用户名: 密码: 验证码:
甜椒对硝酸盐胁迫的生理响应及硅藻土有机肥的缓解作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国设施农业生产发展迅速,土壤次生盐渍化日益严重。土壤盐渍化是设施蔬菜栽培亟待解决的难题,并已成为制约设施蔬菜可持续发展的瓶颈问题而引起广泛的关注。本文通过培养实验、水培实验和盆栽试验,研究施肥对土壤盐分和组成的影响、硝酸盐胁迫对甜椒幼苗的伤害机理以及硅藻土有机肥对硝酸盐胁迫下甜椒若干生理代谢的影响,旨在为土壤次生盐渍化的治理和废弃硅藻土资源化利用提供依据。主要结论如下:
     1施肥对土壤盐分含量和组成的影响
     1.1.培养实验结果表明,相同养分施用量下,不同氮肥处理的土壤电导率和盐分含量的高低顺序为氯化铵>硫酸铵>硝酸铵>尿素、碳酸氢铵,氮肥种类对土壤pH的不同影响是导致不同处理土壤盐分差异的原因。磷肥为过磷酸钙>钙镁磷肥,钾肥为硫酸钾>氯化钾。等量有机肥对土壤电导率和盐分含量的影响是:鸡粪>菜籽饼>猪粪、牛粪。
     1.2施用氮、磷、钾化肥和有机肥均可增加土壤盐分离子的含量。Ca~(2+)、K~+是土壤主要的阳离子,NO_3-是土壤主要的阴离子,为减轻设施蔬菜地土壤的盐渍化,氮肥宜选择尿素,磷肥宜选择钙镁磷肥,钾肥宜选择硫酸钾。对次生盐渍化土壤,施用牛粪等C/N比值高、养分含量低的有机肥可减轻土壤盐渍化。
     2甜椒幼苗对硝酸盐胁迫的生理响应
     2.1水培试验结果表明,硝酸盐胁迫对甜椒幼苗生长有明显的抑制作用,随培养液Ca(NO_3)2浓度提高(60 mmol/L~150 mmol/L),甜椒幼苗株高、地上部鲜重、根鲜重、根体积以及根系活力均显著降低。
     2.2硝酸盐胁迫导致甜椒幼苗叶片的SOD、POD活性提高,CAT活性降低,O2.-产生速率提高,MDA和H_2O_2含量增加,引起膜脂过氧化,叶片膜透性升高。
     2.3与CK相比较,Ca(NO_3)260 mmol/L处理的硝酸还原酶活性提高了10.06%,差异不显著,Ca(NO_3)_280 mmol/L、Ca(NO_3)2120 mmol/L、Ca(NO_3)2150 mmol/L处理硝酸还原酶活性分别降低了16.87%、40.62%、63.88%,差异均达到显著或极显著水平。
     2.4硝酸盐胁迫使甜椒幼苗叶绿素a、叶绿素b、叶绿素a+b含量降低,叶绿素a/叶绿素b比值上升。硝酸盐胁迫下甜椒幼苗叶片的蒸腾速率、气孔导度降低,胞间CO2浓度升高,净光合速率下降。
     2.5硝酸盐胁迫使甜椒幼苗光化学效率(Fv/Fm)下降,PSⅡ反应中心的关闭程度升高,电子传递受阻,PSⅡ反应中心性能指数PIABS、PICS明显降低,受体侧醌受体大量累积,叶片吸收过多的能量导致PSⅡ反应中心失活。
     3硅藻土有机肥对硝酸盐胁迫下甜椒若干生理代谢的影响
     3.1施用硅藻土有机肥显著提高土壤的有机质含量,降低土壤溶液电导率、含盐量和NO_3-含量,缓解硝酸盐胁迫对甜椒生长的抑制,表现为株高、茎粗、地上部鲜重和根鲜重明显提高。
     3.2施用硅藻土有机肥可明显提高硝酸盐胁迫下甜椒幼苗的抗氧化酶的活性,降低H_2O_2含量和O2.-产生速率,缓解活性氧对甜椒幼苗的伤害,表现为MDA含量下降、膜透性降低。
     3.3施用硅藻土有机肥可明显提高硝酸盐胁迫下甜椒幼苗的叶绿素a、叶绿素b、叶绿素a+b含量,提高甜椒叶片的气孔导度、叶片蒸腾速率和光合速率。
     3.4硅藻土有机肥可缓解硝酸盐胁迫对甜椒幼苗PSⅡ的伤害,表现为Fv/Fm提高,PSⅡ反应中心的关闭程度下降,电子传递效率增加,PSⅡ反应中心性能指数PIABS、PICS明显提高。
In recent years, the greenhouse cultivation of China develops rapidly and soil secondary salinization in protected farmland is becoming worse. Soil salinity is problem of vegetable cultivation being solved and has become the bottleneck for sustainable development of greenhouse cultivation, and cause widespread concern. In this paper, indoor culture experiments, hydroponic experiments and pot experiments are carried out to study on the impact of soil salinity of fertilize, nitrate stress on the damage mechanism of sweet pepper seedlings, and diatomaceous organic fertilizer on some physiological and metabolic effects of sweet pepper seedlings under nitrate stress, aim at offering the theoretical basis on the improvement of soil secondary salinization in protected farmland and the utilization of waste diatomaceous earth. The main results are as follows:
     1 Effects of fertilization on the soil salt content and composition
