用户名: 密码: 验证码:
基于{MnV_(13)}和手性Dawson型多金属氧酸盐功能性晶态固体材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属氧酸盐是一类具有优异物理和化学性质的无机材料,具有多样的结构和优异的分子特性,如高的负电性、氧化还原活性、可调的酸碱性和纳米尺寸结构等,使其在磁性、催化、药物等领域等具有广泛的应用前景。以具有特定功能的多金属氧酸盐作为建筑单元设计合成新型具有功能特性的多酸晶态固体材料成为多酸化学研究的主要方向之一。本文从分子设计的思想出发,采用{MnV13}体系、手性Dawson型和经典Anderson型多金属氧酸盐簇为基本建筑块,利用分子自组装、自识别以及表面修饰、剪裁等方法,在常规水溶液中合成了21种新型的基于多金属氧酸盐的晶态固体材料化合物,探讨了合成反应规律与结构和功能之间的关系。通过元素分析、红外光谱、紫外-可见光谱和单晶X-射线衍射等方法对晶体结构进行表征和分析。对化合物的热稳定性、圆二色谱性质、吸附性能、催化性质、磁学性质和电化学性质进行了初步探索。
     1.利用[MnV13O38]7-多阴离子通过稀土离子Ln3+(La3+和Ce3+)连接形成3个新颖的三维纯无机晶态孔材料,不仅保持着无机孔材料的稳定性,而且具有金属-有机框架材料的功能特性。可以作为非均相催化剂催化氧化噻吩类硫化物,是一种制备简单、容易回收、可重复利用、具有高活性的催化剂。并且对这类晶态孔材料的气体吸附性能进行了研究。H[La(H2O)4]2[MnV13O38]·9NMP·17H2O (1)H[Ce(H2O)4]2[MnV13O38]·9NMP·17H2O (2)H[La(H2O)4]2[MnV13O38]·8NMP·9H2O (3)
     2.采用常规水溶液合成方法,以稀土离子La3+,Ce3+和Nd3+作为阳离子,烟酸配体作为保护剂和结构导向剂,得到由三个[MnV13O38]7-单体通过六核稀土簇连接形成纳米尺寸的三聚体,并通过烟酸分子的氢键相互作用形成三维超分子结构。三聚体表现出很好的电催化还原亚硝酸盐的性质,磁性研究表明化合物5中存在反铁磁相互作用。这项研究提供了一种制备纳米尺寸的多酸晶态固体材料的模型反应,在电子、光学和磁性等领域都有着潜在的功能特性。H[{KLa2MnV13O38}3(SO4)2]·3(C6H6NO2)·57H2O (4)H[{KCe2MnV13O38}3(SO4)2]·3(C6H6NO2)·47H2O (5)H[{KNd2MnV13O38}3(SO4)2]·3(C6H6NO2)·45H2O (6)
     3.采用常规水溶液方法,以[MnV13O38]7-为前驱体,与稀土离子和DMF、异烟酸有机配体反应,得到了6个基于{MnV13}的有机-无机杂化晶态固体材料。化合物7-8中多酸建筑块被稀土-DMF配合物单元连接形成一维链,化合物9中的一维链进一步被K+连接形成三维结构。化合物10-11的结构相似,是由{Ln2(C6H5NO2)3(H2O)6}连接[MnV13O38]7-多阴离子形成一维扩展结构。有机配体在反应过程中起到保护剂的作用。进一步分析发现稀土离子的镧系收缩效应对化合物的结构有着重要的影响。化合物具有优异的电催化亚硝酸盐的活性,磁性研究表明金属中心存在反铁磁相互作用。H[{La2(DMF)5(H2O)4}{MnV13O38}]·DMF·5H2O (7)H[{Ce2(DMF)2(H2O)7}{MnV13O38}]·0.5DMF·5.5H2O (8)H2[{K(H2O)2}2{Nd(DMF)(H2O)3}{MnV13O38}]·5H2O (9)H[{La2(C6H5NO2)3(H2O)6}{[MnV13O38}]·C6H5NO2·10H2O (10)H[{Ce2(C6H5NO2)3(H2O)6}{MnV13O38}]·C6H5NO2·10H2O (11)H2.5[{Pr(C6H5NO2)(H2O)3.5}{Pr0.5(H2O)2}{MnV13O38}]·0.5C6H5NO2·10H2O (12)
     4.采用常规水溶液方法,以质子化的碱性氨基酸L,D-组氨酸为手性拆分试剂实现了对Dawson型手性多金属氧酸盐[P2Mo18O62]6-的化学拆分,得到了两对组氨酸修饰[P2Mo18O62]6-的对映异构体。通过对结构的比较,进一步研究了不同比例氨基酸对[P2Mo18O62]6-多阴离子手性传递的影响。这一研究不仅解决了多酸化学中近百年来关于[P2Mo18O62]6-多阴离子的拆分问题,并为其在不对称催化、手性分离及生物医药等领域的应用提供了前提和可能性。同时发展了利用手性的碱性氨基酸对外消旋的手性多酸进行拆分新途径。H3(L-HC6H9N3O2)3[P2Mo18O62]·10H2O (13)H3(D-HC6H9N3O2)3[P2Mo18O62]·10H2O (14)H4(L-HC6H9N3O2)2[P2Mo18O62]·21H2O (15)H4(D-HC6H9N3O2)2[P2Mo18O62]·21H2O (16)
     5.化合物17是以Anderson型[Al(OH)6O18]3-多阴离子为建筑块,通过铜-甘氨酸配合物单元和钾离子的连接形成三维开放结构。化合物18-21中[Al(OH)6O18]3-和稀土离子连接形成一维链,通过脯氨酸分子的氢键相互作用形成三维超分子结构。以化合物18为例研究这类多酸晶态固体材料在紫外光下降解罗丹明B的光催化效果。[(Gly)2Cu]K3[Al(OH)6Mo6O18]·9H2O (17)(C5H9NO2)2[La(H2O)7AlMo6H6O24]·11H2O (18)(C5H9NO2)2[Ce(H2O)7AlMo6H6O24]·11H2O (19)(C5H9NO2)2[Pr(H2O)7AlMo6H6O24]·10H2O (20)(C5H9NO2)2[Gd(H2O)7AlMo6H6O24]·10H2O (21)
Polyoxometalate represent a vast class of inorganic materials with excellent physical andchemical properties, such as high negative charge, redox properties, adjustable pH andnano-sized structures, which attracted considerable promise for potential applications inmagnetic, catalysis and medicine. The design and synthesis new functional crystalline solidmaterial based on polyoxometalates using specific POM building blocks have become one ofthe main directions in POM chemistry. In this paper, we have obtained a series crystallinesolid material by using {MnV13} system, chiral Dawson-type and Anderson-typepolyoxometalates based on the point of molecular design, self-assembly, self recognition andsurface modification. The syntheses, structures and properties of these compounds wereinvestigated. With a conventional synthesis procedure, twenty-one POMs have beensynthesized, and characterized by element analysis, IR, UV-Vis and single-crystal X-rayanalysis. And the thermal stabilities, circular dichroism, adsorption, catalytic property,magnetic and electrochemical properties of the compounds have been partially investigated.
