用户名: 密码: 验证码:
秸秆还田方式与施肥对水稻土壤微生物学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤肥力对于保证粮食安全及农业的可持续发展具有重要意义,施肥是影响作物产量的关健因子,找到施肥的临界点可为土壤肥力的保持和避免因过量施肥造成土壤污染提供科学依据。为研究秸秆还田方式和施肥对水稻土土壤质量的影响,四川省农业科学院于2002年以来在四川广汉市西高镇建立了秸秆覆盖还田试验以及在连山镇建立了秸秆翻埋还田试验,并对秸秆还田方式和施肥下土壤的理化性质以及作物产量进行了研究,为深入认识秸秆还田方式和施肥对水稻土质量的影响奠定了基础。本文在前人已有研究基础上,运用平板菌落计数对不同施肥制度下的土壤可培养微生物数量进行了测定,利用化学分析法对土壤微生物生物量碳、氮和土壤酶活进行了分析,并且应用变性梯度凝胶电泳(DGGE)分子标记技术对秸秆还田方式和施肥下细菌、真菌、固氮菌、氨氧化细菌和氨氧化古菌等微生物群落结构特征进行了研究。文章结果总结如下:
     (1)秸秆覆盖还田和施肥对土壤微生物数量、微生物量及土壤酶活的影响结果表明:在水稻幼穗分化期和水稻收获后,与对照只施肥而没有秸秆还田处理(CK)相比,秸秆覆盖还田配施足量氮磷钾肥处理(SCK)能显著增加土壤微生物数量、土壤微生物量碳和量氮、土壤脲酶、蔗糖酶和磷酸酶酶活,而显著降低土壤多酚氧化酶活性(P≤0.01);同时秸秆覆盖后不施用钾肥的处理(SNP)、低氮肥处理(SNL)以及不施用磷肥的处理(SNK)的土壤微生物数量、微生物量碳和量氮、脲酶、转化酶和磷酸酶酶活均显著低于秸秆覆盖还田配施适量氮磷钾的处理,而多酚氧化酶活性则显著相反(P≤0.01)。
     (2)秸秆覆盖还田和施肥对土壤细菌群落结构及多样性的研究结果表明:在水稻幼穗分化期和水稻收获期,0~10cm的土层中,秸秆覆盖还田配施足量氮磷钾肥的处理细菌多样性显著高于单施肥而无秸秆还田的处理、秸秆覆盖还田只配施低氮肥和不施磷肥的处理(P≤0.01),但它与秸秆覆盖还田不配施钾肥的处理没有显著差异(P≥0.05)。在10-20cm的土层中,秸秆覆盖还田配施足量氮磷钾的处理细菌多样性显著高于单施肥无秸秆处理、秸秆还田低氮处理、秸秆还田不施钾肥处理和秸秆还田不施磷肥处理(P≤0.01)。DGGE优势条带测序表明:秸秆还田处理土壤的优势菌群包括,β变形菌纲(Beta proteobacteria)的杜擀氏属(Duganella sp.)、α-变形菌纲(Alpha proteobacteria)红游动菌属(Rhodoplanes sp.)和磁螺菌属(Magnetospirillum sp.)、绿弯菌门(Chloroflexi)、地杆菌属(Geobacter)、绿弯菌门(Chloroflexi)、暖绳菌科(Caldilineaceae)、厌氧绳菌科(Anaerolineaceae)、芽单胞菌门(Gemmatimonadetes)、酸杆菌门(Acidobacteria)、硝化螺旋菌门(Nitrospirae)。对照处理土壤的优势细菌为,厚壁菌门(Firmicutes)、β变形菌纲(Beta proteobacteria)的杜擀氏属(Duganella)、绿弯菌门(Chloroflexi)、α-变形菌纲(Alpha proteobacteria)的红游动菌属(Rhodoplanes)和磁螺菌属(Magnetospirillum)。
     (3)秸秆覆盖还田和施肥对土壤真菌群落结构和多样性研究表明:水稻幼穗分化期,在0~10cm和10~20cm土层中,秸秆覆盖还田配施足量氮磷钾的处理真菌多样性都明显高于无秸秆覆盖的对照组(P≤0.01)。水稻收获后,在0~10cm土层中,秸秆覆盖还田配施足量氮磷钾肥的处理真菌多样性与无秸秆对照相比没有明显差异(P≥0.05)。在10~20cm土层中,秸秆覆盖配施足量氮磷钾肥的处理真菌多样性显著低于无秸秆对照组(P≤0.01)。DGGE条带测序发现,秸秆还田和施肥的优势真菌为,半知菌纲的枝顶孢属(Acremonium sp.)、子囊菌纲的翅孢壳属(Emericellopsis sp.)、半知菌亚门的曲霉属(Aspergillus sp.)、枝孢属(Cladosporium sp.)、红酵母属(Rhodotorula sp.)、侧耳属Pleurotus sp.)、被孢霉属(Mortierella sp.)。而对照土壤的优势菌为子囊菌门(Ascomycota)和sordariomyceta。表明秸秆还田增加了土壤真菌的多样性改变了土壤真菌的群落结构。
     (4)秸秆覆盖还田和施肥对固氮基因nifH群落结构和多样性研究表明:在水稻幼穗分化期和水稻收获后,0~10cm和10~20cm土层中,秸秆覆盖还田配施足量氮磷钾肥处理固氮基因n归多样性显著高于仅施肥无秸秆覆盖的对照组(P≤0.07)。DGGE条带测序得知,14个条带的近缘种大部分为非培养细菌nifH基因片段,主要优势菌群其归属于变形菌门(Proteobacteria)的p-变形菌纲(Betaproteobacteria)。秸秆还田和施肥的土壤优势固氮微生物为,非培养伯克氏菌属、假食酸菌属(Pseudacidovorax sp.)、 Azospira属、Ideonella属。而对照土壤优势菌为假食酸菌属(Pseudacidovorax sp.)、 Azospira属以及未确定归属的固氮细菌。
     (5)秸秆覆盖还田和施肥对氨氧化细菌群落结构和多样性的影响研究显示,在水稻幼穗分化期,0~10cm土层中,秸秆覆盖还田后施用足量氮磷钾肥处理的氨氧化细菌多样性指数明显高于单施化肥对照处理以及秸秆还田后低氮肥、无钾肥的处理(P≤0.01),但它与秸秆覆盖还田后不施钾肥的处理没有显著差异(P≥0.05)。在10~20cm土层中,秸秆覆盖还田配施足量氮磷钾肥处理的氨氧化细菌多样性显著高于单施肥而没有秸秆覆盖的对照组(P≤0.01)。水稻收获后,在0~10cm和10~20cm土层中,秸秆覆盖还田配施足量氮磷钾肥的处理氨氧化细菌多样性显著高于无秸秆还田的处理(P≤0.01)。从DGGE条带测序分析得出,所有的优势氨氧化细菌的系统发育都比较单一。秸秆覆盖还田和施肥处理与对照土壤的优势氨氧化细菌均为β-变形菌纲(Betaproteobacteria)的亚硝化螺菌属(Nitrosospira)和亚硝化单胞菌属(Nitrosomonas)。