     1.1 Indoor culture experiments results showed that, under the same amount of nutrient applied, soil conductivity and salt content of treatment of different nitrogenous fertilizer were in the order: NH4Cl>(NH4)2SO4>NH4NO_3>CO(NH2)2, NH4HCO_3. Nitrogenous fertilizer species to affect the soil pH led to differences in soil salinity. Soil conductivity and salt content of treatment of different phosphate fertilizer were in the order: calcium superphosphate>calcium magnesium phosphate; soil conductivity and salt content of treatment of different potassium fertilizer were in the order: K2SO4>KCl. The effects of the same amount of organic fertilizer on soil conductivity and salt content were in the order: chicken dung > rapeseed cake > pig dung, cow dung.
     1.2 Application of nitrogen, phosphorus and potassium fertilizer and organic manure could increase soil salt-ion content. The major cation in soil was Ca2+、K+ , and the main anion was NO_3-. To reduce soil secondary salinization in protected farmland, we should choose CO (NH2)2 in nitrogenous fertilizer; we should choose calcium superphosphate in phosphate fertilizer; and we should choose K2SO4 in potassium fertilizer. In soil of secondary salinization, application of cow dung and other high C/N ratio and low nutrient content of organic fertilizer could reduce soil salinization.
     2 The physiological response of sweet pepper seedlings under nitrate stress
     2.1 Hydroponic experiments results showed that, the growth of sweet pepper seedlings was inhibited under nitrate stress, and plant height, stem diameter, fresh weight root volume and root activity of sweet pepper seedlings were reduced significantly with the concentration of Ca(NO_3)2 in the medium increased.
     2.2 Nitrate stress led to SOD, POD activities increased, CAT activities decreased, O2·- producing rate and H2O2 and MDA content increased of sweet pepper seedlings, which eventually caused membrane lipid peroxidation and membrane system damage.
     2.3 Compared with CK, the nitrate reductase activity of treatment with 60mmol/L Ca(NO_3)2 increased 10.06%, and the difference was not significant. The nitrate reductase activity of treatment with 80 mmol/L, 120mmol/L, 150 mmol/L Ca(NO_3)2 decreased by 16.87%, 40.62%, 63.88%, and the differences were significant or highly significant.
     2.4 Under nitrate stress, stomatal conductance and the content of Chla, Chlb, Chla+b, decreased significantly, intercellular CO2 concentration and Chla/Chlb increased, and net photosynthetic rate were dropped.
