用户名: 密码: 验证码:
NPAC技术降低柴油机NO_x和PM排放的机理分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们环保意识的不断增强和汽车排放法规的日益严格,柴油机有害排放成为制约其进一步发展的重要课题。目前的柴油机排放处理技术难以满足未来更加严格的汽车排放标准,开发新的柴油机排气后处理技术以进一步降低柴油机NO_x和PM排放显得尤为重要。低温等离子体技术是20世纪90年代兴起的柴油机排放后处理控制技术,它涉及等离子体物理、高压电源技术、发动机排放控制、化学反应动力学等多种学科。研究表明,低温等离子体辅助催化剂技术可以有效降低柴油机的有害排放。
     近年来,很多专家和学者以模拟气体为对象,对低温等离子体降低柴油机排放进行了研究,并取得了不少成果。本文在前人研究基础上,以柴油机实际排放气体为研究对象,首先对介质阻挡放电等离子体发生器及电源性能进行了静态试验,分析了低温等离子体发生器的特征参数(结构参数和工作参数)的变化关系以及对介质阻挡放电的影响规律,优化了低温等离子体发生器的设计;然后利用多种表面分析测试方法,对低温等离子体作用后的颗粒物进行表征和成分测试,以研究低温等离子体对颗粒物形貌以及燃料中硫元素的影响;最后以碱族金属元素和金属氧化物为主要活性成分,分别制备了三种具有介孔结构的复合催化剂,在同样的台架试验条件下,使碳颗粒和HC与NO_x互为氧化还原剂,研究了低温等离子体辅助催化技术同时转化NO_x和PM排放的作用机理及影响规律。具体研究工作如下:
     第一,基于介质阻挡放电理论,采用V-Q lissajous图形法对NTP发生器结构参数(内径,放电间隙)和工作参数(电压、电流和频率)的变化关系以及对介质阻挡放电的影响规律进行了研究,并以此为基础,设计了NTP体发生器装置。
     第二,根据化学反应动力学等理论,分析了柴油机有害气体各组分在低温等离子体气相反应区内发生的物理化学基元反应,以进一步研究低温等离子体与催化剂共同去除柴油机有害排气的反应机理,然后确立一条可行的尾气去除技术路线。
     第三,利用自制的介质阻挡放电试验装置,采用交流高频高压电源产生等离子体,对柴油机排放物进行后处理净化试验。初步实验结果表明:单独使用低温等离子体技术可有效转化柴油机PM排放,转化效率可以达到60%(质量比m计),THC转化效率将近20%,但是NO_x总量变化不明显。
     第四,针对柴油机颗粒物微观形貌和化学成分分析,引入SEM/EDS分析方法以检测分析柴油机排放颗粒物的理化特性。本研究以燃用不同燃料的柴油发动机尾气作为颗粒物发生源,利用低温等离子体净化处理排放物,在不同工况条件下对颗粒物进行采集取样,然后对样品进行SEM/EDS分析。结果表明:a.低温等离子体作用后,不同燃料颗粒物样品的粒径都有所减小。b.EDS半定量分析结果表明,在颗粒物所含有的化学成分中,除了主要成分C、O外,还有微量的Mg、Al、Ca、Cu、Zn等元素。NTP作用前后对颗粒物中硫的影响较小,不易发生硫中毒现象。较之传统的后处理方法,低温等离子体是一种更为理想的柴油机后处理技术。
     第五,以碱族金属元素和金属氧化物为主要活性成分,用等体积浸渍方法制备成了CeO_2-CuO/γ-Al_2O_3、Na-Rh/γ-Al_2O_3和Ag/γ-Al_2O_3复合金属氧化物催化剂,并利用XRD、SEM、BET等表征方法,探讨了催化剂、催化剂载体的结构和形貌等特性,以及催化剂的浸渍涂覆工艺对其结构和性能的影响,证明形成的催化剂晶型结构符合试验需要。其中:a.活性成分Ag在载体γ-Al_2O_3表面的附着性好,涂覆量大,增大了催化剂和反应气体的接触面积,有利于在催化剂表面有效进行催化反应;b.CeO_2-CuO/γ-Al_2O_3催化剂晶粒细小均匀,与另外两种催化剂相比,其比表面积更大。
     第六,通过台架试验,研究了低温等离子体对催化转化NO_x和PM活性的影响,并对其反应机理进行分析。研究表明,等离子体作用促使气体中产生高能活性物种,再通过催化剂作用,进一步提高NO和O_2共存下NO转化为NO_2的能力,把PM中的SOF氧化为含氧碳氢化合物,促使NO_2和含氧碳氢化合物的反应生成CO_2和N_2。
     第七,以柴油机实际排出气体为研究对象,分别从化学动力学模拟计算和实验的角度出发,讨论了催化剂成分、温度、转速、转矩等参数对有害气体去除率的影响,得出了一些具有指导性的结论。
With the raise of the environmental protection and the stringent of vehicle emission standards,the automotive and truck manufactures were compelled to focus on developing more efficient exhaust after-treatment devices to lower harmful emissions from diesel engines for further development.Through the current technology was difficult to deal with diesel engine emissions to meet increasingly stringent emission standards.There was a need to develop new diesel engine exhaust after treatment technology,to further reduce NO_x and PM emissions from diesel engines.Studies had shown that low-temperature plasma-assisted catalyst technology can effectively reduce harmful emissions from diesel engines. The technique using non-thermal plasma was a novel emission control method emerging in the 1990s,covering plasma physics、high voltage power supply、engine emission control、chemical reaction dynamics and others.Studies had shown that non-thermal plasma assisted catalyst technology could effectively reduce harmful emissions from diesel engine.
     In recent years,many experts and academics had studied the non-thermal plasma assisted catalytic technology to reduce diesel emissions using simulate gases,and had achieved many results.First of all, the reaction mechanism of analyzing the transformation of pollutants in non-thermal plasma,the simulation test of dielectric barrier discharge plasma generator and power performance was conducted based on the previous studies,and the characteristics of non-thermal plasma generator parameters(structural parameters and operating parameters) were analyzed,as well as changes in relations between the dielectric barrier discharge on the impact of the law.And the use of a variety of surface analytical testing methods,the characterization and composition of particulate matter test were carried out to study the impact of non-tthermal plasma on the particle morphology,as well as sulfur fuel elements.The catalyst were made using alkali metal elements and metal oxides as the main active ingredient.The mechanism and the laws of on-thermal plasma assisted catalytic technology simultaneously removing NO_x and PM emissions were studied in the actual environment of diesel engine emissions.In this paper,a systematic research was carried out as follows:
     First,based on the analysis of the dielectric barrier discharge theory, the characteristics of non-thermal plasma generator parameters(structural parameters and operating parameters) were analyzed using different methods,as well as changes in relations between the dielectric barrier discharge on the impact of the law.And on this basis,the dielectric barrier discharge non-thermal plasma reactor was designed.