     (6)秸秆覆盖还田和施肥对氨氧化古菌群落结构和多样性的影响研究表明:水稻幼穗分化期,在0~10cm和10-20cm土层中,秸秆覆盖配施足量氮磷钾肥处理氨氧化古菌多样性均显著高于单施肥无秸秆覆盖还田处理(P≤0.01)。水稻收获之后,在0-10cm和10-20cm土层中,秸秆覆盖配施足量氮磷钾处理多样性显著高于处理单施肥无秸秆覆盖还田的处理(P,≤0.01),但它与秸秆覆盖后施用低氮肥、不施磷肥和不施钾肥的处理没有显著差异(P≥0.05)。通过对氨氧化古菌优势条带测序结果表明,秸秆覆盖还田和对照土壤得到的全部氨氧化古菌均归属于非培养泉古菌门(Crenarchaeota)。
     (7)秸秆翻埋还田和施肥对土壤微生物量、土壤酶活研究表明:在水稻幼穗分化期和水稻收获后,与对照无肥处理(CK)相比,施用氮磷钾肥处理(NPK)和秸秆翻埋配施适量氮磷钾处理(SNPK)都能显著增加土壤微生物量碳和量氮(P≤0.01)。同时秸秆翻埋还田和施肥可以明显增加土壤中脲酶、转化酶、磷酸酶以及多酚氧化酶活性(P≤0.01)。
     (8)秸秆翻埋还田和施肥对土壤氨氧化细菌群落结构和多样性研究表明:在水稻幼穗分化期,0~10cm和10~20cm土层中,不施肥处理(CK)土壤氨氧化细菌多样性均显著低于单施氮磷钾肥处理(NPK)。施用氮磷钾肥的处理氨氧化细菌多样性显著低于秸秆翻埋配施适量氮磷钾肥的处理(SNPK)。在水稻收获后,0~10crm和10~20cm土层中,无肥处理氨氧化细菌多样性显著低于单施氮磷钾肥的处理。单施氮磷钾肥处理多样性与秸秆翻埋后配施氮磷钾处理没有显著差异。从DGGE条带测序分析得出,秸秆翻埋还田与对照土壤所有优势条带没有区别,均为β-变形菌纲(Betaproteobacteria)的亚硝化螺菌属(Nitrosospira)和亚硝化单胞菌属(Nitrosomonas)。
     (9)秸秆翻埋还田和施肥对氨氧化古菌群落结构和多样性的影响研究表明;在水稻幼穗分化期和水稻收获后,0~10cm和10~20cm土层中,不施肥处理(CK)氨氧化古菌多样性最低。秸秆翻埋还田配施氮磷钾的处理多样性显著高于单施氮磷钾肥料的处理。对系统进化树研究发现,所测序列相近菌株的来源分成水和土壤两大部分,其中相似菌株有来自高原、湿地、耕作土壤、保护性耕地以及湖水沉积物等。氨氧化古菌的序列结果分析表明,秸秆翻埋的处理与CK氨氧化古菌优势菌群并无明显区别,得到的全部氨氧化古菌均属于非培养泉古菌门(Crenarchaeota)的古菌。
     综上研究结果表明:秸秆还田和施肥能显著增加水稻土土壤微生物数量、微生物量碳和量氮及土壤脲酶、蔗糖酶和磷酸酶活性;丰富水稻土土壤细菌、真菌、固氮菌、氨氧化细菌和氨氧化古菌的多样性和群落结构,有利于土壤中物质的转化和肥力形成,为水稻土秸秆还田这一保护性耕作措施提供了科学依据。
The soil fertility plays important role in the food safety and the sustainable development of agriculture. Fertilization is the key factor of influencing crop yields. Therefore, it is necessary to find out the critical value of fertilization for maintaining the soil fertility and avoiding soil contamination from over use of fertilizers. In order to address and monitor the effect of straw returning and different fertilizer combination on the soil quality, the Soil and Fertilizer Institute of Sichuan Academy of Agricultural Sciences established straw returning and fertilization combination experiments on paddy soil in Xigao town and Lianshan town, Guanghan city, Sichuan province, China, since2002. The impact of the different fertilizer treatments with or without straw returning on soil physiochemical properties and crop yields were studied extensively. Based on the previous works, the pour plate count method was used to study the impact of different fertilizer combination and straw returning on the soil viable microbial counts. Chemical analysis was employed to determine the influence of straw returning and different fertilizer combination on soil microbial biomass carbon and nitrogen and soil enzyme activities. Then, the denaturing gradient gel electrophoresis (DGGE) molecule fingerprint method was applied to study the community structure of bacteria, fungi, nitrogen fixation genes nif H, ammonium oxidizing bacterial and ammonia oxidizing archaea. The results are summarized as the following.
