian EBPR (enhanced biological phosphorus removal) plants [J]. WaterScience and Technology.2003,47:37-43.
    [160] López-Vázquez CM, Hooijmans CM, Brdjanovic D, et al. Factors affectingthe microbial populations at full-scale enhanced biological phosphorusremoval (EBPR) wastewater treatment plants in The Netherlands [J]. WaterResearch.2008,42(10-11):2349-2360.
    [161] He S, Gu AZ, McMahon KD. Progress toward understanding the distributionof Accumulibacter among full-scale enhanced biological phosphorus removalsystems [J]. Microbial Ecology.2008,55(2):229-236.
    [162] Lee N, La Cour Jansen J, Aspegren H, et al. Population dynamics inwastewater treatment plants with enhanced biological phosphorus removaloperated with and without nitrogen removal [J]. Water Science and Technology.2002,46:163-170.
    [163] Lee N, Nielsen PH, Aspegren H, et al. Long-term population dynamics and insitu physiology in activated sludge systems with enhanced biologicalphosphorus removal operated with and without nitrogen removal [J].Systematic and Applied Microbiology.2003,26(2):211-227.
    [164] Wong MT, Mino T, Seviour RJ, et al. In situ identification andcharacterization of the microbial community structure of full-scale enhancedbiological phosphorous removal plants in Japan [J]. Water Research.2005,39(13):2901-2914.
    [165] Stante L, Cellamare CM, Malaspina F, et al. Biological phosphorus removalby pure culture of Lampropedia spp [J]. Water Research.1997,31(6):1317-1324.
    [166] Mino T. Microbial Selection of Polyphosphate-Accumulating Bacteria inActivated Sludge Wastewater Treatment Processes for Enhanced BiologicalPhosphate Removal [J]. Biochemistry (Moscow).2000,65(3):341-348.
    [167] Spring S, Wagner M, Schumann P, et al. Malikia granosa gen. nov., sp. nov., anovel polyhydroxyalkanoate-and polyphosphate-accumulating bacteriumisolated from activated sludge, and reclassification of Pseudomonas spinosa asMalikia spinosa comb. nov [J]. International Journal of Systematic andEvolutionary Microbiology.2005,55(2):621-629.
    [168] Maszenan AM, Seviour RJ, Patel BKC, et al. Quadricoccus australiensis gen.nov., sp. nov., a β-proteobacterium from activated sludge biomass [J].International Journal of Systematic and Evolutionary Microbiology.2002,52(1):223-228.
    [169] Barnard JL. Cut P and N without chemicals [J]. WATER WASTES ENGNG.1974,11(7):33-36.
    [170] Barnard JL. Biological nutrient removal without the addition of chemicals [J].Water Research.1975,9(5-6):485-490.
    [171] Barker PS, Dold PL. Denitrification behaviour in biological excessphosphorus removal activated sludge systems [J]. Water Research.1996,30(4):769-780.
    [172] Ahn J, Daidou T, Tsuneda S, et al. Metabolic behavior of denitrifyingphosphate-accumulating organisms under nitrate and nitrite electron acceptorconditions [J]. Journal of Bioscience and Bioengineering.2001,92(5):442-446.
    [173] Van Niel EWJ, Appeldoorn KJ, Zehnder AJB, et al. Inhibition of anaerobicphosphate release by nitric oxide in activated sludge [J]. Appl EnvironMicrobiol.1998,64(8):2925-2930.
    [174] Kuba T, Wachtmeister A, Van Loosdrecht MCM, et al. Effect of nitrate onphosphorus release in biological phosphorus removal systems [J]. WaterScience and Technology.1994,30(6pt6):263-269.
    [175] J rgensen KS, Pauli ASL. Polyphosphate Accumulation among DenitrifyingBacteria in Activated Sludge [J]. Anaerobe.1995,1(3):161-168.
    [176] Merzouki M, Bernet N, Delgenès JP, et al. Kinetic behavior of somepolyphosphate-accumulating bacteria isolates in the presence of nitrate andoxygen [J]. Current Microbiology.1999,38(5):300-308.
    [177] Merzouki M, Delgenès JP, Bernet N, et al. Polyphosphate-accumulating anddenitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobicsequencing batch reactors [J]. Current Microbiology.1999,38(1):9-17.