     2.5 Under nitrate stress, the leaves of sweet pepper seedlings optical system response reduced the maximum energy conversion efficiency central, close degree of increased electron transfer blocked, a large number of acceptor side quinone receptor accumulation, leaves absorb too much energy led to inactivation of PSⅡreaction centers, photosynthetic apparatus damage, PSⅡreaction center performance index PIABS、PICS significantly reduced, thus weakening the leaf photosynthesis rate.
     3 Effects of diatomaceous organic fertilizers on some physiological metabolism of sweet pepper seedlings under nitrate stress
     3.1 After diatomaceous organic fertilizer manuring into the soil, the soil conductivity, soil salinity and NO_3- levels of soil were reduced, and soil organic matter content was significantly increased, and the impact of sweet pepper seedlings under nitrate stress have been alleviated and plant height, stem diameter and fresh weight has improved significantly.
     3.2 Application of diatomaceous earth organic fertilizer significantly reduced O2·- producing rate, and H_2O_2 content; effectively alleviate the damage being caused by active oxygen on lipid membranes ,and manifested as MDA content decreased, membrane permeability decreased.
     3.3 Application of diatomaceous organic fertilizer significantly increased the content of Chla, Chlb, Chla+b, stomatal conductance, leaf transpiration rate, and photosynthesis rate of sweet pepper seedlings.
     3.4 Diatomaceous organic fertilizer could alleviate the damage of PSⅡof sweet pepper seedlings under nitrate stress, and manifested as Fv/Fm increased, the closure level of PSⅡactive reaction center decreased, and the electronic transmission of PSⅡreaction center and PSⅡperformance index increased significantly.
引文
[1]刘庆芳,吕家珑,李松龄,等.不同种植年限蔬菜大棚土壤中硝态氮时空变异研究[J].干旱地区农业研究,2011,29(2):159-163.
    [2]姜伟,王建国,靳玉荣,等.设施土壤盐分变化规律及其相关分析研究[J].华北农学报2010,25(2):200-205.
    [3]余海英,李廷轩,周健民.设施土壤盐分的累积、迁移及离子组成变化特征[J].植物营养与肥料学报,2007,13(4):642-650.
    [4]薛继澄,毕德义,李家金,等.保护地栽培蔬菜生理障碍的土壤因子与对策[J].土壤肥料, 1994(1): 4-9.
    [5]沈根祥,杨建军,黄沈发,等.塑料大棚盐渍化土壤灌水洗盐对水环境污染负荷的研究[J].农业工程学报,2005,21(1):124-128.
    [6]黄小红.食物中的硝酸盐与人类健康[J].中国新技术新产品,2011,7:255-256.
    [7]童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,1991,18(2):159-162.
    [8]高慧,殷水良,冯中勇,等.蔬菜大棚土壤养分变化和盐分累积特征研究[J].安徽农业科学,2007,35(22):6863-6865.
    [9]内海修一著,王志刚,汪维景译.保护地园艺:环境与作物生理[M].北京:农业出版社, 1984:216.
    [10]马献发,白路平.张继舟哈尔滨市郊设施土壤积盐规律的研究[J].黑龙江农业科学2009,(1):50-52.
    [11]李廷轩,张锡洲,王昌全,等.保护地土壤次生盐渍化的研究进展[J].西南农业学报,2001,14:(增刊)103-107.
    [12]姚春霞,陈振楼,徐世远,上海市郊保护地土壤盐分研究[J].环境科学,2007,28(6):1372-1376.
    [13]王海候,沈明星,陆长婴,等.施林林苏州市菜地土壤硝酸盐累积现状与特征分析[J].江苏农业科学,2009,(3)355-356.
    [14]秦巧燕,贾陈忠,同延安,等.设施农业表层土壤盐分状况分析[J].现代农业科技,2006,12:87-89.
    [15]艾天成,李方敏,黄志新.设施土壤盐分组成特征分析[J].湖北农业学,2006,45(3):316-317.