     (1) The results of different fertilizer combination and straw mulching on soil microbial counts, biomass and soil enzyme activities showed that straw mulching with additional adequate NPK significantly increased the number of soil microbes, SMBC, SMBN, invertases, urease and phosphatase, but decrease the activities of polyphenoloxidase compared with CK (no straw mulching)(P≤0.01) at rice ear initiation stage and after rice harvest; then these indicators in the treatments of no potash fertilizer plus straw mulching(SNP), low nitrogen fertilizer plus straw mulching(SNL) and no phosphate fertilizer plus straw mulching were lower than that introduced straw mulching plus adequate NPK, however, the polyphenol oxidase activity were significantly opposite.
     (2) The study on soil bacterial community and diversity affected by straw mulching and fertilization indicated that at rice ear initiation stage and after rice harvest, the bacterial diversity index of straw mulching plus adequate NPK treatment was significantly higher than the groups of CK without straw, low N plus straw mulching and no P plus straw mulching (P≤0.01), but there was not significant difference compared with treatment of no K plus straw mulching (P>0.05) at0-10cm soil depth; soil bacterial diversity was higher of straw mulching plus adequate NPK treatment than groups of CK without straw, low N, no P or no K plus straw mulching at10-20cm soil depth (P≤0.01). Sequencing results showed that the dominant bacteria in groups with treatment of straw mulching including Duganella of Betaproteobacteria, Rhodoplanes and Magnetospirillum of Alphaproteobacteria, Chloroflexi, Caldilineaceae, Anaerolineaceae Gemmatimonadetes, Acidobacteria and Nitrospirae. The dominant bands of CK were falling in the class Duganella of Betaproteobacteria, Chloroflexi, Rhodoplanes and Magnetospirillum of Alphaproteobacteria, Firmicutes.
     (3) The results about the impact of straw mulch and fertilization on the soil fungi community and diversity showed that at rice ear initiation stage straw mulching with addition of adequate NPK treatment had higher diversity index than CK without straw at0-10cm and10-20cm soil depth (P≤0.01). After rice harvest the diversity index of straw mulching with addition of adequate NPK treatment was not significantly different with CK at0-10cm soil depth (P≥0.05). The diversity index of straw mulching with addition of adequate NPK treatment was significantly lower than CK at10-20cm soil depth (P≤0.01). The dominant bands of DGGE patterns were sequenced and the results showed that the dominant species of straw mulching treatment were falling in class of Acremonium, Emericellopsis, Aspergillus, Cladosporium, Rhodotorula, Pleurotus and Mortierella. While the dominant species of CK were Ascomycota, Sordariomyceta. It indicated that the measure of straw returning can increase the diversity and change the community structure of soil fungi.
     (4) The results about the impact of straw mulch and fertilization on the soil nifH gene diversity showed that at rice ear initiation stage and after rice harvest the straw mulching plus adequate NPK treatment had higher diversity index of nifH gene than the CK both at0-10cm and10-20cm soil depth (P≤0.01). DGGE bands sequencing further revealed that the14closely related species were niJH gene fragment of uncultured bacteria with the dominant community falling in the class of Proteobacteria in Betaproteobacteria. The dominant nitrogen-fixing microbial of straw mulching treatment were uncultured Burkholderia, Pseudacidovorax, Azospira and Ideonella. The dominant species of CK were Pseudacidovorax and Azospira.
     (5) The results about the impact of straw mulching and fertilization on the soil ammonia-oxidizing bacteria community and diversity showed that at rice ear initiation stage the straw mulching plus adequate NPK treatment had the higher diversity index of ammonia-oxidizing bacteria than the CK, the low N or no P plus straw mulching treatments (P≤0.01), but it had no significant difference with no K plus straw mulching treatment (P≥0.05)at0-10cm soil depth. The straw mulching plus adequate NPK treatment had the higher diversity index of ammonia-oxidizing bacteria than the CK at10-20cm soil depth (P≤0.01). After rice harvest the diversity index of straw mulching with addition of adequate NPK treatment was significantly higher than CK at0-10cm and10-20soil depth. The analysis of sequencing derived from DGGE showed very simple phylogeny of the advantageous ammonia oxidizing bacteria. The dominant ammonia-oxidizing bacteria of straw mulching treatment and CK both were Nitrosospira and Nitrosomonas of beta-Proteobacteria.
     (6) The results about the impact of straw mulch and fertilization on the soil ammonia-oxidizing archaea community and diversity showed that at rice ear initiation the straw mulching plus adequate NPK treatment had the higher diversity index of ammonia-oxidizing archaea than the CK without straw at0-10cm and10-20soil depth (P≤0.01). After rice harvest the straw mulching plus adequate NPK treatment had the higher diversity index of ammonia-oxidizing archaea than the CK without straw (P≤0.01), but it had no significant difference with no K, no P and low N plus straw mulching treatments. The dominant bands of DGGE patterns were sequenced and the results showed that all the ammonia oxidizing archaea belonged to the uncultured Crenarchaeota.
     (7) The results of different fertilizer combination and straw burying on soil biomass and soil enzyme activities showed that straw buried into the soil with addition of adequate NPK and only NPK treatments significantly increased the SMBC and SMBN compared with CK(no fertilizer treatment)at rice ear initiation stage and after rice harvest (P≤0.01). Then, the straw burying with addition of adequate NPK treatment significantly increased the activities of invertases, urease, phosphatase and polyphenoloxidase (P≤0.01)
     (8) The study on soil ammonia-oxidizing bacteria community and diversity affected by straw burying and fertilization indicated that at rice ear initiation stage the CK with no fertilization treatment had the lower diversity index of ammonia-oxidizing bacteria than the NPK fertilization treatment. The diversity index of NPK fertilization treatment was lower than straw burying with addition of adequate NPK treatment at0-10cm and10-20soil depth. After rice harvest diversity index of no fertilization treatment was significantly lower than NPK fertilization treatment at0-10cm and10-20soil depth. The diversity index of NPK fertilization treatment was not significantly different with straw burying with addition of adequate NPK treatment at0-10cm and10-20soil depth. The analysis of sequencing derived from DGGE showed that the dominant ammonia-oxidizing bacteria of straw burying treatment and CK both were Nitrosospira and Nitrosomonas of Betaproteobacteria.