     1. Three3D purely inorganic porous crystalline material have been synthesized based on[MnV13O38]7-polyoxometalates and rare earth ion Ln3+(La3+and Ce3+), which possess thefeature of the stability in inorganic porous material and the versatility in MOFs. The POMinorganic porous material was employed as heterogeneous catalyst for the oxidation ofthiophenic sulfur. The result indicated that compound2is an simple preparation, easy recycle,reusable and high activity catalyst. Meanwhile, the adsorption properties of the crystallineporous material was investigated.H[La(H2O)4]2[MnV13O38]·9NMP·17H2O (1)H[Ce(H2O)4]2[MnV13O38]·9NMP·17H2O (2)H[La(H2O)4]2[MnV13O38]·8NMP·9H2O (3)
     2. Three trimeric polyoxovanadate based on [MnV13O38]7-polyoxoanion withlanthanide cations Ln3+(Ln=La, Ce and Nd) and nicotinic acid have been synthesized.Compound4-6representing the first example of polyoxovanadate-based trimericaggregate with rare earth ions. The electrochemical and electrocatalytic properties of thecompounds have been investigated. Magnetic studies indicate that antiferromagneticinteractions exist in the compound5. This study provides a model reaction for preparingnano-sized crystalline solid materials based on POM, which have a potential functionalcharacteristics in electronic, optical and magnetic fields.H[{KLa2MnV13O38}3(SO4)2]·3(C6H6NO2)·57H2O (4) H[{KCe2MnV13O38}3(SO4)2]·3(C6H6NO2)·47H2O (5)H[{KNd2MnV13O38}3(SO4)2]·3(C6H6NO2)·45H2O (6)
     3. A series of {MnV13}-based inorganic-organic hybird compounds have beenconstructed by using [MnV13O38]7-, rare earth ions, DMF and isonicotinic acid underconventional aqueous solution method. The {MnV13} building blocks in compounds7-8are connected by rare earth-DMF complex to form a one-dimensional chain. Incompounds10-11,[MnV13O38]7-polyoxoanions were linked by {Ln2(C6H5NO2)3(H2O)6}to obtained a one-dimensional structure. The organic ligands play the role of theprotective and templating agents in the reaction. Furthermore, lanthanide contractionphenomenon of rare earth ions lead to a significant impact on the structure of thecompounds. The electrochemical and electrocatalytic properties of the compounds havebeen investigated. Magnetic studies indicate that antiferromagnetic interactions exist inthe compounds.H[{La2(DMF)5(H2O)4}{MnV13O38}]·DMF·5H2O (7)H[{Ce2(DMF)2(H2O)7}{MnV13O38}]·0.5DMF·5.5H2O (8)H2[{K(H2O)2}2{Nd(DMF)(H2O)3}{MnV13O38}]·5H2O (9)H[{La2(C6H5NO2)3(H2O)6}{[MnV13O38}]·C6H5NO2·10H2O (10)H[{Ce2(C6H5NO2)3(H2O)6}{MnV13O38}]·C6H5NO2·10H2O (11)H2.5[{Pr(C6H5NO2)(H2O)3.5}{Pr0.5(H2O)2}{MnV13O38}]·0.5C6H5NO2·10H2O (12)
     4. The chiral Dawson-type polyoxoanions [P2Mo18O62]6-racemic have beenseparated in aqueous solution with L,D-histidine, respectively. Two pairs ofenantiomerically compounds have been synthesized. We have also study the effects ofdifferent amino acids proportion for chiral transfers. Provides the premise applications ofthe chiral Dawson-type [P2Mo18O62]6-in the field of asymmetric catalysis, chiralseparation and biomedical.H3(L-HC6H9N3O2)3[P2Mo18O62]·10H2O (13)H3(D-HC6H9N3O2)3[P2Mo18O62]·10H2O (14)H4(L-HC6H9N3O2)2[P2Mo18O62]·21H2O (15)H4(D-HC6H9N3O2)2[P2Mo18O62]·21H2O (16)
     5. A series of high-dimensional hybird POM crystalline solid material have beensynthesized by Anderson-type [Al(OH)6O18]3-as building blocks and aminoacid-transition metal or rare earth coordination complexes as functional unit. Compounds18-21are built up of polyoxoanions [Al(OH)6O18]3-linked by rare-earth cations to form aone-dimensional chain, then adjacent chains are further connected by hydrogen bonds ofproline and free water molecules to3D supramolecular structure. The photocatalystproperty of compound18indicating an excellent photocatalyst of RhB dye underUV-irradiation. [(Gly)2Cu]K3[Al(OH)6Mo6O18]·9H2O (17)(C5H9NO2)2[La(H2O)7AlMo6H6O24]·11H2O (18)(C5H9NO2)2[Ce(H2O)7AlMo6H6O24]·11H2O (19)(C5H9NO2)2[Pr(H2O)7AlMo6H6O24]·10H2O (20)(C5H9NO2)2[Gd(H2O)7AlMo6H6O24]·10H2O (21)
引文
[1] Pope M T, Heteropolv and Isopoly Oxometalates [M]. Springe-Verlagr: Berlin,1983,1-10.
    [2]王恩波,胡长文,许林,多酸化学导论[M].北京:化学工业出版社,1998.
    [3]王恩波,李阳光,鹿颖,王新龙,多酸化学概论[M].长春:东北师范大学出版社,2009.
    [4]陈维林,王恩波,多酸化学[M]..北京:科学出版社,2013.
    [5] Wu P, He C, Wang J, et al. Photoactive Chiral Metal–Organic Frameworks for Light-DrivenAsymmetric α-Alkylation of Aldehydes[J]. J Am Chem Soc,2012,134(36):14991-14999.
    [6] Zheng X, Zhang L, Li J, et al. Magnetic nanoparticle supported polyoxometalates (POMs) vianon-covalent interaction: reusable acid catalysts and catalyst supports for chiral amines[J]. ChemCommun,2011,47(45):12325-12327.
    [7] Khenkin A M, Weiner L, Neumann R. Selective Ortho Hydroxylation of Nitrobenzene with MolecularOxygen Catalyzed by the H5PV2Mo10O40Polyoxometalate[J]. J Am Chem Soc,2005,127(28):9988-9989.
    [8] Hill C L, Prosser-Mccartha C M. Homogeneous catalysis by transition metal oxygen anion clusters[J].Coord Chem Rev,1995,143:407-455.
    [9] Mizuno N, Misono M. Heterogeneous Catalysis[J]. Chem Rev,1998,98(1):199-218.
    [10]Mizuno N, Kamata K. Catalytic oxidation of hydrocarbons with hydrogen peroxide byvanadium-based polyoxometalates[J]. Coord Chem Rev,2011,255(19–20):2358-2370.
    [11]Gao G, Li F, Xu L, et al. CO2Coordination by Inorganic Polyoxoanion in Water[J]. J Am Chem Soc,2008,130(33):10838-10839.