    [16]邹长明,孙善军,张晓红,等.蚌埠地区设施土壤盐分累积特征研究[J].安徽科技学院学报,2009,23(3):8-13.
    [17]吴忠红,刘凤兰.设施土壤养分和盐分累计状况研究[J].中国农学通报,2007,23(4):237-240.
    [18]张金锦,段增强.设施菜地土壤次生盐渍化的成因、危害及其分类与分级标准的研究进展[J].土壤,2011,43(3):361-366.
    [19]余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤, 2005,37(6):581-586.
    [20]杨丽娟,须晖,邱忠祥,等.菜田土壤酶活性与黄瓜产量的关系[J].植物营养与肥料学报,2000,6(1):113-116.
    [21]陈劲憬,高丽红,曹之富.施肥对设施土壤及作物生育的影响研究进展[J].农业工程学报,2005,21(增刊):16-20.
    [22]王朝辉,李生秀,田霄鸿.不同氮肥用量对蔬菜硝态氮累积的影响[J].植物营养与肥料学报,1998,4(1):22-28.
    [23]姜慧敏,张建峰,杨俊诚,等.不同氮肥用量对设施番茄产量、品质和土壤硝态氮累积的影响[J].农业环境科学学报,2010,29(12):2338-2345.
    [24] Mcall D,Willumsen J.Effects of nitrogen availability and supplementary light on thenitrate content of soil-grown lettuce[J].Journal of horticultural science and Biotechology,1999,74 (4):458-63.
    [25]胡承孝,邓波儿.施用氮肥对小白菜和番茄中硝酸盐积累的影响[J].华中农业大学学报,1992 ,11(3) :239 - 243.
    [26] Stantamaria P,Elia A,Gonnelia M.Azoto,imbianchimento,produzionese accumulo dimitrati in indivia allevata in idrocoltura[J]. Italus Hortus, 1995, 2(3):32-38.
    [27]肖青亮,郑诗樟,牛德奎.施肥对蔬菜累积硝酸盐影响的研究进展[J].安徽农业科学,2007,35(6):1732-1734.
    [28]艾绍英,孙自航,姚建武,等.氮肥种类及用量对赤红壤pH和可溶性盐的影响[J].生态环境,2008,17(4):1614-1618.
    [29]张锡洲,王永东,郑子成,等.氮磷钾肥交互作用对设施土壤盐分含量与离子组成的影响[J].四川农业大学学报,2010,28(1):84-89.
    [30]杜春先,聂俊华,王介勇.不同水肥条件下硝态氮在土壤剖面中垂直分布规律研究[J].土壤通报,2006,37(2):278-281.
    [31]杜连凤,刘文科,刘建玲.三种秸秆有机肥改良土壤次生盐渍化的效果及生物效应[J].土壤通报,2005,36(3):309-312.
    [32]王秋灵,吴良欢,董兰学,等.菇床废料对设施栽培土壤盐害下小白菜生长的影响[J].应用生态学报,2011,22(5):1207-1211.
    [33]宿庆瑞,李卫孝,迟凤琴.有机肥对土壤盐分及水稻产量的影响[J].中国农学通报2006,42(4):299-301.
    [34]孟艳玲,王丽萍,杨合法,等.长期施用有机肥对温室土壤盐分积累的抑制作用[J].长江蔬菜,2008,5:54-56.
    [35]张继舟,袁磊,马献发.腐植酸对设施土壤的养分、盐分及番茄产量和品质的影响研究[J].腐植酸,2008,3:19-22.
    [36]郇恒福,周健民,段增强,等.施用菜籽饼肥对次生盐渍化温室土壤有效养分、盐分及盐分组成的影响[J].土壤,2008,40(4):586-590.
    [37]刘媛媛,李廷轩,余海英,等.有机肥与尿素配施对设施土壤盐分含量与组成变化的影响[J].农业环境科学学报,2009,28(2):292-298.
    [38]张迪,牛明芬,王少军,等.不同有机肥处理对设施菜地土壤硝态氮分布影响[J].农业环境科学学报,2010,29(增刊):156-161.