    [178] Ahn J, Daidou T, Tsuneda S, et al. Characterization of denitrifyingphosphate-accumulating organisms cultivated under different electron acceptorconditions using polymerase chain reaction-denaturing gradient gelelectrophoresis assay [J]. Water Research.2002,36(2):403-412.
    [179] Zeng RJ, Saunders AM, Yuan ZG, et al. Identification and comparison ofaerobic and denitrifying polyphosphate-accumulating organisms [J].Biotechnology and Bioengineering.2003,83(2):140-148.
    [180] Wentzel MC, Loewenthal RE, Ekama GA, et al. Enhanced polyphosphateorganism cultures in activated sludge systems-Part1: Enhanced culturedevelopment [J]. Water SA.1988,14(2):81-92.
    [181] Meinhold J, Filipe CDM, Daigger GT, et al. Characterization of thedenitrifying fraction of phosphate accumulating organisms in biologicalphosphate removal [J]. Water Science and Technology.1999,39:31-42.
    [182] Freitas F, Temudo M, Reis MAM. Microbial population response to changesof the operating conditions in a dynamic nutrient-removal sequencing batchreactor [J]. Bioprocess and Biosystems Engineering.2005,28(3):199-209.
    [183] Hu JY, Ong SL, Ng WJ, et al. A new method for characterizing denitrifyingphosphorus removal bacteria by using three different types of electronacceptors [J]. Water Research.2003,37(14):3463-3471.
    [184] Jiang Y, Wang B, Wang L, et al. Dynamic response of denitrifying poly-Paccumulating organisms batch culture to increased nitrite concentration aselectron acceptor [J]. Journal of Environmental Science and Health-Part AToxic/Hazardous Substances and Environmental Engineering.2006,41(11):2557-2570.
    [185] Guisasola A, Qurie M, Vargas MdM, et al. Failure of an enrichednitrite-DPAO population to use nitrate as an electron acceptor [J]. ProcessBiochemistry.2009,44(7):689-695.
    [186] Falkentoft CM, Müller E, Arnz P, et al. Population changes in a biofilmreactor for phosphorus removal as evidenced by the use of FISH [J]. WaterResearch.2002,36(2):491-500.
    [187] Dabert P, Fleurat-Lessard A, Mounier E, et al. Monitoring of the microbialcommunity of a sequencing batch reactor bioaugmented to improve itsphosphorus removal capabilities [J]. Water Science and Technology.2001,43:1-8.
    [188] Ahn J, Daidou T, Tsuneda S, et al. Transformation of phosphorus and relevantintracellular compounds by a phosphorus-accumulating enrichment culture inthe presence of both the electron acceptor and electron donor [J].Biotechnology and Bioengineering.2002,79(1):83-93.
    [189] Garcia Martin H, Ivanova N, Kunin V, et al. Metagenomic analysis of twoenhanced biological phosphorus removal (EBPR) sludge communities [J]. NatBiotechnol.2006,24(10):1263-1269.
    [190] Miyauchi R, Oki K, Aoi Y, et al. Diversity of nitrite reductase genes in"Candidatus accumulibacter phosphatis"-dominated cultures enriched byflow-cytometric sorting [J]. Appl Environ Microbiol.2007,73(16):5331-5337.
    [191] Tsuneda S, Miyauchi R, Ohno T, et al. Characterization of denitrifyingpolyphosphate-accumulating organisms in activated sludge based on nitritereductase gene [J]. Journal of Bioscience and Bioengineering.2005,99(4):403-407.
    [192] He S, Gall DL, McMahon KD."Candidatus accumulibacter" populationstructure in enhanced biological phosphorus removal sludges as revealed bypolyphosphate kinase genes [J]. Appl Environ Microbiol.2007,73(18):5865-5874.
    [193] Peterson SB, Warnecke F, Madejska J, et al. Environmental distribution andpopulation biology of Candidatus Accumulibacter, a primary agent ofbiological phosphorus removal [J]. Environmental Microbiology.2008,10(10):2692-2703.
    [194] Flowers JJ, He S, Yilmaz S, et al. Denitrification capabilities of twobiological phosphorus removal sludges dominated by different 'Candidatu sAccumulibacter' clades [J]. Environmental Microbiology Reports.2009,1(6):583-588.
    [195] Fukase T, Shibata M, Miyaji Y. The role of an anaerobic stage on biologicalphosphorus removal [J]. Water Science and Technology.1985,17(2-3-3pt1):69-80.