    [12]Geletii Y V, Besson C, Hou Y, et al. Structural, Physicochemical, and Reactivity Properties of anAll-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation[J]. J AmChem Soc,2009,131(47):17360-17370.
    [13]Li C, Jiang Z, Gao J, et al. Ultra-Deep Desulfurization of Diesel: Oxidation with a RecoverableCatalyst Assembled in Emulsion[J]. Chem–Eur J,2004,10(9):2277-2280.
    [14]Wu Q, Li Y-G, Wang Y-H, et al. Polyoxometalate-based {MnIII2}-Schiff base composite materialsexhibiting single-molecule magnet behaviour[J]. Chem Commun,2009,(38):5743-5745.
    [15]Ibrahim M, Lan Y, Bassil B S, et al. Hexadecacobalt(II)-Containing Polyoxometalate-BasedSingle-Molecule Magnet[J]. Angew Chem, Int Ed Engl,2011,50(20):4708-4711.
    [16]Aldamen M A, Clemente-Juan J M, Coronado E, et al. Mononuclear Lanthanide Single-MoleculeMagnets Based on Polyoxometalates[J]. J Am Chem Soc,2008,130(28):8874-8875.
    [17]Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusters Nanoscale Magnets[J].Chem Rev,1998,98(1):239-272.
    [18]Kortz U, Müller A, Van Slageren J, et al. Polyoxometalates: Fascinating structures, unique magneticproperties[J]. Coord Chem Rev,2009,253(19-20):2315-2327.
    [19]Yang Y, Xu L, Li F, et al. Enhanced photovoltaic response by incorporating polyoxometalate into aphthalocyanine-sensitized electrode[J]. J Mater Chem,2010,20(48):10835-10840.
    [20]Li H, Pang S, Wu S, et al. Layer-by-Layer Assembly and UV Photoreduction ofGraphene–Polyoxometalate Composite Films for Electronics[J]. J Am Chem Soc,2011,133(24):9423-9429.
    [21]Zhang T, Liu S, Kurth D G, et al. Organized Nanostructured Complexes of Polyoxometalates andSurfactants that Exhibit Photoluminescence and Electrochromism[J]. Adv Funct Mater,2009,19(4):642-652.
    [22]Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: from selfassembly to designer materials and devices[J]. Chem Rev,2007,36(1):105-121.
    [23]Dolbecq A, Dumas E, Mayer C D R, et al. Hybrid Organic Inorganic Polyoxometalate Compounds:From Structural Diversity to Applications[J]. Chem Rev,2010: null-null.
    [24]Omwoma S, Chen W, Tsunashima R, et al. Recent advances on polyoxometalates intercalated layereddouble hydroxides: From synthetic approaches to functional material applications[J]. Coord Chem Rev,2014,258-259:58-71.
    [25]Leus K, Vandichel M, Liu Y-Y, et al. The coordinatively saturated vanadium MIL-47as a low leachingheterogeneous catalyst in the oxidation of cyclohexene[J]. J Catal,2012,285(1):196-207.
    [26]Flynn C M, Pope M T.1:13Heteropolyvanadates of manganese(IV) and nickel(IV)[J]. J Am ChemSoc,1969,92(1):85-90.
    [27]Flynn C M, Pope M T. Heteropolyvanadomanganates(IV) with Mn:V=1:11and1:4[J]. Inorg Chem,1970,9(9):2009-2014.
    [28]Nagai K, Ichida H, Sasaki Y. The Structure of Heptapotassium Tridecavanadomanganate (IV)Octadecehydrate, K7[MnV13O38]18H2O[J]. Chem Lett,1986:1267-1270.
    [29]Ichida H, Nagai K, Sasaki Y, et al. Heteropolyvanadates containing two and three manganese(IV) ions:unusual structural features of Mn10-5-2V22O64and Mn3V12O40H35[J]. J Am Chem Soc,1988,111(2):586-591.
    [30]刘术侠,刘彦勇,王恩波.13-钒镍(锰)杂多酸稀土盐的合成及其镨盐抗肿瘤活性的研究[J].化学学报,1996,54:637-678.
    [31]陈攀.抗肿瘤活性杂多钒酸盐-高分子缓释微球的制备[D]:[硕士学位论文].长春:东北师范大学化学学院,2009.
    [32]Li D H, Liu S X, Sun C Y, et al. A novel2D layered network based on13-vanadomanganate(IV):K3(HABOB)4[MnV13O38]·9H2O (ABOB=N-amidino-4-morpholincarboxamidine)[J]. Inorg ChemComm,2005,8(5):433-436.
    [33]Liu S X, Li D H, Xie L H, et al. Two-Dimensional Lanthanide Heteropolyvanadates of Manganese(IV)and Nickel(IV) Containing Two Types of Heteropoly Anions with1:13and1:12Stoichiometry[J].Inorg Chem,2006,45(20):8036-8040.
    [34]Lan Q, Tan H, Liu D, et al. A Series of Inorganic Aggregates Composed of [MnV13O38]7polyoxoanions and Transition metal Cations[J]. J Solid State Chem,2013,199:129-133.
    [35]Resenhein A, Traube A. über ungesttigte molybdnsurearsenate und-phosphate (zur kenntnis deriso-undheteropolysuren)[J]. Z Anorg Allg Chem,1915,91:75-106.
    [36]Strandberg R. Multicomponent Polyanions.12. The Crystal Structure of Na6Mo18P2O62(H2O)24, aCompound Containing Sodiumcoordinated18-Molybdodiphoshate Anions[J]. Acta Chem Scand,1975,A29:350-358.
    [37]D'amour H. Vergleich der Heteropolyanionen [PMo36-9O31(H2O)3]-,[P2Mo18O62]and [P2W18O62]6-[J].Acta Crystallogr, Sect B: Struct Sci,1976,32:729-740.
    [38]Garvey J F, Pope M T. Chirality of oxidized and reduced octadecamolybdodiphosphate anions.Observation of a Pfeiffer effect[J]. Inorg Chem,1978,17(5):1115-1118.
    [39]Nomiya K, Miwa M, Sugaya Y. Catalysis by heteropolyacid—VI. Asymmetric polycondensation ofbenzyl alcohol to optically active polybenzyl initiated by brucine-induced chiraldiphosphooctadecamolybdic acid[J]. Polyhedron,1984,3(3):381-383.
    [40]Nomiya K, Kobayashi R, Miwa M, et al. Induced cotton effect of keggin-type andmixed-coordination-type heteropolyanions in nonaqueous media containing l-brucine sulphate[J].Polyhedron,1984,3(9–10):1071-1076.
    [41]刘景华,辛明红,王恩波等.新型超分子化合物C6H20N2O64P2Mo18·8H2O的晶体结构及电催化作用[J].高等学校化学学报,1999,20:1343-1345.
    [42]Yan L K, Lopez X, Carbo J J, et al. On the origin of alternating bond distortions and the emergence ofchirality in polyoxometalate anions[J]. J Am Chem Soc,2008,130(26):8223-8233.