     (9) The study on soil ammonia-oxidizing archaea community and diversity affected by straw burying and fertilization indicated that at rice ear initiation stage and after rice harvest CK without fertilization had the lowest diversity index of ammonia oxidizing archaea, while NPK with straw burying had higher diversity index than the NPK treatment0-10cm and10-20soil depth. The sequences were divided into two fractions:water and soil by phylogeny tree. Similar strains came from the plateau, wetlands, cultivated soil, protected arable land and lake sediments. The sequence of all dominant bands analysis showed that all the ammonia oxidizing archaea belonged to the uncultured Crenarchaeota.
     In conclusion, straw returning and fertilization can significantly increase the number of soil microbes, SMBC, SMBN, invertases, urease and phosphatase; enrich the diversity and community structure of bacteria, fungi, nifH gene, ammonia oxidizing bacteria and ammonia oxidizing archaea; further benefit substance transformation and formation of soil fertility. Thus the research provides a scientific basis for straw returning.
引文
Aber J D. Nitrogen cycfing and nitrogen saturation in temperate forest ecosystems[J]. Trends in Ecology and Evolution,1992,7:220-223.
    Ahmadian A, Ehn M, Hober S. Pyrosequencing:History, biochemistry and future[J]. Clinica Chimica Acta,2006,363:83-94.
    Anderson J P E, Domsch K H.A physiological method for the quantitative measurement of microbial biomass in soils[J]. Soil biology and biochemistry,1978,10(3):215-221.
    Barraclough D, Puri G. The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification[J]. Soil Biology and Biochemistry,1995,27(1):17-22.
    Bastida F, Zsolnay A, Hernandez T, et al. Past, present and future of soil quality indices:a biological perspective[J]. Geoderma,2008,147(3):159-171.
    Baumann K P, Marschner R. J, Smernik et al. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues[J]. Soil Biol. Biochem,2009,41: 1966-1975.
    Bodelier P L E. Interaction between oxygen-releasing roots and microbial processes in flooded soils and sediments[J]. Ecology Studies,2003,168:331-362.
    Boer W, Laanbroek H J. Ureolytic nitrification at low pH by Nitrosospira spec[J]. Archives of Microbiology,1989,152(2):178-181.
    Breuer L, Kiese R, Butterbach-Bahl K. Temperature and moisture effects on nitrification rates in tropical rain-forest soils[J]. Soil Science Society of America Journal,2002,66:834-844.
    Briones A M., Okabe S, Umemiya Y, et al. Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice[J]. Applied and Environmental Microbiology,2002,68:3067-3075.
    Brookes P C, McGrath S P. Effects of metal toxicity on the size of the soil microbial biomass[J]. Journal of Soil Science,1984,35:41-346.
    Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals[J]. Biol Fertil Soils,1995,19:269-279.
    Bruns M A, Stephen J R, Kowalchuh G A, et al. Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils[J]. Appl Environ Microbiol,1999,65 (7): 2994-3000.
    Bruns T D, White T J, Taylor J W. Fungal molecular systematics[J]. Annual Review of Ecology and Systematics,1991,22:525-564.
    Bshme L, Langer, Bshme F. Microbialbiomass, enzyme activities and microbial community structure in two European long-term field experiments[J]. Agric. Ecosyst. Environ,2005,109:141-152.
    Castignetti D, Hollocher T C. Heterotrophic nitrification among denitrifiers[J]. Applied Environmental Microbiology,1984,47(4):620-623.
    Chen XP, Zhu YG, Xia Y, et al. Ammonia oxidizing archaea:Important players in paddy rhizosphere soil[J]. Environmental Microbiology,2008,10:1978-1987.
    Chu H Y, Fujii T, Morimoto S, et al. Community structure of ammoniaoxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil[J]. APPlied and Environmental Microbiology,2007,73(2):485-491.
    Corre MD, Schnabel RR, Stout WL. Spatial and seasonal variation of gross nitrogen transformations and microbial biomass in a Northeastern US grassland[J]. Elsevier 2002:445-457.
    Costa Engracia, Perez Julio, Kreft J U., Why is metabolic labour divided in nitrification? [J]. Trends in Microbiology,2006,14:213-219.
    Damste JSS, Sehouten S, HoPmans EC, et al. Crenarehaeol:the characteristic core glyeerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarehaeota[J]. Journal of Lipid Research 2002,43:1641-1651.
    De Boer W, Gunnewiek PJA, Veenhuis M, et al. Nitrification at low pH by aggregated chemolithotrophic bacteria[J]. Appl Environ Microbiol,1991,57(12):3600-3604.
    Debosz G E, Rasmussen P H, PedersenA R. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils:effect of organic matter input[J]. Applied Soil Ecology, 1999,13:209-218.
    Demba Diallo M, Willems A, Vloemans N, et al. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal[J]. Environmental microbiology, 2004,6(4):400-415.
    Ebhin Masto R, Chhonkar P K, Singh D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol[J]. Soil Biology and Biochemistry, 2006,38(7):1577-1582.
    Edwards AC, Scalenghe R, Freppaz M, et al. Changes in the seasonal snow cover of alpine regions and its effect on soil processes:A review[J]. Quaternary International,2007,162-163.