    [196] Satoh H, Mino T, Matsuo T. Uptake of organic substrates and accumulation ofpolyhydroxyalkanoates linked with glycolysis of intracellular carbohydratesunder anaerobic conditions in the biological excess phosphate removalprocesses [J]. Water Science and Technology.1992,26(5-6):933-942.
    [197] Cech JS, Hartman P. Competition between polyphosphate and polysaccharideaccumulating bacteria in enhanced biological phosphate removal systems [J].Water Research.1993,27(7):1219-1225.
    [198] Liu W-T, Mino T, Nakamura K, et al. Role of glycogen in acetate uptake andpolyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with aminimized polyphosphate content [J]. Journal of Fermentation andBioengineering.1994,77(5):535-540.
    [199] Mino TA, V.; Tsuzuki, Y.; Matsuo, T.. Effect of Phosphorus Accumulationon Acetate Metabolism in the Biological Phosphorus RemovalProcess.[M]. Oxford, United Kingdom: Pergamon Press,1987.
    [200] Crocetti GR, Banfield JF, Keller J, et al. Glycogen-accumulating organisms inlaboratory-scale and full-scale wastewater treatment processes [J].Microbiology-Sgm.2002,148:3353-3364.
    [201] Oehmen A, Yuan Z, Blackall LL, et al. Short-term effects of carbon source onthe competition of polyphosphate accumulating organsisms and glycogenaccumulating organisms [J]. Water Science and Technology.2004,50:139-144.
    [202] Kong YH, Beer M, Seviour RJ, et al. Structure and functional analysis of themicrobial community in an aerobic: Anaerobic sequencing batch reactor (SBR)with no phosphorus removal [J]. Systematic and Applied Microbiology.2001,24(4):597-609.
    [203] Kong YH, Beer M, Rees GN, et al. Functional analysis of microbialcommunities in aerobic-anaerobic sequencing batch reactors fed with differentphosphorus/carbon (P/C) ratios [J]. Microbiology.2002,148(8):2299-2307.
    [204] Meyer RL, Saunders AM, Blackall LL. Putative glycogen-accumulatingorganisms belonging to the Alphaproteobacteria identified throughrRNA-based stable isotope probing [J]. Microbiology-Sgm.2006,152:419-429.
    [205] Wong MT, Tan FM, Ng WJ, et al. Identification and occurrence oftetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludgeprocesses [J]. Microbiology-Sgm.2004,150:3741-3748.
    [206] Kong Y, Ong SL, Ng WJ, et al. Diversity and distribution of a deeplybranched novel proteobacterial group found in anaerobic-aerobic activatedsludge processes [J]. Environmental Microbiology.2002,4(11):753-757.
    [207] Nielsen AT, Liu WT, Filipe C, et al. Identification of a novel group of bacteriain sludge from a deteriorated biological phosphorus removal reactor [J]. ApplEnviron Microbiol.1999,65(3):1251-1258.
    [208] Kong Y, Xia Y, Nielsen JL, et al. Ecophysiology of a group of unculturedGammaproteobacterial glycogen-accumulating organisms in full-scaleenhanced biological phosphorus removal wastewater treatment plants [J].Environmental Microbiology.2006,8(3):479-489.
    [209] McIlroy S, Hoefel D, Schroeder S, et al. FACS enrichment and identificationof floc-associated alphaproteobacterial tetrad-forming organisms in anactivated sludge community [J]. FEMS Microbiology Letters.2008,285(1):130-135.
    [210] McIlroy S, Seviour RJ. Elucidating further phylogenetic diversity among theDefluviicoccus-related glycogen-accumulating organisms in activated sludge[J]. Environmental Microbiology Reports.2009,1(6):563-568.
    [211] Burow LC, Kong Y, Nielsen JL, et al. Abundance and ecophysiology ofDefluviicoccus spp., glycogen-accumulating organisms in full-scalewastewater treatment processes [J]. Microbiology.2007,153(1):178-185.
    [212] Levantesi C, Serafim LS, Crocetti GR, et al. Analysis of the microbialcommunity structure and function of a laboratory scale enhanced biologicalphosphorus removal reactor [J]. Environmental Microbiology.2002,4(10):559-569.