    [39]郭颖,赵牧秋,吴蕊,等.有机肥对设施菜地土壤一植物系统硝酸盐迁移累积的影响[J].农业环境科学学报,2008,27(5):1831-1835.
    [40]王敬国,曹一平.土壤氮素转化的环境和生态效应[J].北京农业大报,1995,21:99-103.
    [41]张璐.有机物料中有机碳、氮矿化进程及土壤供氮力研究[J].土壤通报,1997,28(2):71-73
    [42] Kevin L, Dar M.Effect of C/N ratio on microbial activity and N Retention. Bench-scale study using pulp and paper Biosolids [J].Compost Science and Utilization, 2000, 8(2):147-159.
    [43] Bremner, Van K C.Seasonal microbial dynamics after addition of lentil and wheat residues [J].Soil Sci.Soc.Am, 1992, 56:1141-1146.
    [44] Scheible WR,Gonzalez-Fontes A,Lauerer M,Caboche MRM,Stitt M.Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco[J].Plant cell,1997,9:783-98.
    [45] Zhang H, Jennings A, Barlow PW, Forde B G. Dual pathways for regulation of root branching by nitrate [J].Plant Biol, 1999, 96:6529-6534.
    [46] Stitt M, Feil R.Lateral root frequency decreases when nitrate accumulates in tobaccotransfclrmants with low nitrate reductase activity:consequences for the regulation of biomass partitioning between shoots and root[J].Plant Soil,1999,215:l43-l53.
    [47]杨凤娟.NO3-胁迫导致黄瓜生育障害机理的研究[D].山东农业大学博士论文,2006,6.
    [48] Sattelmacher B,K1otz F,Marschner H.Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition[J].Plant Soil,1990,123:131-l37.
    [49] Wang Y, Mi G, Chen F, Zhang J and Zhang F.Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize [J].Plant Nutri, 2004.
    [50]郭亚芬,米国华,陈范骏,等.硝酸盐供应对玉米侧根生长的影响[J].植物生理与分子生物学学报,2005,31(1):90-96.
    [51] Forde B G.Local and long-range signaling pathways regulating plant responses to nitrate [J] Annu Rev Plant Biol, 2002, 53:203-224.
    [52]郑兴莲,申书兴,王彦华,等.硝酸钙胁迫对茄子幼苗生长及生理生化指标的影响[J].河北农业大学学报,2006,11,29(6):17-20.
    [53]薛继澄,李家金,毕德义,等.保护地栽培土壤硝酸盐积累对辣椒生长和锰含量的影响[J].南京农业大学学报,1995,18(1):53-57.
    [54]李云海,猛凡珍,张复君.Ca(NO3)2对黄瓜幼苗生长及光合色素含量的影响[J].聊城大学学报.2005,3(1):52-53.
    [55]杨晓玉,胡淳淳,王秀,峰.等硝酸盐胁迫对黄瓜幼苗生长及镁、铁、铜、锰、锌含量的影响[J].山东农业科学,2008,8:61~65.
    [56]张英鹏,徐旭军,林咸永,等.供氮水平对菠菜产量、硝酸盐和草酸累积的影响[J],植物营养与肥料学报,2004,10(5)494-498.
    [57]孙小凤.不同供氮水平对油白菜产量和品质的影响[J].土壤肥料,2005,4:11-13.
    [58]杨晓英,杨劲松.氮素供应水平对小白菜生长和硝酸盐积累的影[J].植物营养与肥料学报,2007,13(1):160-163.
    [59]许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(40):246-252.
    [60] Berry J A,Downton W J S.Environmental regulation of photosynthesis.Govind J,eds.Photosynthesis(VolⅡ)[M].New York:Academic Press,1982:263-345.
    [61]许大全.叶片表观光合量子效率的测定.中国科学院上海植物生理研究所、上海市植物生理学会编.现代植物生理学实验指南[M].北京:科学出版社,1999:89-90.