     Second,According to the theories of chemical reaction kinetics,the physical and chemical elementary reaction of diesel engine of harmful gases in the atmosphere of non-thermal plasma were analyzed during the design process,In order to further study the common non-thermal plasma with the catalyst to remove harmful diesel exhaust catalytic mechanism. The viable technological route of removing diesel engine emissions was established.
     Third,AC power with high-voltage and high-frequency was used to produce non-thermal plasma.The experimental investigation on processing harmful emissions from diesel engine by dielectric barrier discharge device was carried out.Preliminary experimental results showed that only using dielectric barrier discharge non-thermal plasma technology could be effective removal of diesel engine particulate matter,and the removal efficiency could reach 79%.THC removal efficiency of nearly 20%, However,the total NO_x did not change significantly.
     Fourth,the methods of detecting particulate physico-chemical characteristics from diesel engine emissions was introduced to analyze particle microstructure and chemical composition.Diesel engine was fueled with different types of fuel as a source of particulate matter.The non-thermal plasma technology was used to deal with harmful emissions. And the SEM/EDS analysis were used to analyze the samples of particulate matter corresponding gold spray treatment.The results showed that:a.the way using scanning electron microscopy analyze to analyze and compare of diesel engine particulate matter emissions before and after non-thermal plasma treatment were very effective,with an intuitive、accurate and cost-effective advantage.Scanning electron microscopy observation showed that particulate matter sample size had been decreased after non-thermal plasma,b.EDS semi-quantitative analysis showed that there were Mg、Al、Ca、Cu、Zn and other elements contained in the chemical composition of Particulate matter,in addition to major components of C,O. The samples of 0 # diesel particulate matter had been detected the existence of sulfur.It showed that the sulfur was less affected before and after the NTP and was difficult to happen sulfur poisoning.NTP was a promising after treatment technology for diesel engine.
     Fifth,CeO_2-CuO/γ-Al_2O_3、Na-Rh/γ-Al_2O_3 and Ag/γ-Al_2O_3 catalysts were prepared by incipient wetness impregnation method,using alkali metal elements and metal oxides as the main ingredient.And using XRD、SEM、BET and other testing methods,the structure and morphology characteristics of the Catalyst and catalyst carrier were studied,As well as the catalyst impregnated coating process for its structure and properties.It proved that the formation of the catalyst crystal structure was needed.The coated quantity of Ag onγ-Al_2O_3 carrier was larger and the crystal structure of Ag/γ-Al_2O_3 catalyst was better than other catalysts.As a result,the contact condition between catalyst and Reaction gas was better for Ag/γ-Al_2O_3 case,which would benefit the Catalytic reaction between PM and gases on the surface of catalyst.
     Sixth,the plasma-assisted catalysis process improved the simultaneously catalytic removal of NO_x and PM.The mechanism of plasma-assisted catalysis for simultaneous removal of NO_x and PM was discussed based on a series of experiment results.The plasma process produced high active species that promoted a number of oxidation reactions,such as the oxidation of NO to NO_2 and partially oxidation of SOF(soluable organic fraction) to oxygenated hydrocarbons.
     Seventh,based on the actual diesel engine exhaust gas source for the experimental device、the catalyst composition、temperature、speed、torque and other parameters on the removal of harmful gases were discussed, separately from the chemical kinetics simulation and experimental point of view,and some guiding conclusions were drawn.
引文
[1]贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学.2007,28(6):1169-1177
    [2]杜愎刚,朱会田,许力.车用柴油机排放控制现状与技术进展[J].内燃机工程,2004,25(3):71-74
    [3]赵震,张桂臻,刘坚,等.柴油机尾气净化催化剂的最新研究进展[J].催化学报,2008,29(3):303-311
    [4]董红义,帅石金,李儒龙,等.柴油机排气后处理技术最新进展与发展趋势[J].小型内燃机与摩托车.2007,36(3):87-92
    [5]孙妍,张冠军,赵文彬,等.低温等离子体处理柴油机尾气中氮氧化物的研究进展[J].高压电器,2003,39(6):51-54
    [6]杜伯学,荀占龙,刘弘景.低温等离子体治理柴油机尾气污染的研究进展[J].环境保护科学,2008,34(3):12-15
    [7]裴梅香,林赫,黄震.柴油机排气后处理技术及发展方向[J].小型内燃机与摩托车,2003,32(2):35-38
    [8]M Iwamoto.Proceedings of meeting of catalytic technology for removal nitrogen monoxide[J].Tokyo,Japan,1990:17-22
    [9]W Held,A Koening,T Richter,et al.Catalytic NO_x reduction in net oxidizing exhaust gas[J].SAE paper,1990,900496
    [10]F.Garin.Environmentalcatalysis[J].Catal,Today,2004,89:255-268
    [11]Kobayashi T,Ikeue T,Ito T,et al.Short-term exposure to diesel exhaust induces nasal mucosal hyperresponsiveness to histamine in guinea pigs[J].Fundamental and Applied Toxicology,1997,38(2):166-172
    [12]Jung S M,Grange P.Investigation of the promotional effect of V_2O_5 on the SCR reaction and its mechanism on hybrid catalyst with V_2O_5 and TiO_2-SO_4-catalysts[J].Applied Catalysis B-Environmental,2002,36(3):207-215