    [213] Gu AZ, Saunders A, Neethling JB, et al. Functionally relevantmicroorganisms to enhanced biological phosphorus removal performance atfull-scale wastewater treatment plants in the United States [J]. WaterEnvironment Research.2008,80(8):688-698.
    [214] Maszenan AM, Tay JH, Schumann P, et al. Quadrisphaera granulorum gen.nov., sp. nov., a Gram-positive polyphosphate-accumulating coccus in tetradsor aggregates isolated from aerobic granules [J]. International Journal ofSystematic and Evolutionary Microbiology.2005,55(5):1771-1777.
    [215] Wong MT, Liu WT. Ecophysiology of Defluviicoccus-related tetrad-formingorganisms in an anaerobic-aerobic activated sludge process [J]. EnvironmentalMicrobiology.2007,9(6):1485-1496.
    [216] Stephens HL, Stensel HD. Effect of operating conditions on biologicalphosphorus removal [J]. Water Environment Research.1998,70(3):362-369.
    [217] Thomas M, Wright P, Blackall L, et al. Optimisation of Noosa BNR plant ofimprove performance and reduce operating costs [J]. Water Science andTechnology.2003,47:141-148.
    [218] Thomas MP. The secret to achieving reliable biological phosphorus removal[J]. Water Science and Technology.2008,58:1231-1236.
    [219] Vaboliene. G.; Brazenaite J. Tetrad-Forming-Organism-DependentDeterioration of Enhanced Biological Phosphorus Removal in aFull-Scale Wastewater Treatment Plant.[J]. Ekologija.2009,55:231-236.
    [220] Jobbágy A, Literáthy B, Wong MT, et al. Proliferation of glycogenaccumulating organisms induced by Fe(III) dosing in a domestic wastewatertreatment plant [J]. Water Science and Technology.2006,54:101-109.
    [221] Griffiths PC, Stratton HM, Seviour RJ. Environmental factors contributing tothe "G bacteria" population in full-scale EBPR plants [J]. Water Science andTechnology.2002,46:185-192.
    [222] Whang LM, Park JK. Competition between polyphosphate-andglycogen-accumulating organisms in enhanced-biological-phosphorus-removalsystems: Effect of temperature and sludge age [J]. Water EnvironmentResearch.2006,78(1):4-11.
    [223] Lopez-Vazquez CM, Song YI, Hooijmans CM, et al. Short-term temperatureeffects on the anaerobic metabolism of glycogen accumulating organisms [J].Biotechnol Bioeng.2007,97(3):483-495.
    [224] Lopez-Vazquez CM, Song YI, Hooijmans CM, et al. Short-term temperatureeffects on the anaerobic metabolism of glycogen accumulating organisms [J].Biotechnology and Bioengineering.2007,97(3):483-495.
    [225] Barnard JL, Abraham K. Key features of successful BNR operation [J]. WaterScience and Technology.2006,53:1-9.
    [226] Liu WT, Mino T, Matsuo T, et al. Biological phosphorus removal processes-Effect of pH on anaerobic substrate metabolism [J]. Water Science andTechnology.1996,34:25-32.
    [227] Pijuan M, Baeza JA, Casas C, et al. Response of an EBPR populationdeveloped in an SBR with propionate to different carbon sources [J]. WaterScience and Technology.2004,50:131-138.
    [228] Lu H, Oehmen A, Virdis B, et al. Obtaining highly enriched cultures ofCandidatus Accumulibacter phosphates through alternating carbon sources [J].Water Research.2006,40(20):3838-3848.
    [229]国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [230] APHA/AWWA. Standard methods for the examination of water andwastewater,19th ed [M]: Port City Press, Baltimore.,1995.
    [231] Bassin JP, Kleerebezem R, Dezotti M, et al. Simultaneous nitrogen andphosphate removal in aerobic granular sludge reactors operated at differenttemperatures [J]. Water Research.2012,46(12):3805-3816.
    [232] Johnson K, Jiang Y, Kleerebezem R, et al. Enrichment of a Mixed BacterialCulture with a High Polyhydroxyalkanoate Storage Capacity [J].Biomacromolecules.2009,10(4):670-676.
    [233] Lanham AB, Ricardo AR, Coma M, et al. Optimisation of glycogenquantification in mixed microbial cultures [J]. Bioresource Technology.2012,118(0):518-525.