    [62]苏秀荣,王秀峰,杨凤娟,等.硝酸根胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响[J].应用生态学报,2007,18(7):1441-1446.
    [63]冯玉龙,张亚杰,朱春全.根系渗透胁迫时杨树光合作用光抑制与活性氧的关系[J].应用生态学报,2003,14(8):1213-1217.
    [64]王强,钟旭华,黄农荣等.光、氮及其互作对作物碳氮代谢的影响研究进展[J].广东农业科学,2006,2:37-40.
    [65]史庆华,朱祝军,Khalida Al-aghabary,等.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响[J].植物营养与肥料学报,2004,10(2):188-191.
    [66]董彩霞,赵世杰,田纪春,等.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响[J].2002,28(1):59-64.
    [67]杨凤娟,王秀峰,魏珉,等.NO3-胁迫及恢复对黄瓜幼苗叶片叶绿素荧光参数及ATPas活性的影响应[J].用生态学报,2006,17(3):403-407.
    [68]周兴元,曹福亮.土壤盐分胁迫对三种暖季型草坪草保护酶活性及脂质过氧化作用的影响[J].林业科学研究,2005(3):40-45.
    [69]曹锡清.膜质过氧化对细胞与机体的作用[J].生物化学与生物物理学报,1986,(2):17-23.
    [70] Bolwer C, Montagum C.Superoxide dismutase and stress tolerance [J].Plant Physiol, 1992, 98(1):83-116.
    [71]吕杰,王秀峰,魏珉,等.不同盐处理对黄瓜幼苗生长及生理特性的影响[J].植物营养与肥料学报,2007,13(6):1123-1128.
    [72]史庆华,朱祝军,Khalida Al-aghabary,等.等渗盐胁迫对番茄抗氧化酶和ATP酶及焦磷酸酶活性的影响[J].植物生理与分子生物学学报,2004,30(3):311-316.
    [73]刘志媛,朱祝军,喻景权.等渗的NaCl和Ca(NO3)2对番茄幼苗生长的影响[J].园艺学报,2001,20(2):27-29.
    [74]沈根祥,杨建军,黄沈发,等.塑料大棚盐渍化土壤灌水洗盐对水环境污染负荷的研究[J].农业工程学报,2005,21(1):124-128.
    [75]李刚,张乃明,毛昆明,等.大棚土壤盐分累积特征与调控措施研究[J].农业工程学报,2004,20(3): 44-47.
    [76]郇恒福,周健民,段增强,等,施用菜籽饼肥对次生盐渍化温室土壤有效养分、盐分及盐分组成的影响[J].土壤,2008,40(4):586-590.
    [77]宋秀华,王秀峰,杨凤娟,等.沸石对NaCl胁迫下番茄幼苗酶活性、渗透调节物质及离子含量的影响[J].植物营养与肥料学报,2008,14(12)362-366.
    [78]孔宪清,苑静.天然沸石在温室土壤改良中的作用研究[J].中国非金属矿工业导刊,2005,(2):31-33.
    [79]吕彪,秦嘉海,赵芸晨.麦秸覆盖对盐渍土肥力及作物产量的影响[J].土壤,2005,(1):52-55.
    [80]张书德.浅谈啤酒厂废硅藻土的回收再利用[J].企业管理,2009:91.
    [81]鲍士旦.土壤农化分析[M].北京:中国农业科技出版社,2005,178-199.
    [82]宋歌,孙波,教剑英等.测定土壤硝态氮的紫外分光光度法与其他方法的比较[J].土壤学报,2007,42:(2):287-293.
    [83] Appenroth K J,Stoeckel J,Srivastava A,et al.Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements[J].Environmental Pollution,2001,115(1):49-64.
    [84] Cao J.Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes [J].Biochimica et Biophysica Acta, 1990, 1015(2):180-188.
    [85] Strasser B J, Strasser R J.Measuring fast fluorescence transients to address environmental questions: The JIP test [A].In: Mathis P, editor.Photosynthesis: from Light to Biosphere[C].The Netherlands: Kluwer Academic Publishers, 1995:977-980.