    [13]Ramis G,Yi L,Busca G.Ammonia activation over catalysts for the selective catalytic reduction of NO_x and the selective catalytic oxidation of NH_3.An FT-IR study[J].Catalysis Today,1996,28(4):373-380
    [14]Gabrielsson P,LT.Urea-SCR in automotive applications[J].Topics in Catalysis,2004,28(4):177-184
    [15]Castoldi L,Matarrese R,Lietti L,et al.Simultaneous removal of NO_x and soot on Pt-Ba/Al_2O_3 NSR catalysts[J].Applied Catalysis B-Environmental,2006,64(2):25-34
    [16]Koebel M,Elsener M,Madia G.Recent Advances in the Development of Urea-SCR for Automotive Applications[J],SAEPaper,2001-01-3625
    [17]Mallat T,Baiker A.Oxidation of alcohols with molecular oxygen on solid catalysts[J].Chemical Reviews,2004,104(6):3037-3058
    [18]Held W,Konig A,Thomas R.Catalytic NO_x reduction in net oxidizing exhaust gas[J].SAE Transactions,1990,(4):209-216
    [19]Iwamoto M,Yahiro H,Shundo S,et al.Influnce of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5[J].Applied Catalysis,1991,69(2):15-19
    [20]Miyadera T.Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds[J].Applied Catalysis B-Environmental,1993,2(2):199-205
    [21]Yu Y B,He H.Mechanistic study of lean NO_x reduction with propene over Ag/Al_2O_3 by in situ DRIFTS[J].Chinese Journal of Catalysis,2003,24(5):385-390
    [22]He H,Yu Y B,Liu F S,et al.Selective catalytic reduction of NO_x in the presence of excess oxygen-Ⅱ SCR of NO_x with oxo-organic compounds over Ag/Al_2O_3[J].Chinese Journal of Catalysis,2004,25(6):460-466
    [23]Yoshida K,Makino S,sumiya S,et al.Simultaneous reduction of NO_x and particulate emissions from diesel engine exhaust[J].SAE Paper,892046,1989
    [24]Yu Y B,He H,Feng Q C,et al.Mechanism of the selective catalytic reduction of NO_x by C_2H_5OH over Ag/Al_2O_3[J].Applied Catalysis B-Environmental,2004,49(3):159-171
    [25]Konig U,Pollmann H.Synthesis,properties and charactefisation of manganeous Layered Double Hydroxides using in situ X-ray techniques[J].European Powder Diffraction Epdic 8,2004,443(4):307-310
    [26]Matsumoto S,Ikeda Y,Suzuki H.NO_x storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning[J].Applied Catalysis B:Environmental,2000,25(3):115-124
    [27]Hoard J.Plasma-Catalyst for Diesel Exhaust Treatment:Current State of the Art[J].SAE paper 2001-01-0185
    [28]宁智,刘双喜,资新运.柴油机排气微粒特性的试验研究[J].环境科学学报,2003,23(6):765-769
    [29]邹建国,钟秦.柴油机排放颗粒物净化技术研究进展.环境污染治理技术与设备,2005,6(9):7-11
    [30]Stein H J.Diesel oxidation catalysts for commercial vehicle engines:Strategies on their application for controlling particulate emissions[J].Applied Catalysis B-Environmental,1996,10(3):69-82
    [31]Hosoya M,Shimoda M.The application of diesel oxidation catalysts to heavy duty diesel engines in Japan[J].Applied Catalysis B-Enviromental,1997,10(3):83-97
    [32]Galisteo F C,Larese C,Mariscal R,et al.Deactivation on vehicle-aged diesel oxidation catalysts[J].Topics in Catalysis,2004,31(4):451-456
    [33]Zelenka P,Kriegler W,Herzog P L,et al.Ways toward the clean heavy-duty diesel[J].SAE (Society of Automotive Engineers) Transactions,1990,99:1279-1291
    [34]Zelenka P,Ostgathe K,Lox E.Reduction of diesel exhaust emissions by using oxidation catalysts[J].SAE(Society of Automotive Engineers) Transactions,1990,99:703-713
    [35]曾科,龙学明,刘兵,等.采用低温等离子体技术降低柴油机有害排放物的研究[J].内燃机学报,2003,21(1):45-48
    [36]Hoard J.Plasma-Catalysis for Diesel Exhaust Treatment:Current State of the Art[J].SAE paper 2001-01-0185
    [37]Elisaaon B,Kogelschatz U.Non-equilibrium Volume Plasma Chemical Processing[J].IEEE Transaction on Plasma a Science,1991,19(6):1063-1077
    [38]Penetrante B M.Feasibility of Plasma Aftertreatment for Simultaneous Control of NO_x and Particulate[J].SAE paper 1999-01-3637
    [39]Hoard J.Plasma-Catalysis for diesel exhaust treatment:current state of the art[J].SAE paper 2001-01-0185
    [40]Thomas S E,Martin A R,Raybone D,et al.Non-Thermal Plasma Aftertreatment of Particulates Theoretical Limits and Impact on Reactor Design[J].SAE paper 2000-01-1926
    [41]Page D L,MacDonald R J,Edgar B L.The Quad CAT/TM four-way catalytic converter:An integrated aftertreatment system for diesel engines[J].SAE Paper 1999-01-2924
    [42]Chandler G R,Cooper B J,Harris,J.P.et al.An integrated SCR and continuously regenerating trap system to meet future NO_x and PM legislation[J].SAE Paper 2000-01-0188
    [43]Yoshida K.,Makino S,sumiya S,et al.Simultaneous reduction of NO_x and particulate emissions from diesel engine exhaust[J].SAE Paper 892046,1989
    [44]Tsyganok A I,Inaba M,Tsunoda T,et al.Combined partial oxidation and dry reforming of methane to synthesis gas over noble metals supported on Mg-A1 mixed oxide[J].Applied Catalysis a-General,2004,275(2):149-155
    [45]Hoard J.Plasma Catalysis for diesel exhaust treatment:cur-rent state of art[C].SAE Paper 2001-01-0185
    [46]Rajanikanth B S,Srinivasan A D,Ravi V.Dis-charge plasma treatment for NO_x reduction from diesel engineexhaust:a laboratory investigation[J].IEEE Trans,2005,12(1):72-80
    [47]刘圣华,肖福明,周龙保,等.低温等离子技术在柴油机颗粒排放控制中的应用[J].内燃机学报,2001,19(4):301-304