    [43]Narasimhan K, Pillay S, Bin Ahmad N R, et al. Identification of a polyoxometalate inhibitor of theDNA binding activity of Sox2[J]. ACS chemical biology,2011,6(6):573-581.
    [44]Ritchie C, Streb C, Thiel J, et al. Reversible Redox Reactions in an Extended PolyoxometalateFramework Solid[J]. Angew Chem, Int Ed Engl,2008,47(36):6881-6884.
    [45]Li Y G, Dai L M, Wang Y H, et al. A new molybdenum-oxide-based organic-inorganic hybridframework templated by double-Keggin anions[J]. Chem Commun,2007,(25):2593-2595.
    [46]Dong-Ying Du, Jun-Sheng Qin, Shun-Li Li, et al. Recent advances in porous polyoxometalate-basedmetal-organic framework materials[J]. Chem. Soc. Rev,2014, Advance Article, DOI:10.1039/c3cs60404G.
    [47]Song J, Luo Z, Britt D K, et al. A Multiunit Catalyst with Synergistic Stability and Reactivity: APolyoxometalate–Metal Organic Framework for Aerobic Decontamination[J]. J Am Chem Soc,2011,133(42):16839-16846.
    [48]Rodriguez Albelo L M, Ruiz-Salvador A R, Lewis D W, et al. Zeolitic polyoxometalates metal organicframeworks (Z-POMOF) with imidazole ligands and ε-Keggin ions as building blocks; computationalevaluation of hypothetical polymorphs and a synthesis approach[J]. Phys Chem Chem Phys,2010,12(30):8632-8639.
    [49]Dai L-M, You W-S, Li Y-G, et al. A new polyoxometalate-templated Mo/V-oxide-basedorganic-inorganic hybrid framework with a honeycomb-like structure[J]. Chem Comm,2009,(19):2721-2723.
    [50]Marleny Rodriguez-Albelo L, Ruiz-Salvador A R, Sampieri A, et al. Zeolitic Polyoxometalate-BasedMetal Organic Frameworks (Z-POMOFs): Computational Evaluation of Hypothetical Polymorphsand the Successful Targeted Synthesis of the Redox-Active Z-POMOF1[J]. J Am Chem Soc,2009,131(44):16078-16087.
    [51]Nohra B, El Moll H, Rodriguez Albelo L M, et al. Polyoxometalate-based metal organic frameworks(POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolutionreaction[J]. J Am Chem Soc,2011,133(34):13363-13374.
    [52]Zheng S T, Zhang J, Yang G Y. Designed synthesis of POM-organic frameworks from {Ni6PW9}building blocks under hydrothermal conditions[J]. Angew Chem Int Ed,2008,47(21):3909-3913.
    [53]Zou C, Zhang Z, Xu X, et al. A Multifunctional Organic–Inorganic Hybrid Structure Based onMnIII–Porphyrin and Polyoxometalate as a Highly Effective Dye Scavenger and HeterogenousCatalyst[J]. J Am Chem Soc,2011,134(1):87-90.
    [54]Zhao X, Liang D, Liu S, et al. Two Dawson-templated three-dimensional metal-organic frameworksbased on oxalate-bridged binuclear cobalt(II)/Nickel(II) SBUs and Bpy linkers[J]. Inorg Chem,2008,47(16):7133-7138.
    [55]Sun C-Y, Liu S-X, Liang D-D, et al. Highly Stable Crystalline Catalysts Based on a MicroporousMetal Organic Framework and Polyoxometalates[J]. J Am Chem Soc,2009,131(5):1883-1888.
    [56]Liang D-D, Liu S-X, Ma F-J, et al. A Crystalline Catalyst Based on a Porous Metal-OrganicFramework and12-Tungstosilicic Acid: Particle Size Control by Hydrothermal Synthesis for theFormation of Dimethyl Ether[J]. Advanced Synthesis&Catalysis,2011,353(5):733-742.
    [57]Ma F-J, Liu S-X, Sun C-Y, et al. A Sodalite-Type Porous Metal Organic Framework withPolyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate[J]. J AmChem Soc,2011,133(12):4178-4181.
    [58]Wang X-L, Li Y-G, Lu Y, et al. Polyoxometalate-Based Porous Framework with PerovskiteTopology[J]. Cryst Growth Des,2010,10(10):4227-4230.
    [59]Fu H, Qin C, Lu Y, et al. An Ionothermal Synthetic Approach to Porous Polyoxometalate-BasedMetal–Organic Frameworks[J]. Angew Chem,2012,51:7985-7989.
    [60]Streb C, Long D L, Cronin L. Engineering porosity in a chiral heteropolyoxometalate-basedframework: the supramolecular effect of benzenetricarboxylic acid[J]. Chem Commun2007,(5):471-473.
    [61]Micoine K, Hasenknopf B, Thorimbert S, et al. Chiral recognition of hybrid metal oxide by peptides[J].Angew Chem Int Ed Engl,2009,48(19):3466-3468.
    [62]Luo S, Li J, Xu H, et al. Chiral amine-polyoxometalate hybrids as highly efficient and recoverableasymmetric enamine catalysts[J]. Org Lett,2007,9(18):3675-3678.
    [63]Hasenknopf B, Micoine K, Lac te E, et al. Chirality in Polyoxometalate Chemistry[J]. Eur J InorgChem,2008:5001-5013.
    [64]Zhang Y, Zhang L, Hao Z, et al. Controlling the synthesis of novel chiral polyoxometalate-basedcompounds and racemic compounds from the same system[J]. Dalton Trans,2010,39(30):7012-7016.
    [65]Du D-Y, Yan L-K, Su Z-M, et al. Chiral polyoxometalate-based materials: From design syntheses tofunctional applications[J]. Coord Chem Rev,(0).
    [66]Boglio C, Hasenknopf B, Lenoble G, et al. Sensing the Chirality of Dawson LanthanidePolyoxometalates [α71-LnP2W17O61] by Multinuclear NMR Spectroscopy[J]. Chem–Eur J,2008,14(5):1532-1540.
    [67]Kortz U, Savelieff M G, Ghali F Y, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIVfunctionalized by amino acids[J]. Angew Chem Int Ed2002,41(21):4070-4073.
    [68]Fu H, Li Y-G, Wang Y-H, et al. Racemic twin crystals containing left-and right-handedpolyoxometalate chains induced by the asymmetric coordination of metal-organic units[J]. Inorg ChimActa,2009,362(9):3231-3237.
    [69]Fang X K, Anderson T M, Hill C L. Enantiomerically pure polytungstates: chirality transfer throughzirconium coordination centers to nanosized inorganic clusters[J]. Angew Chem Int Ed,2005,44(23):3540-3544.
    [70]An H Y, Wang E B, Xiao D R, et al. Chiral3D architectures with helical channels constructed frompolyoxometalate clusters and copper-amino acid complexes[J]. Angew Chem Int Ed,2006,45(6):904-908.
    [71]Tan H, Li Y, Zhang Z, et al. Chiral polyoxometalate-induced enantiomerically3D architectures: a newroute for synthesis of high-dimensional chiral compounds[J]. J Am Chem Soc,2007,129(33):10066-10067.