    [86] Strasser R,Tsimill-Michael M,Srivastava A.Analysis of the chlorophyll a fluorescence transient[J].In:Papageorgiou G,Govindjee,eds.Advances in Photosynthesis and Respiration[M].Netherlands:KAP Press,2004:1-47
    [87]沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯,1988(3):62-64.
    [88]朱广廉,钟诲文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990:51-154.
    [89] Giannopolitis C N, Rice S K.Superoxide dimutase purification and quantitative relationship with water-solube protein in seedlings [J].Plant Physiol, 1997, (59):315-318.
    [90]刘祖棋,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:369-385.
    [91]王晶英.植物生理生化实验技术与原理[M].北京:东北林业大学出版社,2003:83.
    [92]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003:260-261,123-128,184-185.
    [93]王爱国.O2.-产生速率的测定-盐酸羟胺法[J].植物生理通讯,1990(6):55-57.
    [94]林植芳.衰老叶片叶绿体中H2O2的累积与膜脂过氧化[J].植物生理学报,1998,14(1):16-22.
    [95]宋海星.水、氮供应对作物根系生理特性及吸收养分的影响[D].西北农林科技大学博士学位论文,2002.
    [96]曹锡清.膜脂过氧化对细胞与机体的作用[J].生物化学与生物物理学进展,1986,(2):17-23
    [97]龚双军.不同棉花品种苗期抗寒性及其生理指标测定[J].中国棉花,2005,32(3)16-17.
    [98]刘琳,毛凯,干友民,等.暖地型草坪草抗寒性的研究概况[J].草原与草坪,2004(1):8-13.
    [99]杨春祥.低温胁迫对油桃花器官膜质过氧化和保护酶活性的影响[J].果树学报,2005,22(1):69-71.
    [100]金丽丽.花卉抗寒性研究方法和测定指标概述[J].辽宁农业科学,2005,5(6):37-39.
    [101] Trkan I, Bor M, Koca H.Differential responses of lipid peroxidase and antioxidants in the leaves of drought-tolerant P. acutifolius Gray an drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediate water stress[J].Plant Science,2005,168:223-231.
    [102] Demiral T, Trkan I. Does exogenous glycinebetaine affect antioxdati system of rice seedling under Nacl treatment [J].Plant Physiol, 2004, 161:1089-1100.
    [103]杜秀敏,殷文璇,张慧.等.超氧化物歧化酶(SOD)研究进展[J].中国生物工程杂志,2003,23(1):48-50.
    [104]南芝润,范月仙植物过氧化氢酶的研究进展[J].安徽农学通报,2008,14(5):27-29.
    [105]陈贵,胡文玉.提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯,1991,27(1):44-46.
    [106] Schrader L E, Ritenour G L, Eilrich G L, etal . Some characteristics of nitrate red-uctase from higher plants [J]. Plant Physiol, 1968,(43):930 - 940.
    [107] Alling M J,Boland G,Wills on J H. Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat [J].Plant Physiol, 1976, 3:721-730.
    [108]杨晓玉.硝酸盐胁迫对黄瓜幼苗氮同化影响的研究[D].山东农业大学博士论文.2008,6.
    [109] Stobart A K,Grifit HS WT, Ameenbu KH ARI I.The effects of Cd2+ on the biosynthesis of chlorophyll in leaves of barley[J].Plant Physiology,1985,63:293-298.
    [110] Anderson J M. The significance of grana stacking in chlorophyll b-containing chloroplasts [J]. Photobiochemistry and Photobiophysics, 1982, 3: 225–241.
    [111] Anderson J M. Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective [J]. Australian Journal of Plant Physiology, 1999, 26(7): 625-639.
    [112] McCord J M, Fridovich I. Superoxide dismutase. An enzyme functions for erythrocuprein (hemocuprein) [J]. Journal of Biological Chemistry, 1969, 244(22): 6049-6055.