    Elfstrand S, Hedlund K, Martensson A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring[J]. Applied Soil Ecology,2006,1-12.
    Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology,1991,57(8):2351-2359.
    Gentile R, Vanlauwe B, Chivenge P, et al. Interaetive effects from combining fertilizer and organic residue inputs on nitrogen transformations[J]. Soill Biol Biochem,2008,40:2375-2384.
    Giller K E, Witter E, McGrath S P. Assessing risks of heavy metal toxicity in agricultural soils:Do microbes matter?[J]. Human and Ecological Risk Assessment:An International Journal,1999,5(4): 683-689.
    Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:A review[J]. Soil Biol Biochem,1998,30:1389-1414.
    Girvan M S, Bullimore J, Pretty J N, et al. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils[J]. Applied and Environmental Microbiology, 2003,69(3):1800-1809.
    Guckert J B, Hood M A, White D C. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae:increases in the trans/cis ratio and proportions of cyclopropyl fatty acids[J]. Applied and Environmental Microbiology,1986,52(4):794-801.
    Hawksworth D L. The fungal dimension of biodiversity:magnitude, significance, and conservation[J]. Mycological Research,1991,95:641-655.
    Hayatsu M, Kosuge N. Autotrophic nitrification in acid tea soils[J]. Soil Science and Plant Nutrition, 1993,39:209-217.
    Hayatsu M. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium[J]. Soil Science and Plant Nutrition,1993,39:219-226
    Hermansson A, Lindgren P E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR[J]. Applied and Environments Microbiology,2001,67:972-976.
    Hyman MR, Arp DJ. 14 C2H2 and 14 CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase[J]. Journal of Biological Chemistry,1992,267(3):1534-1545.
    Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emission from soil in response to global warming[J]. Nature,1991,351:304-306.
    Jenkinson D S, Powlson D S. The effects of biocidal treatments on metabolism in soil—Ⅴ:a method for measuring soil biomass[J]. Soil biology and biochemistry,1976,8(3):209-213.
    Jordan F L, Cantera J J L, Fenn M E.2005. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem[J]. Applied and Environmental Microbiology,71:197-206.
    Junier P, Molina V, Dorador C, et al. Phylogenetic and functional marker genes to study ammomaoxidizing microorganisms (AOM) in the environment[J]. Appl Microbiol Biotechnol,2010, 85:425-440.
    Juraeva D, George E, Davranov K. Detection and quantification of the nifH gene in shoot and root of cucumber plants[J]. Canadian Journal of Microbiology,2006,52:731-739.
    Karin E, Karin N, Stefan Betal. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil[J]. Soil Biol Biochem.,2007,39: 106-115.
    Katyal J C, Carter M F, Vlek P L G. Nitrification activity in submerged soils and its relation to denitrification loss[J]. Biology and fertility of soils,1988,7(1):16-22.
    Keeling AA, Cook JA, Wilcox A. Effects of carbohydrate application on diazotroph populations and nitrogen availability in grass swards established in garden compost[J]. Bioresoure Technology,1998, 66:3814-3822.
    Konneke M, Bernhard A E, Torre de la Jose'R. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature,2005,437(22):543-546.
    Koort J, Coenye T, Vandamme P et al. Streptococcus parauberis associated with modified atmosphere packaged broiler meat products and air samples from a poultry meat processing plant[J]. International journal of food microbiology.2006,106(3):318-323.
    Kowalchuk G A, Bodelier P L E, Heilig G H J, et al. Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation[J]. FEMS Microbiology Ecology,1998,27(4): 339-350.
    Ladha J K, Dawe D, Ventura T S, et al. Long-term effects of urea and green manure on rice yields and nitrogen balance[J]. Soil Science Society of America journal,2000,64(6):1993-2001.
    Lam P, Jensen MM, Lavik G, et al. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104:7104-7109.
    Larkin R P. Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato[J]. Soil Biology and Biochemistry,2008,40(6):1341-1351.
    Lawlor D W. Photosynthesis, productivity and environment J]. Journal of Experimental Botany,1995, 46(special issue):1449-1461.
    Leigh R A, Johnston A E. Long-term experiments in agricultural and ecological sciences[J]. CAB International, ss,1993,428.
    Leininger S, Urich T, SchloterM, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature,2006,442:806-809.
    Long-term Experiments in Agricultural and Ecological Sciences:Proceedings of a Conference to Celebrate the 150th Anniversary of Rothamsted Experimental Station, Held at Rothamsted,14-17 July 1993[M]. Wallingford:CAB International,1994.
    Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland: effects of management changes[J]. Soil Biology and Biochemistry,1995,27(7):969-975.
    Mandal A, Papa A K Singh D, Swarup A. Masto RE. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages[J]. Bioresource Technology,2007,98:3585-3592.
    Martens-Habbena W, Berube PM, Urakawa H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J]. Nature,2009,461:976-979.
    Moin NS, Nelson KA, Bush A, et al. Distribution and diversity of archaeal and bacterial ammonia oxidizers in saltmarsh sediments[J]. Applied and Environmental Microbiology,2009,75:7461-7468.
    Monaco S, Sacco D, Pelissetti S, et al. Laboratory assessment of ammonia emission after soil application of treated and untreated manures[J]. Journal of Agricultural Science,2012,150(1):65-73.
    Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and environmental microbiology,1993,59(3):695-700.
    Needelman B A, Wander MM, Bollero-GA, et al. Interaction of tillage and soil texture:biologically active soil organic matter in Illinois[J]. Soil Science Society of America Journal,1999,63(5): 1326-1334.
    Nie Jun, Zhou Jian-Min, Wang Huo-Yan. Effect of long-term rice straw return on soil Glomalin, Carbon and Nitrogen[J]. Pedosphere,2007,17(3):295-302.
    Oved T, Shaviv A, Goldrath T, et al. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil[J]. Applied and Environmental Microbiology,2001. 67(8):3426-3433.