    [48]Thomas E,Martin A R,Raybobe D.Non thermal Plasma after-treatment of particulates theoretical limits and impact on reactor design[J].SAE Paper 2000-01-1926
    [49]Matsui Y,Sato S,Takashima K.Simultaneous re-moval of NO_x and particles from diesel engine exhaust using plasma and oxidative catalyst[J].SAE Paper 2003-01-1185
    [50]Yamamoto T,Okubo M,Kuroki T,et al.Non-ther-mal plasma regeneration of diesel particulate filter[J].SAE Paper 2003-01-1182
    [51]Okubo M,Kuroki T,Yamamoto T,et al.Low tem-perature soot incineration of diesel particulate filter using re-mote nonthermal plasma induced by a pulsed barrier discharge[J].IEEE Trans,2004,40(6):1504-1512
    [52]张春润,王斌,资新运.介质阻挡放电净化汽车尾气氮氧化物和HC的应用研究[J].高技术通讯,2004,14(3):92-96
    [53]王梅,刘素兰,赖春艳,等.应用工业废渣试制型煤用固硫剂的研究[J].中国稀土学报,2002,20:589-59
    [54]李俊华,柯锐,郝吉明,等.一种还原氮氧化物的方法及系统[J].化工环保,2006,26(2):164
    [55]柯锐,李俊华,郝吉明.低温等离子体协同Ag/Al_2O_3选择性催化丙烯还原氮氧化物反应的原位红外光谱究[J].催化学报,2005,26(11):951-955
    [56]蔡忆昔,王军,赵卫东,等.低温等离子体技术在降低柴油机排放中的应用[J].中国机械工程,2005,16(24):2238-2241
    [57]Yao S,Okumoto M,Yashima T.Diesel particulate matter and NO_x removals using a pulsed corona surface dis-eharge[J].AIChEJour,2004,50(3):715-721
    [58]Chae J O.Non thermal plasma for diesel exhaust treatment[J].Jour Electrostatics,2003,57(4):251-262
    [59]Mok Y S,Huh Y J.Simultaneous removal of nitrogen oxides and particulate matters from diesel engine exhaust using dielec-tric barrier discharge and catalysis hybrid system[J].Plasma Chem,2005,25(6):625-639
    [60]裴梅香,林赫,上官文峰,等.等离子体辅助同时催化去除柴油机NO和微粒物的试验研究[J].工程热物理学报,2005,26(5):879-882
    [61]Cooper B J,Thoss J E.Role of NO in Diesel Particulate Emission Control[C].SAE Paper 890404,1989
    [62]晏乃强,吴祖成,施耀.电晕-催化技术治理甲苯废气的试验研究[J].环境科学,1999,20(1):11-14
    [63]Tonkyn R G,Barlow S E,Hoard J W.Reduction of NO_x in synthetic diesel exhaust via two-step plasma-cataly-sis Treatment[J].Appl.Catal B,2003,(40):207-217
    [64]Chae J O.Non thermal plasma for diesel exhaust treatment[J].J our.Electrostatics,2003,57(4):251-262
    [65]KOPHИПOB,Γ1C1柴油机废气净化的物理化学方法[J].李纯菊译,国外内燃机,2000,32(1):60-621
    [66]Setiabudi A,Makkee M,Moulijn J A.An optimal NO_x assisted abatement of diesel soot in an advanced catalytic filter design[J].Applied Catalysis B:Environmental,2003,42(1):35-45
    [67]Setiabudi A,Setten B A,Makkee M,et al.The influence of NO_x on soot oxidation rate:molten salt versus platinum[J].Applied Catalysis B:Environmental,2002,35(3):159-166
    [68]Carrascull A,Lick I D,Ponzi E N,et al.Catalytic combustion of soot with a O_2/NO mixture.KNO_3/ZrO_2 catalysts[J].Catalysis Communications,2003,4(3):124-128
    [69]Long X L,Xin Z L,Wang H X,et al.Simultaneous removal of NO and SO_2 with hexamminecobalt(Ⅱ) solution coupled with the hexamminecobalt(Ⅱ) regeneration catalyzed by activated carbon[J].Applied Catalysis B:Environmental,2004,54(1):25-32
    [70]Teraoka Y,Kanada K,Kagawa S.Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NO_x and diesel soot particulates[J].Applied Catalysis B:Environmental,2001,34(1):73-78
    [71]Teraoka Y,Nakano K,Kagawa S,et al.Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides[J].Applied Catalysis B:Environmental,1995,5(3):181-185
    [72]Teraoka Y,Nakano K,Shangguan W F,et al.Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides[J].Catalysis Today,1996,27(1-2):107-113
    [73]Shangguan W F,Teraoka Y,Kagawa S.Promotion effect of potassium on the catalytic property of CuFe_2O_4 for the simultaneous removal of NO_x and diesel soot particulate[J].Applied Catalysis B:Environmental,1998,16(2):149-154
    [74]Liu S,Obuchi A,Kushiyama S.Synergistic catalysis of cabron black oxidation by Pt with MoO_3 or V_2O_5[J].Applied Catal,2001,30:259-265
    [75]Junko O U,Akira O,Ryuji E.Oxidation of cabron black over various P_t/MO_x/SiC catalysts[J].Appl Catal,2001,32:257-268
    [76]Matsuoka K,Orikasa H,Itoh Y,et al.Reaction of NO with soot over P_t-loaded catalyst in the presence of oxygen[J].Applied Catalysis B,Environmental,2000,26(2):89-99
    [77]Setiabudi A,Makkee M,Moulijn J A.An optimal NO_x assisted abatement of diesel soot in an advanced catalytic filter design[J].Applied Catalysis B:Environmental,2003,42(1):35-45
    [78]Setiabudi A,Sctten B A,Makkee M,et al.The influence of NO_x on soot oxidation rate:molten salt versus platinum[J].Applied Catalysis B:Environmental,2002,35(3):159-166
    [79]Voorhoeve RJ,Remeika J P,Freeland P E,et al.Rare earth oxides of manganese and cobalt rival Platinum for the treatment of cabronmonoxide in auto exhuast[J].Science,1972,177:353-354
    [80]Voorhoeve R J,Remeika J P,Johnson D W.Rare earth manganites catalysts with low ammonia yield in the reduction of nitrogen oxides[J].Science,1973,180:62-64
    [81]冯长根,张江山,王亚军.钙钛矿型复合氧化物用于汽车尾气催化净化的研究进展(1)[J].安全与环境学报,2004,4(3):81-84
    [82]翁端,丁红梅,吴晓东,等.LaMnO_3稀士纳米材料及催化性能.物理化学学报[J].2001,17(3):248-251
    [83]Aliafnti,Kirchnerova J,delmon B,et al.Methane and propane Combustion over Lanthanum transition-metal Perovskites:role of oxygen mobility[J].Applied CatalysisA:General,2004,262(2):167-176
    [84]Liu G H,Huang Z,Shangguan W F,et al.Simultaneously catalytic removal of NO_x and partieu-late matter on diesel particulate filter[J].Chinese Science Bulletin,2003,48(3):305-308.