    [72]Tan H, Li Y, Chen W, et al. From Racemic Compound to Spontaneous Resolution: A Linker-ImposedEvolution of Chiral [MnMo9O32]6--Based Polyoxometalate Compounds[J]. Chem Eur J,2009,15:10940-10947.
    [73]Tan H, Li Y, Chen W, et al. A Series of [MnMo9O32]6–Based Solids: Homochiral Transferred fromAdjacent Polyoxoanions to One-, Two-, and Three-Dimensional Frameworks[J]. Cryst Growth Des,2012,12(3):1111-1117.
    [74]Zhang Z-M, Li Y-G, Yao S, et al. Enantiomerically Pure Chiral {Fe28} Wheels[J]. Angew Chem, Int EdEngl,2009,48(9):1581-1584.
    [75]Zhang Z-M, Yao S, Li Y-G, et al. Protein-Sized Chiral Fe168Cages with NbO-Type Topology[J]. J AmChem Soc,2009,131(41):14600-14601.
    [76]Zhang J, Hao J, Wei Y, et al. Nanoscale Chiral Rod-like Molecular Triads Assembled from AchiralPolyoxometalates[J]. J Am Chem Soc,2009,132:14-15.
    [77]Xiao F, Hao J, Zhang J, et al. Polyoxometalatocyclophanes: Controlled Assembly ofPolyoxometalate-Based Chiral Metallamacrocycles from Achiral Building Blocks[J]. J Am Chem Soc,2010,132(17):5956-5957.
    [78]Lan Y Q, Li S L, Wang X L, et al. Spontaneous resolution of chiral polyoxometalate-based compoundsconsisting of3D chiral inorganic skeletons assembled from different helical units[J]. Chemistry,2008,14(32):9999-10006.
    [79]Lan Y Q, Li S L, Su Z M, et al. Spontaneous resolution of a3D chiral polyoxometalate-basedpolythreaded framework consisting of an achiral ligand[J]. Chem Commun2008,(1):58-60.
    [80]Meng X, Qin C, Wang X L, et al. Chiral salen-metal derivatives of polyoxometalates with asymmetriccatalytic and photocatalytic activities[J]. Dalton Trans,2011,40(39):9964-9966.
    [81]Neumann R, Khenkin A M. Noble Metal (RuIII, PdII, PtII) Substituted "Sandwich" TypePolyoxometalates: Preparation, Characterization, and Catalytic Activity in Oxidations of Alkanes andAlkenes by Peroxides[J]. Inorg Chem,1995,34(23):5753-5760.
    [82]Adam W, Alsters P L, Neumann R, et al. Chiral hydroperoxides as oxygen source in the catalyticstereoselective epoxidation of allylic alcohols by sandwich-type polyoxometalates: control ofenantioselectivity through a metal-coordinated template[J]. J Org Chem,2003,68(21):8222-8231.
    [83]Han Q, He C, Zhao M, et al. Engineering Chiral Polyoxometalate Hybrid Metal–Organic Frameworksfor Asymmetric Dihydroxylation of Olefins[J]. J Am Chem Soc,2013,135(28):10186-10189.
    [84]Shi Y Q, Miles T J, Claire B, et al. A Fast Soluble Carbon-Free Molecular Water Oxidation CatalystBased on Abundant Metals [J]. Science,2010,328:342-345.
    [85]Sartorel A, Carraro M, Scorrano G, et al. Polyoxometalate Embedding of aTetraruthenium(IV)-oxo-core by Template-Directed Metalation of [γ-SiW10O36]8: A Totally InorganicOxygen-Evolving Catalyst[J]. J Am Chem Soc,2008,130(15):5006-5007.
    [86]Huang Z, Luo Z, Geletii Y V, et al. Efficient Light-Driven Carbon-Free Cobalt-Based MolecularCatalyst for Water Oxidation[J]. J Am Chem Soc,2011,133(7):2068-2071.
    [87]Han X B, Zhang Z M, Zhang T, et al. Polyoxometalate-Based Cobalt-Phosphate Molecular Catalystsfor Visible Light-Driven Water Oxidation[J]. J Am Chem Soc,2014,136(14):5359-5366.
    [88]Huang P, Qin C, Su Z-M, et al. Self-Assembly and Photocatalytic Properties of Polyoxoniobates:{Nb24O72},{Nb32O96}, and {K12Nb96O288} Clusters[J]. J Am Chem Soc,2012,134(34):14004-14010.
    [89]Li S, Liu S, Liu S, et al.{Ta12}/{Ta16} Cluster-Containing Polytantalotungstates with RemarkablePhotocatalytic H2Evolution Activity[J]. J Am Chem Soc,2012,134:19716-19721.
    [90]Kulkarni P S, Afonso C a M. Deep desulfurization of diesel fuel using ionic liquids: current status andfuture challenges[J]. Green Chemistry,2010,12(7):1139-1149.
    [91]Maeda Y, Thanh L T, Imamura K, et al. New technology for the production of biodiesel fuel[J]. GreenChemistry,2011,13(5):1124-1128.
    [92]Lu H, Gao J, Jiang Z, et al. Oxidative desulfurization of dibenzothiophene with molecular oxygenusing emulsion catalysis[J]. Chem Comm,2007,(2):150-152.
    [93]Qi W, Wang Y, Li W, et al. Surfactant-Encapsulated Polyoxometalates as Immobilized SupramolecularCatalysts for Highly Efficient and Selective Oxidation Reactions[J]. Chem–Eur J,2010,16(3):1068-1078.
    [94]Nisar A, Lu Y, Zhuang J, et al. Polyoxometalate Nanocone Nanoreactors: Magnetic Manipulation andEnhanced Catalytic Performance[J]. Angew Chem, Int Ed Engl,2011,50(14):3187-3192.
    [95]Geng J, Li M, Ren J, et al. Polyoxometalates as Inhibitors of the Aggregation of Amyloid β PeptidesAssociated with Alzheimer’s Disease[J]. Angew Chem, Int Ed Engl,2011,50(18):4184-4188.
    [96]Li M, Xu C, Ren J, et al. Photodegradation of beta-sheet amyloid fibrils associated with Alzheimer'sdisease by using polyoxometalates as photocatalysts[J]. Chem Commun2013,49(97):11394-11396.
    [97]Shen J-Q, Wu Q, Zhang Y, et al. Unprecedented High-Nuclear Transition-Metal-Cluster-SubstitutedHeteropolyoxoniobates: Synthesis by {V8} Ring Insertion into the POM Matrix and AntitumorActivities[J]. Chem–Eur J,2014,20(10):2840-2848.
    [98]Zhou Z, Zhang D, Yang L, et al. Nona-Copper(II)-Containing18-Tungsto-8Arsenate(III) ExhibitsAntitumor Activity[J]. Chem Comm,2013,49:5189-5191.
    [1] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselectiveseparation and catalysis[J]. Nature,2000,404(6781):982-986.