    Park H D, Wells G F, Bae H, et al. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors[J]. Applied and environmental microbiology,2006,72(8):5643-5647.
    Petra Marschnera, Ellen Kandeler, Bernd Marschner. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biologyand Biochemistry,2003,35(3): 453-461.
    Phillips C. J., Harris D., Dollhopf S. L., et al. Effects of agronomic treatments on structure and function of ammonia-oxidizing communities[J]. Applied and Environmental Microbiology,2000,66: 5410-5418.
    Place F, Barrett C B, Freeman H A, et al. Prospects for integrated soil fertility management using organic and inorganic inputs:evidence from smallholder African agricultural systems[J]. Food Policy, 2003,28:365-378.
    Ros M, Pascual J A, Garcia C, et al. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts[J]. Soil Biology and Biochemistry,2006, 38(12):3443-3452.
    Ruzicka J. Lab-on-valve:universal microflow analyzer based on sequential and bead injection[J]. Analyst,2000,125(6):1053-1060.
    Santoro AE, Francis C A, de Sieyes N R, et al. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary[J]. Environmental Microbiology,2008,10(4):1068-1079.
    Sessitsch A, Weilharter A, Gerzabek M H, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J]. Applied and Environmental Microbiology, 2001,67(9):4215-4224.
    Shen J, Zhang L, Zhu Y, et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environmental Microbiology, 2008,10(6):1601-1611.
    Stephen J R, Chang Y J, Macnaughton S J, et al. Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria[J]. Applied and Environmental Microbiology,1999,65:95-101.
    Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as new planctomycete[J]. Nature,1999,400(6743):446-449.
    Thomas, Donald Birket, ed. Soil and water conservation manual for Kenya[M]. Soil and Water Conservation Branch, Ministry of Agriculture, Livestock Development and Marketing, Republic of Kenya,1997.
    Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems:issues and challenges[J]. Field crops research,2001,69(2):93-132.
    Trasar-Cepedaet, M. C. Leiros, F. Gil-Sotres, S. SeoaneTowards a biochemical quality index for soils: an expression relating several biological and biochemical properties[J]. Biology and Fertility of Soils, 1998,26:100-106.
    Treusch AH, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and Amo-related proteins indicate arole of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology,2005,7(12):1985-1995.
    Troelstra S R, Wagenaar R, Boer W. Nitrification in Dutch heathland soils[J]. Plant and Soil,1990, 127(2):179-192.
    Turner B L, Bristow A W, Haygarth P M. Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance[J]. Soil Biology and Biochemistry,2001,33(7):913-919.
    Vance E D, Brookes P C. Measurement of microbial biomass in soil[J]. Chemical analysis in environmental research,1985:68.
    Visser D. On ammonium in upper amphibolite facies cordieriteorthoamphibole-bearing rocks from Rod, Bamble Scctor, south Norway[J]. Norks Geologisk Tidsskrift,1992,72:385-388.
    Ward B B, Martino D P, Diaz M C, et al. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences[J]. Appl Environ Microbiol,2000,66(7): 2873-2881.
    West K D.A note on the power of least squares tests for a unit root[J]. Economics Letters,1987,24(3): 249-252.
    White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR protocols:a guide to methods and applications,1990,18:315-322.
    Witter E, Martnsson A M, GaricaF V. Size of the soil microbial biomass in a long term experiment as affected by different N—fertilizers and organic manures[J]. Soil Biology and Biochemestry,1993,25: 659-669.
    Yaduvanshi N P S. Substitution of inorganic fertilizers by organic manures and the effect on soil fertility in a rice-wheat rotation on reclaimed sodic soil in India[J]. The Journal of Agricultural Science,2003,140(2):161-168.
    Ye W P, Xie X L, Wang K R, et al. Effects of rice straw manuring in different periods on growth and yield of rice[J]. Chinese Journal of Rice Science,2008,22(2):65-70.
    Yuan F, Ran W, Hu J. Ammonia-oxidizing bacteria communities and their influence on the nitrification potential of Chinese soils measured by denaturing gradient gel electrophoresis (DGGE)[J]. Acta Ecologica Sinica,2005,25(6):1318-1324.
    Zelles L, Bai QY, Rackwitz R, et al. Determination of phospholipid and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structures in soils[J]. Biology and Fertility of Soils,1995,19(2):115-123.
    Zhang H, Zhang G L. Microbial biomass carbon and total organic carbon of soils as affected by rubber cultivation[J]. Pedosphere,2003,13(4):353-357.
    Zhang L M, Wang M, Prosser J I, et al. Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest[J]. FEMS microbiology ecology,2009,70(2):208-217.
    Zheng J Q, Han S J, Zhou Y M, et al. Microbial activity in a temperate forest soil as affected by elevated atmospheric CO2[J].Pedosphere,2010,20:427-435.
    Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology,2007, 36(2):84-91.
    艾天成,李方敏,万健民,等.不同有机肥对土地平整后土壤肥力及水稻生育的影响[J].湖北农学院学报,2002,22(3):206-209.
    曾涛涛,李冬,邱文新,等.低温厌氧氨氧化生物滤池群落结构分析[J].哈尔滨工业大学学报,2012,44(6):6-10.
    陈岭,明镇寰.硝化池中氨氧化细菌amoA基因的检测及其多样性研究[J].浙江大学学报,2004,3](5):565-569.
    董莲华,杨金水,袁红莉.氨氧化细菌的分子生态学研究进展[J].应用生态学报,2008,19(6):1381-1388.
    杜金泉,帅志希,等.水稻少免耕技术研究,高产的系列配套技术[J].西南农业学报,1992,5(3):]8-22.
    高菊生,徐明岗,王伯仁,等.长期有机无机肥配施对土壤肥力及水稻产量的影响[J].中国农学通报,2005,21(8):21]-214.