    [85]刘光辉,黄震,上官文峰,等.同时催化去除柴油机微粒和NO_x的试验研究(1)[J].内燃机学报,2003,21(1):40-44
    [86]刘光辉,黄震,上官文峰,等.同时催化去除柴油机微粒和NO_x的试验研究(2)[J].内燃机学报,2003,21(2):111-114
    [87]Zhang Z L,Mou Z G,Yu P F.Diesel soot combustion on potassium promoted hydrotaleite-based mixed oxide catalysts[J].Catalysis communications,2007,8(11):1621-1624
    [88]Kapteijn F,Stegenga S,Dekker N J,et al.Alternatives to noble metal catalysts for automotive exhaust purification[J].Catal.Today,1993,16:273-287
    [89]Roberge D,Anuj R,Kaliaguine S,et al.Selective catalytic reduction of NO under ambient conditions using ammonia as reducing agent and MFI zeolites as catalysts[J].Appl Catal B:Environmental,1996,10(4):237-243
    [90]Richter M,Eckelt R,Parlitz B,et al.Low-temperature conversion of NO_x to N_2 by zeolite-fixed ammonium ions[J].Appl Catal B:Environ-mental,1998,15:129-146
    [91]Iwamoto M,Yahiro H,Shundo S,et al.Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 zeolite[J].Appl Catal,1991,69(1):15-19
    [92]Grothaus M G,Robert F E.Harmful Compounds Yield to Nonthermal Plasma Reactor[J].Spring 1996,12(2):23-24
    [93]Manabu H,Kan-Ichi F.Treatment of exhaust gas from vehicles by discharge plasma reactors [J].Electrical Engineering in Japan,1997,120(2):1-7
    [94]陈海燕,徐建,张晔,等.等离子体技术烟气脱硫中尾气氨含量的分析方法研究[J].现代科学仪器,2006,(4):75-76
    [95]杨新桦,李晓红,卢义玉,等.高雅脉冲电晕处理发动机尾气中的NO的实验研究[J].环境污染治理技术与设备,2002,3(3):56-59
    [96]唐敏康,谢金亮.脉冲电晕放电等离子体净化柴油机尾气的应用研究[J].上海汽车,2007,(2):24-27
    [97]赵文华,吴苹,张旭东,等.应用冷等离子体净化尾气中的NO的研究[J].环境污染治理技术与设备,2002,3(5):70-74
    [98]冯志宏,吕保和.低温等离子体净化汽车尾气中NO的研究[J].车用发动机,2005,159(5):57-60
    [99]柳晶晶,袁志兵,袁兴成.低温等离子体去除空气中NO_2技术的研究[J].高电压技术,2005,31(2):67-69
    [100]李晓菁,陈杰瑢.低温等离子体技术在净化环境中的应用[J].环境研究与监测,2004,17(1):9-11
    [101]石兴民,袁网,董晓锋.介质阻挡放电和介质阻挡电晕放电灭菌效果的试验研究[J].高压电器,2006,42(2):120-124
    [102]裴梅香,黄震,上官文峰,林赫.低温等离子体技术及其在柴油机排气处理中的应用[J].环境污染治理技术与设备,2004,5(5):56-60
    [103]彭小圣,林赫,上官文峰.一种用于同时去除NO_x和碳烟的新型高效催化剂[J].上海交通大学学报,2007,41(5):669-672
    [104]吴芳,倪明江,李晓东.滑动弧放电等离子体催化协同技术处理正己烷[J].能源与环境,2008(3):35-39
    [105]孟淮玉,芮延年,杏焱.低温等离子体技术在汽车尾气净化中的应用[J].环境保护科学,2008,34(2):1-3
    [106]聂勇,汪晶毅,钟侃.等离子体辅助催化还原NO_x系统的优化[J].高电压技术,2008,34(2):359-362
    [107]Healing D,Smith M,Baskaran S.Application of Non-thermal Plasma Assisted Catalyst Technology for Diesel Emission Reduction Device[J].SAE Paper 2000-01-3088
    [108]Young S M,Ravi V,Ho-chul K,et al.Abatement of nitrogen oxides in a catalytic reactor enhanced by nonthermal plasma discharge[J].IEEE Trans on Plasma Science,2003,31(1):157-165
    [109]Mok Y S.Direct and indirect applications of dielectric barrier discharge plasma to catalytic reduction of nitrogen oxides from exhaust gas[J].Plasma Science and Technology,2006,8(2):207-212
    [110]Yoshida K,Mihalcioiu A,Okubo M,et al.NO_x aftertreat-ment system for diesel engine emission using thermal desorp-tion and plasma reduction combined process[C]//Industry Ap-plications Conference 2007.New Orleans,USA:IEEE,2007:1871-1876
    [111]李新,资新运,邵玉平.汽车尾气排放低温等离子体净化技术[J].内燃机,2005(1):35-37
    [112]叶丽华,施爱平,吴春笃.低温等离子体净化汽车尾气的实验研究[J].拖拉机与农用运输车,2005(1):19-23
    [113]裴梅香,黄震,上官文峰,等.低温等离子体技术及其在柴油机排气处理中的应用[J].环境污染治理技术与设备,2004,5(5):56-60
    [114]Teraoka Y,Kagawa S.Simultaneous catalytic removal of NO_x and diesel soot particulates [J].Catal Surv JPN,1998,2:155-16
    [115]国家自然科学基金委员会.等离子体物理学[M].北京:科学出版社,1994,114
    [116]赵文华,张旭东.反应器特征参数对介质阻挡放电去除NO的影响[J].清华大学学报(自然科学版),2003,43(11):1515-1518
    [117]Theocaris P S.Dynamic three point bending of short beams studied by caustics[J].International Journal of Solids Structures,1981,17:707715
    [118]杨孝龙,王振杰,黄运添.低温等离子体的产生及应用[J].渭南师专学报(自然科学版),1996(2):11-16
    [119]晏丽红,谢中华.等离子体技术及其在催化领域中的应用[J].天津化工,2005,19(3):3-5
    [120]刘道清,季学李.低温等离子体技术及在空气污染控制中的应用[J].四川环境,2004,23(3):1-4