    [234] Johnson K, van Geest J, Kleerebezem R, et al. Short-and long-termtemperature effects on aerobic polyhydroxybutyrate producing mixed cultures[J]. Water Research.2010,44(6):1689-1700.
    [235] Schafer H, Muyzer G. Denaturing gradient gel electrophoresis in marinemicrobial ecology. In: Paul JH, editor. Methods in Microbiology, Vol30:Marine Microbiology,2001. p.425-468.
    [236] Miura Y, Hiraiwa MN, Ito T, et al. Bacterial community structures in MBRstreating municipal wastewater: Relationship between community stability andreactor performance [J]. Water Research.2007,41(3):627-637.
    [237] Amann RI, Binder BJ, Olson RJ, et al. COMBINATION OF16SRIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITHFLOW-CYTOMETRY FOR ANALYZING MIXEDMICROBIAL-POPULATIONS [J]. Appl Environ Microbiol.1990,56(6):1919-1925.
    [238] Daims H, Bruhl A, Amann R, et al. The domain-specific probe EUB338isinsufficient for the detection of all Bacteria: Development and evaluation of amore comprehensive probe set [J]. Systematic and Applied Microbiology.1999,22(3):434-444.
    [239] Manz W, Amann R, Ludwig W, et al. Phylogenetic oligodeoxynucleotideprobes for the major subclasses of proteobacteria: Problems and solutions [J].Systematic and Applied Microbiology.1992,15(4):593-600.
    [240] Amann R, Fuchs BM, Behrens S. The identification of microorganisms byfluorescence in situ hybridisation [J]. Current Opinion in Biotechnology.2001,12(3):231-236.
    [241]李洪静,陈银广,顾国维.丙酸/乙酸对低能耗生物除磷脱氮系统的影响[J].中国环境科学.2008,28(8):673-678.
    [242]罗固源,张瑞雪,王丹云,等. SUFR系统进水COD浓度对反硝化除磷的影响[J].重庆大学学报(自然科学版).2005,28(1):121-125.
    [243]王晓莲,王淑莹,马勇,等. A2O工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报.2005,56(8):1565-1570.
    [244] Yuan Z, Oehmen A, Ingildsen P. Control of nitrate recirculation flow inpredenitrification systems [J]. Water Science and Technology.2002,45:29-36.
    [245]陈洪斌,唐贤春,何群彪,等.倒置AAO工艺聚磷微生物的吸磷行为[J].中国环境科学.2007,27(1):49-53.
    [246] Wagner M, Loy A. Bacterial community composition and function in sewagetreatment systems [J]. Current Opinion in Biotechnology.2002,13(3):218-227.
    [247]吴昌永,彭永臻,彭轶,等. A2O工艺中的反硝化除磷及其强化[J].哈尔滨工业大学学报.2009,41(8):46-49.
    [248] Okunuki S, Kawaharasaki M, Tanaka H, et al. Changes in phosphorusremoving performance and bacterial community structure in an enhancedbiological phosphorus removal reactor [J]. Water Research.2004,38(9):2432-2438.
    [249]赵林林,王海燕,杨慧芬,等. PCR-DGGE研究臭氧耦合ASBR/SBR控氮磷污泥减量化工艺中的细菌多样性[J].环境工程技术学报.2001,1(2):123-130.
    [250] Wu G, S rensen KB, Rodgers M, et al. Microbial community associated withglucose-induced enhanced biological phosphorus removal [J]. Water Scienceand Technology.2009,60:2105-2113.
    [251]吴昌永. A~2/O工艺脱氮除磷及其优化控制的研究.哈尔滨工业大学.2010.
    [252] Kotay SM, Datta T, Choi J, et al. Biocontrol of biomass bulking caused byHaliscomenobacter hydrossis using a newly isolated lytic bacteriophage [J].Water Research.2011,45(2):694-704.
    [253] Third KA, Burnett N, Cord-Ruwisch R. Simultaneous nitrification anddenitrification using stored substrate (PHB) as the electron donor in an SBR [J].Biotechnology and Bioengineering.2003,83(6):706-720.
    [254] Guo JH, Peng YZ, Peng CY, et al. Energy saving achieved by limitedfilamentous bulking sludge under low dissolved o xygen [J]. BioresourceTechnology.2010,101(4):1120-1126.