    高杨梅.茶园土壤中氨氧化古菌的丰富度和多样性的研究[D].浙江大学,2010.
    关荫松.土壤酶及其研究法[M].北京:农业出版社,1986:275-276,296-297,322-326.
    郭胜利,党廷辉,郝明德.施肥对半干旱地区小麦产量、N03-N累积和水分平衡的影响[J].中国农业科学,2005,38(4):75-76.
    郭赞,吴宇澄,林先贵,等.3次连续重复提取DNA能较好反映土壤微生物丰度[J].微生物学报,2012,52(7):894—901.
    何玉梅,张丽华.不同耕作措施对土壤真菌群落结构与生态特征的影响[J].生态学报,2007,27(1):113-119.
    和文祥,谭向平,王旭东,等.土壤总体酶活性指标的初步研究[J].土壤学报,2010,47(6):1232-1236.
    黄明,吴金芝,李友军,等.不同耕作方式对旱作区冬小麦生产和产量的影响[J].农业工程学报,2009,25(1):50-54.
    巨晓棠,刘学军,张福锁.尿素与DCD和有机物料配施条件下氮素的转化和去向[J].中国农业科学,2002,35(2):181-186.
    赖庆旺,李茶苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究[J].土壤学报,1992,29(2):168-185.
    梁斌,周建斌,杨学云,等.不同培肥措施下种植制度及撂荒对土壤微生物量碳氮的影响[J].中国生态农业学报,2009,17(2):209-214.
    李丙智,王桂芳,秦晓飞,等.沼液配施钾肥对果园土壤理化特性和微生物及果实品质影响[J].中国农业科学,2010,43(22):4671-4677.
    李传涵,李明鹤,何绍江,等.杉木林和阔叶林土壤酚含量及其变化的研究[J].林业科学,2002,38(2):9-14.
    李东坡,陈利军,武志杰,等.不同施肥黑土微生物量氮变化特性及相关因素[J].应用生态学报,2004,15(10):1891-1896.
    李海平,汤春纯.不同比例有机化肥配施对油菜经济产量及产量性状的影响[J].湖南农业科学,2005,(5):58-59.
    李华,贺洪军,高凤菊,等.钾肥对黄瓜根际土壤酶活性的影响[J].山东农业科学,2010,7:59-60.
    李全胜,林先贵,胡君利.近地层臭氧浓度升高对稻田土壤氨氧化与反硝化细菌活性的影响[J].生态环境学报,2010,19(8):1789-1793.
    李荣刚.高产农田氮素肥效与调控途径——以江苏太湖地区稻麦两熟农区为例推及全省[D].北京:中国农业大学农学与生物技术学院,2000.
    李新宇,张惠文,张晶.乙草胺和甲胺磷对农田黑土可培养真菌数量及种群结构的影响[J].应用生态学报,2005,16(6):1009-1013.
    李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599.
    李宗新,董树亭,胡昌浩,等.有机化肥互作对玉米产量及耕层土壤特性的影响[J].玉米科学,2004,12(3):100-102.
    凌启鸿.作物群体质量[M].上海科学技术出版社,2000.
    刘恩科,赵秉强,李秀英等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,32(1):176-182.
    刘义,陈劲松,尹华军,等.川西亚高山针叶林土壤硝化作用及其影响因素[J].应用与环境生物学报,2006,12(4):500-505.
    鲁如坤.土壤农业化学分析方法.1999.北京:中国农业科技出版社.
    路文涛,贾志宽,张鹏,等.秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响[J].农业环境科学学报,2011,30(3):522-528.
    雒怀庆,胡勇有.厌氧氨氧化污泥中效应菌的分子生物学研究[J].微生物学报,2005,45(3):335-338.
    吕艳华,白洁,于江华,等.黄河三角洲湿地硝化作用强度及影响因素研究[J].海洋湖沼通报,2008(2):61-66.
    马俊永,李科江,曹彩云,等.有机-无机肥长期配施对潮土土壤肥力和作物产量的影响[J].植物营养与肥料学报,2007,13(2):236-241.
    孟德龙,杨扬,伍延正,等.多年蔬菜连作对土壤氨氧化微生物群落组成的影响[J].环境科学,2012,33(4):1331-1338.
    孟琳,张小莉,蒋小芳,等.有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率[J].中国农业科学,2009,42(2):532-542.
    孟庆英,于忠和,贾绘彬,等.不同施肥处理对大豆根际土壤微生物及土壤肥力影响[J].大豆科学,2011,30(3):471-474.
    孟祥伟,茹振川,陈国华,等.西藏米拉山土壤古菌16SrRNA及amoA基因多样性分析[J].微生物学报,2009,49(8):994-1002.
    裴雪霞,周卫,梁国庆,等.长期施肥对黄棕壤性水稻土氨氧化细菌多样性的影响[J].植物营养与肥料学报,2011,17(3):724-730.
    商跃凤.有机无机复混肥对水稻氮素利用率的影响[J].西南农业大学学报,2001,23(3):262-265.
    沈其荣,余玲,刘兆普.有机化肥料配合施用对滨海盐土土壤生物量态氮及土壤供氮特征的影响[J].土壤学报,1994,31(3):287-293.
    石英,冉炜,沈其荣.不同施氮水平下早作水稻土壤化氮的动态变化及其吸氮特征[J].南京农业大学学报,2001,24(2):61-65.
    孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥田土壤酶活性的动态变化特征[J].生态环境,2008,17(5):2059-2063.
    孙瑞莲,朱鲁生,赵秉强,等.长期施肥对土壤微生物的影响及其在养分调控中的作用[J].应用生态学报,2004,15(10):1907-1910.
    索东让.长期定位试验中化肥与有机肥结合效应研究[J].干旱地区农业研究,2005,23(2):71-75.
    陶军,张树杰,焦加国,等.蚯蚓对秸秆还田土壤细菌生理菌群数量和酶活性的影响[J].生态学报,2010,30(5):1306-1311.