    [121]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996
    [122]任兆杏,丁振锋.低温等离子体技术[J].自然杂志,1996,18(4):201-207
    [123]孙亚兵,任兆杏.非平衡态等离子体技术在环境保护领域的应用[J].环境科学研究,1998,11(4):24-26
    [124]余刚,姜效勤,翟晓东,等.低温等离子体—催化协同脱硝技术中若干问题探讨[J].能 源研究与利用,2004(1):3-6
    [125]翟晓东,顾璠,沈湘林.等离子体催化脱氮的实验研究[J].环境污染治理技术与设备,2004,5(2):27-30
    [126]张锐,刘鹏,詹如娟.大气压辉光放电研究现状及应用前景[J].物理,2004,33(6):430-434
    [127]陈猛,杨津基.用辉光放电等离子体制备湿敏膜的研究[J].电工技术学报,1996,11(2):54-57
    [128]郭小明,周庭东,白秀庭.辉光放电等离子体理论模型的建立[J].中国科学(A辑),1996,26(3):255-259
    [129]童永湘,魏海荣,闵志军,等.脉冲电晕放电等离子体烟气脱硫技术研究[J].工业安全与防尘,1998(7):1-3
    [130]王燕,赵艳辉,白希尧,等.DBD等离子体及其应用技术的发展[J].自然杂志,2002,24(5):277-282
    [131]赵艳辉,周建刚,吴晓东,等.不同结构介质阻挡放电的放电特性[J].大连海事大学学报,2004,30(3):59-61
    [132]李海江,王守国,赵玲利,等.常压射频低温等离子体清洗光刻胶研究[J].半导体技术,2004,29(12):26-29
    [133]郑德修,金伟强,黄运添,等.微波放电等离子体性能研究[J].西安交通大学学报,1996,30(1):7-12
    [134]于开录,刘昌俊,夏清,等.低温等离子体技术在催化剂领域的应用[J].化学进展,2002,14(6):456-461
    [135]Wicke B G,Wong C,Grady KA.Comb.& Flam.66 37(1986):37-46
    [136]Mitchell R E,Kee R J,Glarborg P,et al.Twenty-Third Symposium(International) on Combustion[C].The Combustion Institute,1990,1169-1176
    [137]Wright F J.The oxidation of soot by O atoms,15th International Symposium on Combustion[C].The Combustion Institute,1979,1449
    [138]Laurendeau N M.Heterogeneous Kinetics of Coal Char Gasification and Combustion Energy Combust[J].Sci,4221,1978:221-270
    [139]Backreedy R,Jones J M,Pourkashanian M.Modelling pulverised coal combustion using a detailed coal combustion model[J].Chem.Soc.ll9 385,2001
    [140]Bews I M,Hayhurst A N,Richardson S M.The order,Arrhenius parameters,and mechanism of the reaction between gaseous oxygen and solid carbon[J].Comb.& Flam.124 231,2001
    [141]Wicke B G,Grady K A.Oxidation of soot by oxygen atoms at temperatures between 523 K and 873 K[J].Comb.& Flam.69 185,1987
    [142]张春润,王斌,资新运.柴油机排气低温等离子体净化技术[J].小型内燃机与摩托车,2003,32(6):29-31
    [143]Russell M F.Diesel Engine Noise,Control at Source Detroit[J].SAE paper,1982,820238
    [144]Herling D,Smith M,Kupe J.Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction[J].SAE paper 2000-01-3088
    [145]Herling D,Smith M,David Goulette.Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device[J].SAE paper 2000-01-2899
    [146]Galen B,Fisher,Craig L,et al.Mechanistic Studies of the Catalytic Chemistry of NO_x in Laboratory Plasma-Catalyst Reactors[J].SAE paper 2000-01-2965
    [147]蔡忆昔,王攀,李小华,等.非平衡等离子辅助催化技术对降低柴油机有害排放的影响[J],江苏大学学报,2006,27(6):501-504
    [148]吴江霞,蔡忆昔,赵卫东.低温等离子体处理柴油机No_x和PM试验研究[J].环境工程学报,2008,2(8):1078-1082
    [149]黄为,高世伦,俞文苗.低温等离子体在柴油机尾气排放控制中的研究[J].内燃机,2007(1):39-43
    [150]陈韦丽,叶代启,付名利.催化技术去除柴油机排放碳颗粒的研究进展[J].环境保护科学,2007(1):1-3
    [151]陈杰瑢.低温等离子体化学及其应用[M].科学出版社,2001
    [152]Eliasson B,Gellert B.Investigation of resonance and excimer rediation from a dielectric barrier discharge in mixture of mercury and the rare gas[J].Appl phys,1990,68(5):2026-2037
    [153]Montie T C,Kelly W K,Roth J R.An overview of research using the one atmosphere uniform glow discharge plasma(OAU GDP) for sterilization of surfaces and materials[J].IEEE Transion Plasma Science,2000,28(1):41-55
    [154]John H.Plasma-Catalysis for Diesel Exhaust Treatment:Current State of the Art[J].SAE paper 2001-01-0185
    [155]杨波,王燕,白希尧.测量介质阻挡放电功率的一种新方法[J].大连海事大学学报,2002,28(1):92-96
    [156]刘钟阳,吴彦,王宁会.DBD等离子体发生器放电功率测量的研究[J].仪器仪表学报,2001,22(3):78-80
    [157]Subrahmanyam C H,Renken A,Minsker L K.Novel Catalytic Dielectric Barrier Discharge Reactor for Gas-Phase Abatement of Isopropanol[C].Plasma Chem Plasma Process(2007)27:13-22
    [158]孙岩洲,邱毓昌,李发富.利用Lissajous图形计算介质阻挡放电参数[J].河南理工大学学报(自然科学版),2005,24(2):113-115
    [159]庄洪春,孙鹞鸿,彭燕昌.介质阻挡放电产生等离子体技术研究[J].高电压技术,2002,28(12):57-58.