    [2] Zhang J P, Chen X M. Optimized Acetylene/Carbon Dioxide Sorption in a Dynamic Porous Crystal[J].J Am Chem Soc,2009,131(15):5516-5521.
    [3] Yaghi O M, O'keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J].Nature,2003,423(6941):705-714.
    [4] Ren X, Li Y, Pan Q, et al. A Crystalline Germanate with Mesoporous30-Ring Channels[J]. J AmChem Soc,2009,131(40):14128-14129.
    [5] Zhang X-M, Hao Z-M, Zhang W-X, et al. Dehydration-Induced Conversion from a Single-ChainMagnet into a Metamagnet in a Homometallic Nanoporous Metal–Organic Framework[J]. AngewChem, Int Ed Engl,2007,46(19):3456-3459.
    [6] Qiu S, Zhu G. Molecular engineering for synthesizing novel structures of metal–organic frameworkswith multifunctional properties[J]. Coord Chem Rev,2009,253(23–24):2891-2911.
    [7] Marleny Rodriguez-Albelo L, Ruiz-Salvador A R, Sampieri A, et al. Zeolitic Polyoxometalate-BasedMetal Organic Frameworks (Z-POMOFs): Computational Evaluation of Hypothetical Polymorphsand the Successful Targeted Synthesis of the Redox-Active Z-POMOF1[J]. J Am Chem Soc,2009,131(44):16078-16087.
    [8] Nohra B, El Moll H, Rodriguez Albelo L M, et al. Polyoxometalate-based metal organic frameworks(POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolutionreaction[J]. J Am Chem Soc,2011,133(34):13363-13374.
    [9] Khenkin A M, Leitus G, Neumann R. Electron Transfer Oxygen Transfer Oxygenation of SulfidesCatalyzed by the H5PV2Mo10O40Polyoxometalate[J]. J Am Chem Soc,2010,132(33):11446-11448.
    [10]Hill C L, Prosser-Mccartha C M. Homogeneous catalysis by transition metal oxygen anion clusters[J].Coord Chem Rev,1995,143(0):407-455.
    [11]Mizuno N, Misono M. Heterogeneous Catalysis[J]. Chem Rev,1998,98(1):199-218.
    [12]Tonigold M, Lu Y, Bredenk tter B, et al. Heterogeneous Catalytic Oxidation by MFU-1: ACobalt(II)-Containing Metal–Organic Framework[J]. Angew Chem, Int Ed Engl,2009,48(41):7546-7550.
    [13]Zou C, Zhang Z, Xu X, et al. A Multifunctional Organic–Inorganic Hybrid Structure Based onMnIII–Porphyrin and Polyoxometalate as a Highly Effective Dye Scavenger and HeterogenousCatalyst[J]. J Am Chem Soc,2011,134(1):87-90.
    [14]Zheng X, Zhang L, Li J, et al. Magnetic nanoparticle supported polyoxometalates (POMs) vianon-covalent interaction: reusable acid catalysts and catalyst supports for chiral amines[J]. ChemCommun (Camb),2011,47(45):12325-12327.
    [15]Chen L, Hu J, Mal S S, et al. Heterogeneous wheel-shaped Cu20-polyoxotungstate
    [Cu20Cl(OH)24(H2O)12(P8W48O184)]25-catalyst for solvent-free aerobic oxidation of n-hexadecane[J].Chem–Eur J,2009,15(30):7490-7497.
    [16]Mitchell S G, Boyd T, Miras H N, et al. Extended Polyoxometalate Framework Solids: TwoMn(II)-Linked {P8W48} Network Arrays[J]. Inorg Chem,2010,50(1):136-143.
    [17]Mitchell S G, Streb C, Miras H N, et al. Face-directed self-assembly of an electronically activeArchimedean polyoxometalate architecture[J]. Nat Chem,2010,2(4):308-312.
    [18]Flynn C M, Pope M T.1:13Heteropolyvanadates of manganese(IV) and nickel(IV)[J]. J Am ChemSoc,1970,92(1):85-90.
    [19]Tatsuno Y, Nakamura C, Saito T. Heteropolyvanadates as catalysts for oxygenation of3,5-Di-t-butylcatechol[J]. J Mol Catal,1987,42(1):57-66.
    [20]Liu S, Li D, Xie L, et al. Two-Dimensional Lanthanide Heteropolyvanadates of Manganese(IV) andNickel(IV) Containing Two Types of Heteropoly Anions with1:13and1:12Stoichiometry[J]. InorgChem,2006,45(20):8036-8040.
    [21]Sella A, Brown S E, Steed J W, et al. Synthesis and Solid-State Structures of PyrazolylmethaneComplexes of the Rare Earths[J]. Inorg Chem,2007,46(5):1856-1864.
    [22]Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism andPolymorphism in Network Solids[J]. Chem Rev,2001,101(6):1629-1658.
    [23]Spek A L. Single-crystal structure validation with the program PLATON[J]. J Appl Cryst,2003,36:7-13.
    [24]Spek A L. PLATON, A Multipurpose Crystallographic Tool;[M]. Utrecht University, The Netherlands,2006.
    [25]Kim S, Dale B E. Biomass Bioenergy,2004,26:361-375.
    [26]Eguchi R, Uchida S, Mizuno N. Inverse and High CO2/C2H2Sorption Selectivity in FlexibleOrganic–Inorganic Ionic Crystals[J]. Angew Chem,2012,124(7):1667-1671.
    [27]Shigematsu A, Yamada T, Kitagawa H. Selective Separation of Water, Methanol, and Ethanol by aPorous Coordination Polymer Built with a Flexible Tetrahedral Ligand[J]. J Am Chem Soc,2012,134(32):13145-13147.
    [28]Lu H, Gao J, Jiang Z, et al. Oxidative desulfurization of dibenzothiophene with molecular oxygenusing emulsion catalysis[J]. Chem Comm,2007,(2):150-152.
    [29]Nisar A, Zhuang J, Wang X. Construction of Amphiphilic Polyoxometalate Mesostructures as a HighlyEfficient Desulfurization Catalyst[J]. Adv Mater,2011,23(9):1130-1135.
    [30]Yin P, Wang J, Xiao Z, et al. Polyoxometalate-organic hybrid molecules as amphiphilic emulsioncatalysts for deep desulfurization[J]. Chemistry-A European Journal,2012,18(30):9174-9178.
    [31]Yazu K, Yamamoto Y, Furuya T, et al. Oxidation of Dibenzothiophenes in an Organic Biphasic Systemand Its Application to Oxidative Desulfurization of Light Oil[J]. Energy Fuels,2001,15(6):1535-1536.
    [32]Bigi F, Corradini A, Quarantelli C, et al. Silica-bound decatungstates as heterogeneous catalysts forH2O2activation in selective sulfide oxidation[J]. J Catal,2007,250(2):222-230.
    [1] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusters Nanoscale Magnets[J].Chem Rev,1998,98(1):239-272.
    [2] Kortz U, Matta S. Novel, Trimeric Mn-Substituted Undecatungstosilicate,[(β2-SiW111MnO38OH)3]5-[J].Inorg Chem,2001,40(4):815-817.