    [255] Vaiopoulou E, Melidis P, Aivasidis A. Growth of filamentous bacteria in anenhanced biological phosphorus removal system [J]. Desalination.2007,213(1-3):288-296.
    [256] Kuba T, Van Loosdrecht MCM, Heijnen JJ. Effect of cyclic oxygen exposureon the activity of denitrifying phosphorus removing bacteria [J]. Water Scienceand Technology.1996,34:33-40.
    [257] Carvalho G, Lemos PC, Oehmen A, et al. Denitrifying phosphorus removal:linking the process performance with the microbial community structure [J].Water Res.2007,41(19):4383-4396.
    [258] Oehmen A, Lopez-Vazquez CM, Carvalho G, et al. Modelling the populationdynamics and metabolic diversity of organisms relevant inanaerobic/anoxic/aerobic enhanced biological phosphorus removal processes[J]. Water Res.2010,44(15):4473-4486.
    [259] Duarte IF, Barros A, Delgadillo I, et al. Application of FTIR spectroscopy forthe quantification of sugars in mango juice as a function of ripening [J].Journal of Agricultural and Food Chemistry.2002,50(11):3104-3111.
    [260] Brdjanovic D, vanLoosdrecht MCM, Hooijmans CM, et al. Temperatureeffects on physiology of biological phosphorus removal [J]. Journal ofEnvironmental Engineering-Asce.1997,123(2):144-153.
    [261] Smidsrod O. Molecular basis for some physical properties of alginates in thegel state [J]. Faraday Discussions of the Chemical Society.1974,57(0):263-274.
    [262] Lin Y, de Kreuk M, van Loosdrecht MCM, et al. Characterization ofalginate-like exopolysaccharides isolated from aerobic granular sludge inpilot-plant [J]. Water Research.2010,44(11):3355-3364.
    [263] Donati I, Paoletti S. Material Properties of Alginates. In: Rehm BHA, editor.Alginates: Biology and Applications: Springer Berlin Heidelberg,2009. p.1-53.
    [264] Del Nobile MA, Chillo S, Mentana A, et al. Use of the generalized maxwellmodel for describing the stress relaxation behavior of solid-like foods [J].Journal of Food Engineering.2007,78(3):978-983.
    [265] Johnson KL, Kendall K, Roberts AD. Surface Energy and the Contact ofElastic Solids [J]. Proceedings of the Royal Society of London A Mathematicaland Physical Sciences.1971,324(1558):301-313.
    [266] W.-D. Tian, C.M. Lopez-Vazquez, W.-G. Li, et al. Occurrence of PAOI in alow temperature EBPR system [J]. Chemosphere.2013:(accepted).
    [267] Acevedo B, Oehmen A, Carvalho G, et al. Metabolic shift ofpolyphosphate-accumulating organisms with different levels of polyphosphatestorage [J]. Water Research.2012,46(6):1889-1900.
    [268] Hesselmann RPX, von Rummell R, Resnick SM, et al. Anaerobic metabolismof bacteria performing enhanced biological phosphate removal [J]. WaterResearch.2000,34(14):3487-3494.
    [269] Lemos PC, Dai Y, Yuan Z, et al. Elucidation of metabolic pathways inglycogen-accumulating organisms with in vivo C-13nuclear magneticresonance [J]. Environmental Microbiology.2007,9(11):2694-2706.
    [270] Lopez-Vazquez CM, Brdjanovic D, van Loosdrecht MCM. Comment on―Could polyphosphate-accumulating organisms (PAOs) beglycogen-accumulating organisms (GAOs)?‖by Zhou, Y., Pijuan, M., Zeng, R.,Lu, Huabing and Yuan Z.: Water Res.(2008)doi:10.1016/j.waterres.2008.01.003[J]. Water Research.2008,42(13):3561-3562.
    [271] Zhou Y, Pijuan M, Zeng RJ, et al. Could polyphosphate-accumulatingorganisms (PAOs) be glycogen-accumulating organisms (GAOs)?[J]. WaterResearch.2008,42(10–11):2361-2368.
    [272] Wilén B-M, Balmér P. The effect of dissolved oxygen concentration on thestructure, size and size distribution of activated sludge flocs [J]. WaterResearch.1999,33(2):391-400.
    [273] Nor Anuar A, Ujang Z, van Loosdrecht MCM, et al. Settling behaviour ofaerobic granular sludge [J]. Water Science and Technology.2007,56:55-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700