    [160]张芝涛,白敏冬,赵艳辉.高浓度臭氧发生器放电特性实验研究[J].高电压技术,2003,29(5):33-35
    [161]方志,邱毓昌,王辉.介质阻挡放电的电荷传输特性研究[J].高压电器,2004,40(6):401-403
    [162]葛自良.放电等离子体臭氧发生技术的研究[J].高电压技术,1997,23(4):65-70
    [163]Ziliang G E.Research of Dielectric Barrier Discharge to Generate Ozone[J].High Voltage Engineering,1997,23(4):65-70
    [164]Cai Y X,Wang J,Liu Z N,et al.Load Characteristics of a Dielectric Barrier Discharge Plasma Generator[J].High Voltage Engineering,2006,32(10):62-64
    [165]赵纯,何正浩,李劲.气体放电臭氧发生器的研究进展[J].高电压技术,2002,28(11):44-46
    [166]王辉,方志,邱毓昌,等.介质阻挡放电等效电容变化规律的研究[J].绝缘材料,2005,38(1):37-40.
    [167]罗毅,方志,邱毓昌.材料性质对介质阻挡放电的影响[J].绝缘材料,2003,36(4):45-47
    [168]Gibalov V,Pietsch G J.The development of dielectric barrier discharge in gas gaps and on surfaces[J].J Phys D:Appl Phys,2000,33(20):2618-2636
    [169]Gherardi N,Massines.Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen[J].IEEE Trans on Plasma Science,2001,29(3):536-544
    [170]黄玉水,胡凌燕.一种实用的测量臭氧发生器负载的方法[J].南昌水专学报,2003,22(4):24-25
    [171]蔡忆昔,刘志楠,赵卫东,等.介质阻挡放电特性及其影响因素[J].江苏大学学报(自然科学版),2005,26(6):476-479
    [172]Yu G.Astudy on the NO removal mechanismthrough the plasma reaction of NO/N_2 system[J].Journal of Engineering Thermophsics,2003,24(2):354-35
    [173]王静,蔡忆昔,王军,等.介质阻挡放电等效电容的测量与分析[J].高电压技术,2008,34(2):264-266
    [174]马涛,王睿.NO_x的催化分解研究[J].化学进展,2008,6:798-809
    [175]明彩兵,叶代启,刘艳丽.钙钛矿LaMnO_3负载贵金属在催化氧化碳烟中的作用[J].环境科学,2008(3):576-582
    [176]Li X,Zhang H B,Li S J,et al.IR transmission spectra of nanocrystallne power mateials of composite oxides La1-xSrxFe1-y CoyO_3 with the perovskite structure[J].Materials Chemistry and Physics,1995,41:41-45
    [177]Cimino S,Colonna S,De R S,et al.Methane Combustion and CO Oxidation on Zirconia-Supported La,Mn Oxides and LaMnO_3 Perovskite[J].Journal of Catalysis,2002,205:309-317
    [178]Ming C B,Wu P X.Structural characteristics of zeolite/TiO_2 composite and photocatalysis of toluene degradation[J].Chinese Journal of Geochemistry,2005,24(4):370-376
    [179]王锋,贾鑫龙,胡津仙.形貌、晶粒大小不同的ZSM-5分子筛的表征及催化性能的研究[J].分子催化,2003,17(2):140-145
    [180]金俏,程志林,李宏洋,等.低碳烃在ZSM-5催化剂上芳构化技术的研究进展[J].石油化工高等学校学报,1999,12(1):5-10
    [181]Shiralkar V P,Joshi P N,Eapen M J,et al.Synthesis of ZSM-5 with variable crystallite size and its influence onphysicochemical properties[J].Zeolites,1991,11(5):511-516
    [182]Hermann C,Hass J,Etting F F.Effect of the crystal sizeon the activity of ZSM-5 catalystsin various reaction[J].Appl.catal A:General,1987,35:299-310
    [183]王岳,李凤艳,赵天波,等.纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能[J].石油化工高等学校学报,2005,18(4):20-23
    [184]Van der P A J,Verduyn A J,Van der H J H,et al.Why are some titanium silicalite-1 samples active and others not?[J].Appl.catal.A,1992,92(2):113-130
    [185]张玲玲,李凤艳,赵天波.纳米与非纳米ZSM-5分子筛的表征及催化性能[J].石油化工高等学校学报,2007(1):30-34
    [186]赵明,余全伟,蔡黎.焙烧温度对Ce(0.65)Zr(0.35)O_2储氧材料性能的影响[J].功能材料,2008(5):793-796
    [187]彭小圣,林赫,上官文峰.K和Cu部分取代对LaMnO_3钙钛矿型催化剂同时去除NO_x 和碳烟的影响[J].催化学报,2006(9):767-771
    [188]Bessell S,Seddon D.The conversion of ethaneand propeneto higer hydrocarbonsover ZSM-5[J].J.catal.,1987,105:270-275
    [189]Teraoka Y.Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NO_x and diesel soot particulates[J].Appl.Catal.B,34(2001) 73-78
    [190]吴宝山,田磊,白亮.沉淀铁催化剂在F-T合成中的研究与应用进展[J].化学进展,2004(2):256-264
    [191]陈英,何俊,马玉刚.Pd/TiO_2/γ-Al_2O_3的NO_x储存性能和抗硫性能[J].分子催化,2007(5):427-432
    [192]陈英,王乐夫,陈小平.新型吸附-催化剂La-Cu-Na-γ-Al_2O_3同时脱除SO_2和NO的实验研究[J].高校化学工程学报,2001,21(1):64-68
    [193]Roskill Information Services Ltd.The Economics of Rare Earth and Yttrium(12th Edition)[M].London,2004
    [194]王虹,赵震,徐春明,等.纳米La-Mn-O钙钛矿型氧化物催化剂上柴油机尾气碳颗粒催化燃烧性能的研究[J].科学通报,2005,50(4):336-339
    [195]王宴秋,胡瑞生,武鹏,等.镁掺杂对LaCrO_3催化剂的结构和性能的影响[J].中国稀土学报,2005,23:62-64
    [196]Mul G,Kapteijn F,Moulijn J A.Catalytic oxidation of model soot by metal chlorides[J].Applied Catalysis B:Environmental,1997,12:33-47
    [197]Harrison P G,Ball I K,Daniell W,et al.Cobalt catalysts for the oxidation of diesel soot particulate[J].Chemical Engineering Journal,2003,95:47-55
    [198]Zhou KB,ChenHD,TianO,et al.Pd-containing perovskite-type oxides used for three-way catalysts[J].Journal of Molecular Catalysis A:Chemical,2002,189:225-232
    [199]赵九生,等.《催化剂生产原理》[M].科学出版社,1986