    陶水龙,林启美,赵小蓉,等.土壤微生物量研究方法进展[J].土壤肥料,1998,(5):15-18.
    汪峰,曲浩丽,丁玉芳,等.三种农田土壤中氨氧化细菌amoA基因多样性比较分析[J].土壤学报,2012,49(2):347-353.
    王桂芳,李丙智,张林森,等.苹果园沼液配施钾肥对土壤酶活性及果实品质的影响[J].西北林学院学报,2009,24(5):88-91.
    王激清,刘全清,马文奇,等.中国养分资源利用状况及调控途径[J].资源科学,2005,27(3):47-52.
    王娟,刘淑英,王平,等.不同施肥处理对西北半干旱区土壤酶活性的影响及其动态变化[J].土壤通报,2008,39(2):299-303.
    王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究[J].土壤肥料,2002,(6):13-17.
    王晓慧.城市污水处理厂中氨氧化菌及细菌群落结构与功能研究[D].清华大学,2010.
    王艳博,黄启为,孟林.有机化肥料配施对盆栽菠菜生长及土壤供氮特性的影响.南京农业大学学报,2006,29(3):44-48.
    王一明,彭光浩.异养硝化微生物的分子生物学研究进展[J].土壤,2003,35(5):378-386.
    伍文,黄益宗,李明顺,等.浓度升高对麦田土壤氨氧化细菌、氨氧化古菌和硝化细菌数量的影响[J].农业环境科学学报,2012,31(3):491-497.
    夏雪,谷洁,车升国,等.施氮水平对土娄土微生物群落和酶活性的影响[J].中国农业科学,2011,44(8):1618-1627.
    谢秋发,刘经荣,石庆华.不同施肥方式对水稻产量、吸氮特征和土壤氮转化的影响[J].植物营养与肥料学报,2004,10(5):462-467.
    辛亮,武传东,曲东.长期施肥对旱地土壤中氨氧化微生物丰度和分布的影响[J].西北农业学报,2012,21(6):41-46.
    邢肖毅,黄懿梅,黄海波,等.黄土丘陵区子午岭不同植物群落下土壤氮素及相关酶活性的特征[J].生态学报,2012,32(5):1403-1411.
    熊明彪,舒芬,宋光煜,等.施钾对紫色土稻麦产量及土壤钾素状况的影响[J].土壤学报,2003,40(2):274-279.
    徐晶,陈婉华.同施肥处理对湖南红壤中微生物数量及酶活性的影响[J].土壤肥料,2003,5:8-12.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳,氮,磷的影响[J].土壤学报,2002,39(1):89-96.
    许光辉,郑洪元.土壤微生物分析方法手册[M].1986,北京:农业出版社,255-257.
    严少华,黄东迈.免耕对水稻土持水特征的影响[J].土壤通报,1995,26(5):198-199.
    杨莉琳,毛任钊,刘俊杰.土地利用变化对土壤硝化及氨氧化细菌区系的影响[J].环境科学,201],32(]1):3455-3460.
    于树,汪景宽,王鑫,等.不同施肥处理的土壤肥力指标及微生物碳、氮在玉米生育期内的动态变化[J].水土保持学报,2007,21(4):]37-]40.
    余永昌,林先贵,张晶,等.近地层臭氧浓度升高对麦田土壤微生物群落功能多样性的影响[J].应用与环境生物学报,2012,18(2):309-314.
    袁玲,邦俊,郑兰君,等.长期施肥对土壤酶活性和氮磷养分的影响[J].植物营养与肥料学报,1997,3(4):300-306.
    张朝轩,杨天仪,骆军,等.微生物钾肥对土壤理化性状和葡萄光合作用及果实品质的影响[J].上海农业学报,2010,26(2):70-73.
    张焕军,郁红艳,丁维新.长期施用有机无机肥对潮土微生物群落的影响[J].生态学报,2011,31(12):3308-3314.
    张娟,沈其荣,冉炜.施用预处理秸秆对土壤供氮特征及菠菜产量和品质的影响[J].土壤,2004,36(1):37-42.
    张磷,黄小红,谢晓丽,等.施肥技术对土壤肥力和肥料利用率的影响[J].广东农业科学,2005,2:46-49.
    张平究,李恋卿,等.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化[J].生态学报,2004,24(]2):2818-2824.
    张振华,严少华.覆盖对滨海盐化土水盐运动和大麦产量影响的研究[J].土壤通报,1996,27(3):136-138.
    赵明,蔡葵,王文娇,等.有机无机肥配施对番茄产量和品质的影响[J].山东农业科学,2009(012):90-93.
    赵勇,李武,周志华,等.秸秆还田后土壤微生物群落结构变化的初步研究[J].农业环境科学学报,2005,24(6):1114-1118.
    赵长盛,胡承孝,孙学成,等.温度和水分对华中地区菜地土壤氮素矿化的影响[J].中国生态农业学报,2012,20(7).
    赵志彬,赵立武,陈贤阳.施稻糠有机肥对水稻生长的影响[J].湖南农业科学,2003,1:32-34.
    郑宪清,孙波,胡锋,等.中亚热带水热条件对农田置换土壤硝化强度的影响[J].生态学报,2009,29(2):1024-1031.
    钟文辉,蔡祖聪,尹力初,等.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响[J].土壤学报,2008,45(11):105-111.
    周大纲,顾杰,周冠华.OA活化有机肥研制及其肥效试验[J].磷肥与复肥,2004,19(2):72-74.
    周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.
    周青,陈凤华,张国良,等.有机肥追施对水稻产量及氮肥施用效益的影响[J].安徽农业大学学报,2006,33(2):252-256.
    朱焕潮,符冠富,王丹英,等.饼肥对稻田土壤酶活性的影响及其与水稻成熟期衰老的关系[J].中国稻米,2008,57-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700