    [113]刘卫群,胡亚杰,甄焕菊等.干旱迫对转BnDREB1-5基因烟草光合特性的影响[J].武汉植物学研究.2008,26(3):294-297.
    [114] Winter K, Schramm M J. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchanges in leaves of Welwitschia mirabilis[J].PlantPhysiology, 1986, 82: 173-178.
    [115] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J].Annual Review of Plant Physiology, 1982, 33: 317-345.
    [116]付秋实,李红岭,崔健,等.水分胁迫对辣椒光合作用及相关生理特性的影响[J].中农业科学,2009,42(5):1859-1866.
    [117]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [118] Cao J. Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes [J]. Biochimica et Biophysica Acta, 1990, 1015(2): 180-188.
    [119] Chylla R A, Whitmarsh J.Inactive photosystem II complexes in leaves [J]. Plant Physiology, 1989, 90(2): 765-772.
    [120]于建军,张贵龙,黎娅等.汞对甜椒光合作用和叶绿素荧光参数的影响[J].农业环境科学学报.2008, 27(5):1963-1968.
    [121]李鹏民,高辉远,RetoJ.Strasser.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报. 2005, 31(6):559-566. [122 ] Bowler C,Von Montagu M,Lnze D.Superoxide dismutase and stress tolerance[J].Ann.Rev.Plant Mol.Biol,1992,43:83-11.
    [123]徐志防,罗广华,王爱国,等.光合作用的光抑制与光合器官的活性氧代谢[J].植物生理学通讯,1999,35(4):325-336.
    [124]张英鹏,林咸永,章永松,等.供氮水平对菠菜营养品质和体内抗氧化酶活性的影响[J].2005,16(3):519-523.
    [125]刘家尧,衣艳君,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响[J].植物学通报,1998,15(2):46-49.
    [126]沈文飚,叶茂炳,徐朗莱,等.小麦旗叶自然衰老过程中清除活性氧能力的变化[J].植物学报, 1997,39:634-640.
    [127]封辉.有机肥对自毒物质作用下黄瓜若干生理指标的影响[D].福建农林大学硕士学位论文.2006,4.
    [128] Minotti P L, Jackson W A. Nitrate reduction in the roots and shoots of wheat seedlings [J]. Planta, 1970, 95:36-44.
    [129] Penning de Vries F W T, Brunsting A H M, Van Laar HH. Products, requirements andefficiency of biosynthesis: A quantitative app roach [J].Journal of Theoretical Biology, 1974, 45:339-377.
    [130]苏秀荣,王秀峰,杨凤娟,等.硝酸根胁迫对黄瓜幼苗叶片光合速率、PSⅡ光化学效率及光能分配的影响[J].应用生态学报,2007,18(7):1441-1446.
    [131]陈菁,臧小平,孙光明,等.利用硅藻土提高化肥肥效的研究[J].土壤通报,2003,34(6):551-553.
    [132]薛世川,刘秀芬,邓景华.施用腐植酸复合肥对小麦抗旱防衰能力的影响及其机理[J].中国生态农业学报,2006,14(1):139-141.
    [133]张永清,苗果园.水分胁迫条件下有机肥对小麦根苗生长的影响[J].作物学报,2006,32(6):811-816.
    [134]武美燕,吴良欢.有机物质与植物抗逆性关系研究进展[J].土壤通报,2007,38(5):993-997.
    [135]靳志丽,李雪利,刘国顺等.腐殖酸对烤烟生理代谢的影响[J].河南农业大学学报,2000,34(1): 43-46.
    [136]曾富华,罗泽民.赤霉素对杂交水稻生育后期剑叶中活性氧清除剂的影响[J].作物学报,1994,20(3):347-351.
    [137]李红卫,韩涛,李丽萍,等.ABA、GA3处理对冬枣采后果肉活性氧代谢的影响[J].园艺学报,2005,32(5):793-7971.
    [138]李絮花,杨守祥,于振文,等.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-4721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700