    [200]王建昕,傅立新,黎维彬.《汽车排气污染治理及催化转化器》[M].化学工业出版社,1999
    [201]陈光文,李淑莲,袁权,等.钾助剂对Rh/Al_2O_3催化富氢条件下CO选择氧化反应性能的影响[J].催化学报,2005,26(9):809-814
    [202]王芳,吕功煊.Na-Rh/γ-Al_2O_3催化剂的表征及其对CO选择氧化的催化性能[J].催化学报,2007(1):27-33
    [203]朱玲,王学中,郝郑平.Ce/Zr系列催化剂上碳颗粒物燃烧行为[J].环境科学,2005,26(5):7-11
    [204]Neeft,John P,Makkee,et al.Diesel particulate emission control[J].Fuel Processing Technology,1996,47(1):1-69
    [205]张春润,王斌,资新运,等.柴油机排气低温等离子体净化技术[J].小型内燃机与摩托车,2003,32(6):29-31
    [206]Healing D,Smith M,Hemingway M,et al.Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device[J].SAE Paper 2000-01-2899
    [207]Hess M A,Haas M J,Foglia T A,et al.Effect of antioxidant addition on NO_x emissions from biodiesel[J].Energy & Fuels 2005,19:1749-1754
    [208]Szybist J P,Kirby S R,Boehman A L.NO_x emissions of alternative diesel fuels:a comparative analysis of biodiesel and FT diesel[J].Energy Fuel 2005,19:1484-1492
    [209]Zaid M A.Performance of single cylinder,direct injection Diesel engine using water fuel emulsions[J].Energy Conversion & Management,2004,45:697-705
    [210]蔡忆昔,王军,赵卫东,等.低温等离子体技术在降低柴油机排放中的应用[J].中国机械工程,2005,16(24):2238-2241.
    [211]Xiao F M.Plasma Treatment of Diesel Particulate for a Minibus[J].SAE Paper 2000-01-3459
    [212]Kwanchareon P,Apanee L,Samai J I.Solubility of a diesel-biodiesel-ethanol blend,its fuel properties,and its emission characteristics from diesel[J].Fuel,86(2007):1053-1061
    [213]Ghojel J,Honnery D,Khaleefi K A.Performance,emissions and heat release characteristics of direct injection diesel engine operating on diesel oil emulsion[J].Applied Thermal Engineering 2006,26:2132-2141
    [214]Shi X,Yu Y,He H.Emissions characteristics using methyl soyate-ethanol-diesel fuel blends on a diesel engine[J].Fuel,84(2005):1543-1549
    [215]胡毅,蒋德明,黄佐华,等.供油提前角对柴油/甲醇混合燃料燃烧排放性能的影响[J].内燃机工程,2005,26(4):1-4
    [216]Mittelbach M,Remschmidt C.Biodiesel—the comprehensive handbook[M].Vienna:Boersedruck Ges.M.B.H.,2004 1-14
    [217]Makareviciene V,Janulis P.Environmental effect of rape seed oil ethyl ester[J].Renewable Energy,2003,28:2395-2403
    [218]Sendzikiene E,Makareviciene V,Janulis P.Influence of fuel oxygen content on diesel engine exhaust emissions[J].Renewable energy 2006,31:2505-2512
    [219]Bilgin A,Durgun O,Sahin Z.The effects of diesel-ethonol blends on diesel engine performance[J].Energy sources,2006,24(5):431-440
    [220]Lin C Y,Wang K H.The fuel properties of three-phase emulsions as an alternative fuel for diesel engines[J].Fuel 2003,82:1367-1375
    [221]Fernando S,Hanna M.Development of a Novel Biofuel Blend using Erhanol-Biodiesel-Diesel Microemulsions:EB-Diesel[J].Energy & Fuels,2004,18:1695-1703
    [222]Hoard J,Laing P,Balmer M L,et al.Comparison of Plasma-Catalyst and Lean NO_x Catalyst for Diesel NO_x Reduction[J].SAE Paper,2000-01-2895
    [223]梅德清,孙平,袁银南,等.柴油机燃用生物柴油的排放特性研究[J].内燃机学报,2006,24(4):331-335
    [224]袁银南,张恬,梅德清,等.柴油机燃用生物柴油燃烧与排放[J].江苏大学学报(自然科学版),2006,27(3):216-219
    [225]Willems F.Experimental Study into Plasma-Assisted PM Removal for Diesel Engines[J].SAE Paper 2003-01-1878
    [226]Matsui Y,Hashimoto M,Sakaguchi A,et al.Oxidation of Carbon Soot Layer using Pulsed Discharge Plasma[J].SAE Paper 2001-01-3511
    [227]Stange S,Kim Y,Ferreri V,et al.Flame images indicating combustion enhancement by dielectric barrier discharges[J].Transactions on Plasma Science,2005,33(2):316-317
    [228]Kim D,Choi Y,Kim K.Effects of process variables on NO_x conversion by pulsed corona discharge process[J].Plasma Chemistry and Plasma Processing,2001,21(4):625-650
    [229]Yoon S,Panov A G,Tonkyn R G,et al.An examination of the role of plasma treatment for lean Noxreduction over sodium zeolite Y and gamma alumina Part 1.Plasma assisted NO_x reduction over NaY and Al_2O_3[J].Catalysis Today,2002,72:243-250
    [230]余刚,余奇,顾璠.介质特性对介质阻挡放电脱除NO影响试验研究[J].热能动力工程,2003,18(5):475-477
    [231]苏岭,周龙保,蒋德明.柴油机排气后处理技术的现代进展[J].内燃机,2003,(1):1-8
    [232]宋崇林,段家修,刘文胜,等.柴油机排气微粒中有机可溶成分的分离与定性分析[J].内燃机学报,1997,15(2):225-230
    [233]何怡,吕环春.低温等离子体净化柴油机NO_x的应用研究[J].天津化工,2004,18(2):48-50
    [234]Lou B M,Russ T,Gary M,et al.Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment[J].SAE Paper 2000-01-1601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700