    [3] Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: from selfassembly to designer materials and devices[J]. Chem Rev,2007,36(1):105-121.
    [4] Chen W, Li Y, Wang Y, et al. Building block approach to nanostructures: step-by-step assembly oflarge lanthanide-containing polytungstoarsenate aggregates[J]. Dalton Trans,2007,0(38):4293-4301.
    [5] Hussain F, Gable R W, Speldrich M, et al. Polyoxotungstate-encapsulated Gd6and Yb10complexes[J].Chem Commun,2009,(3):328-330.
    [6] Li S, Liu S, Liu S, et al.{Ta12}/{Ta16} Cluster-Containing Polytantalotungstates with RemarkablePhotocatalytic H2Evolution Activity[J]. J Am Chem Soc,2012,134:19716-19721.
    [7] Pope M T, Heteropolv und Isopoly Oxomefulates [M]. Springer: New York,1983.
    [8] Coronado E, Gomez-Garcia C J. Polyoxometalate-Based Molecular Materials[J]. Chem Rev,1998,98(1):273-296.
    [9] Fang X, Anderson T M, Hill C L. Enantiomerically pure polytungstates: chirality transfer throughzirconium coordination centers to nanosized inorganic clusters[J]. Angew Chem Int Ed Engl,2005,44(23):3540-3544.
    [10]Zhang J, Song Y-F, Cronin L, et al. Self-Assembly of Organic Inorganic Hybrid AmphiphilicSurfactants with Large Polyoxometalates as Polar Head Groups[J]. J Am Chem Soc,2008,130(44):14408-14409.
    [11]Zhang J, Hao J, Wei Y, et al. Nanoscale chiral rod-like molecular triads assembled from achiralpolyoxometalates[J]. J Am Chem Soc,2010,132(1):14-15.
    [12]Antonio M R, Nyman M, Anderson T M. Direct Observation of Contact Ion-Pair Formation inAqueous Solution[J]. Angew Chem, Int Ed2009,48(33):6136-6140.
    [13]Tonigold M, Lu Y, Bredenk tter B, et al. Heterogeneous Catalytic Oxidation by MFU-1: ACobalt(II)-Containing Metal–Organic Framework[J]. Angew Chem, Int Ed,2009,48(41):7546-7550.
    [14]Kortz U, Müller A, Van Slageren J, et al. Polyoxometalates: Fascinating structures, unique magneticproperties[J]. Coord Chem Rev,2009,253(19-20):2315-2327.
    [15]Haralampos N. Miras, Geoffrey J. T. Cooper, De-Liang Long, et al. Unveiling the Transient Templatein the Self-Assembly of a Molecular Oxide Nanowheel[J]. Science2010,327:72-74.
    [16]Pradeep C P, Long D-L, Cronin L. Cations in control: crystal engineering polyoxometalate clustersusing cation directed self-assembly[J]. Dalton Trans,2010,39:9443-9457.
    [17]Xiao F, Hao J, Zhang J, et al. Polyoxometalatocyclophanes: Controlled Assembly ofPolyoxometalate-Based Chiral Metallamacrocycles from Achiral Building Blocks[J]. J Am Chem Soc,2010,132:5956–5957.
    [18]Botar B, Kogerler P, Hill C L. Tetrairon and hexairon hydroxo/acetato clusters stabilized by multiplepolyoxometalate scaffolds. Structures, magnetic properties, and chemistry of a dimer and a trimer[J].Inorg Chem,2007,46(13):5398-5403.
    [19]Ren Y-H, Liu S-X, Cao R-G, et al. Two trimeric tri-TiIV-substituted Keggin tungstogermanates basedon tetrahedral linkers[J]. Inorg Chem Comm,2008,11(11):1320-1322.
    [20]Wu Q, Li Y-G, Wang Y-H, et al. Mixed-Valent {Mn14} Aggregate Encapsulated by the InorganicPolyoxometalate Shell:[MnIIII13MnIO12(PO4)4(PW39O34)4]1[J]. Inorg Chem,2009,48(4):1606-1612.
    [21]Mcglone T, Streb C, Long D L, et al. Guest-Directed Supramolecular Architectures of {W36}Polyoxometalate Crowns[J]. Chem Asian J,2009,4(10):1612-1618.
    [22]Kastner K, Puscher B, Streb C. Self-assembly of a tetrahedral58-nuclear barium vanadium oxidecluster[J]. Chem Commun,2012:140-142.
    [23]Gao J, Yan J, Beeg S, et al. One-pot versus sequential reactions in the self-assembly of giganticnanoscale polyoxotungstates[J]. J Am Chem Soc,2013,135(5):1796-1805.
    [24]Zhang Z M, Yao S, Li Y G, et al. New trimeric polyoxotungstate aggregates based on [P14-2W12O48]building blocks[J]. Chem Commun2008,(14):1650-1652.
    [25]Li Y-W, Li Y-G, Wang Y-H, et al. A New Supramolecular Assembly Based on Triple-Dawson-TypePolyoxometalate and3d-4f Heterometallic Cluster[J]. Inorg Chem,2009,48(14):6452-6458.
    [26]Yao S, Zhang Z, Li Y, et al. Two heterometallic aggregates constructed from the {P2W12}-basedtrimeric polyoxotungstates and3d-4f heterometals[J]. Crystal Growth and Design,2010,10(1):135-139.
    [27]Zhang H-M, Li Y-G, Lu Y, et al. A New Ni12Cluster Based on Polyoxometalate Ligands[J]. InorgChem,2009,48(23):10889-10891.
    [28]Zhang S, Zhang D, Ma P, et al. An unprecedented trimer based on monovacant Dawson anion:
    [(α2-P2W17O61)Ln(H2O)4]321(Ln=LaIII, CeIIIand PrIII)[J]. CrystEngComm,2013,15(15):2992.
    [29]Zhang H, Duan L, Lan Y, et al. Synthesis, crystal structure, and photochromism of noveltwo-dimensional supramolecular networks based on Keggin-type polyoxoanion and lanthanidecoordination cations[J]. Inorg Chem,2003,42(24):8053-8058.
    [30]An H Y, Wang E B, Xiao D R, et al. Chiral3D architectures with helical channels constructed frompolyoxometalate clusters and copper-amino acid complexes[J]. Angew Chem Int Ed,2006,45(6):904-908.
    [31]Tan H, Li Y, Chen W, et al. From Racemic Compound to Spontaneous Resolution: A Linker-ImposedEvolution of Chiral [MnMo9O32]6--Based Polyoxometalate Compounds[J]. Chem Eur J,2009,15:10940-10947.
    [32]Forster J, R sner B, Fink R H, et al. Oxidation-driven self-assembly gives access to high-nuclearitymolecular copper vanadium oxide clusters[J]. Chemical Science,2013,4(1):418.
    [33]Zhang L, Schmitt W. From Platonic Templates to Archimedean Solids: Successive Construction ofNanoscopic {V16As8},{V16As10},{V20As8}, and {V24As8} Polyoxovanadate Cages[J]. J Am ChemSoc,2011,133(29):11240-11248.
    [34]Müller A, Rohlfing R, Krickemeyer E, et al. Control of the Linkage of Inorganic Fragments of V-OCompounds: From Cluster Shells as Carcerands via Cluster Aggregates to Solid-State Structures[J].Angew Chem, Int Ed Engl,1993,32(6):909-912.
    [35]Flynn C M, Pope M T.1:13Heteropolyvanadates of manganese(IV) and nickel(IV)[J]. J Am ChemSoc,1970,92(1):85-90.
    [36]Liu S, Li D, Xie L, et al. Two-Dimensional Lanthanide Heteropolyvanadates of Manganese(IV) andNickel(IV) Containing Two Types of Heteropoly Anions with1:13and1:12Stoichiometry[J]. InorgChem,2006,45(20):8036-8040.
    [37]Lan Q, Tan H, Liu D, et al. A Series of Inorganic Aggregates Composed of [MnV13O38]7polyoxoanions and Transition metal Cations[J]. J Solid State Chem,2013,199:129-133.
    [38]Tatsuno Y, Nakamura C, Saito T. Heteropolyvanadates as catalysts for oxygenation of3,5-Di-t-butylcatechol[J]. J Mol Catal,1987,42(1):57-66.
    [39]Liu D, Lu Y, Tan H-Q, et al. Polyoxometalate-based purely inorganic porous frameworks withselective adsorption and oxidative catalysis functionalities[J]. Chem Comm,2013,49(35):3673-3675.
    [40]Mialane P, Dolbecq A, Lisnard L, et al.[ε-PMo12O36(OH)4{La(H2O)4}4]5+: The First ε-PMo12O40Keggin Ion and Its Association with the Two-Electron-Reduced α-PMo12O40Isomer[J]. Angew ChemInt Ed,2002,41(13):2398-2401.
    [41]Dolbecq A, Mialane P, Lisnard L, et al. Hybrid Organic–Inorganic1D and2D Frameworks withε-Keggin Polyoxomolybdates as Building Blocks[J]. Chem–Eur J,2003,9(12):2914-2920.
    [42]An H, Li Y, Xiao D, et al. Self-Assembly of Extended High-Dimensional Architectures fromAnderson-type Polyoxometalate Clusters[J]. Cryst Growth Des,2006,6(5):1107-1112.
    [43]Jing-Ping Wang, Jun-Wei Zhao, Xian-Ying Duan, et al. Syntheses and Structures of One-andTwo-Dimensional Organic Inorganic Hybrid Rare Earth Derivatives Based on MonovacantKeggin-Type Polyoxotungstates[J]. Cryst Growth Des,2006,6:507-513.
    [44]Wang K, Zhang D, Ma J, et al. Three-dimensional lanthanide polyoxometalate organic complexes:correlation of structure with properties[J]. CrystEngComm,2012,14(9):3205.
    [45]An H, Xiao D, Wang E, et al. Open-Framework Polar Compounds: Synthesis and Characterization ofRare-Earth Polyoxometalates (C6NO2H5)2[Ln(H2O)5(CrMo6H6O24)]0.5H2O (Ln=Ce and La)[J]. Eur JInorg Chem,2005,2005(5):854-859.
    [46]Jian Lu, Enhong Shen, Yangguang Li, et al. A Novel Pillar-Layered Organic Inorganic Hybrid Basedon Lanthanide Polymer and Polyomolybdate Clusters: New Opportunity toward the Design andSynthesis of Porous Framework[J]. Cryst Growth Des,2005,5:65-67.
    [47]Cameron J M, Newton G N, Busche C, et al. Synthesis and characterisation of a lanthanide-cappeddodecavanadate cage[J]. Chem Comm,2013,49(33):3395-3397.
    [48]Simunekova M, Prodius D, Mereacre V, et al. Tetradecanuclear lanthanide-vanadium "nanochocolates":catalytically-active cationic heteropolyoxovanadium clusters[J]. RSC Advances,2013,3(18):6299-6304.
    [49]Nishio M, Inami S, Katayama M, et al. Lanthanide Complexes of Macrocyclic Polyoxovanadates byVO4Units: Synthesis, Characterization, and Structure Elucidation by X-ray Crystallography andEXAFS Spectroscopy[J]. Inorg Chem,2011,51(2):784-793.
    [50]An H, Han Z, Xu T. Three-dimensional architectures based on lanthanide-substituteddouble-Keggin-type polyoxometalates and lanthanide cations or lanthanide-organic complexes[J].Inorg Chem,2010,49(24):11403-11414.
    [51]Qin C, Song X Z, Su S Q, et al. New class of Preyssler-lanthanide complexes with modified andextended structures tuned by the lanthanide contraction effect[J]. Dalton Trans,2012,41(8):2399-2407.
    [52]Nagai K, Ichida H, Sasaki Y. The Structure of Heptapotassium Tridecavanadomanganate (IV)Octadecehydrate, K7[MnV13O38]18H2O[J]. Chem Lett,1986:1267-1270.
    [53]Li D H, Liu S X, Sun C Y, et al. A novel2D layered network based on13-vanadomanganate(IV):K3(HABOB)4[MnV13O38]·9H2O (ABOB=N-amidino-4-morpholincarboxamidine)[J]. Inorg ChemComm,2005,8(5):433-436.
    [54]Tsunashima R, Long D L, Miras H N, et al. The construction of high-nuclearity isopolyoxoniobateswith pentagonal building blocks:[HNb27O76]16-and [H10Nb31O93(CO3)]23-[J]. Angew Chem Int Ed2010,49(1):113-116.
    [55]Lydon C, Sabi M M, Symes M D, et al. Directed assembly of nanoscale Co(II)-substituted{Co9[P2W15]3} and {Co14[P2W15]4} polyoxometalates[J]. Chem Commun,2012,48(79):9819-9821.
    [56]Goberna F S, Vigara L, Soriano L J, et al. Identification of a nonanuclear {CoII9} polyoxometalatecluster as a homogeneous catalyst for water oxidation[J]. Inorg Chem,2012,51(21):11707-11715.
    [57]Wu Q, Hao X, Feng X, et al. A hexa-{MnIII–Schiff-base}-decorated cyclic polyoxovanadate asphotocatalyst for dye degradation[J]. Inorg Chem Comm,2012,22:137-140.
    [58]Fang X, Kogerler P. A polyoxometalate-based manganese carboxylate cluster[J]. Chem Commun2008,(29):3396-3398.
    [59]Bi L-H, Kortz U, Dickman M H, et al. Polyoxoanion with Octahedral Germanium(IV) Hetero Atom:Synthesis, Structure, Magnetism, EPR, Electrochemistry and XPS Studies on the Mixed-Valence14-Vanadogermanate [GeVV12VIV2O40]8[J]. Journal of Cluster Science,2006,17(2):143-165.
    [60]Li C, Zhang Y, O’halloran K P, et al. Electrochemical behavior of vanadium-substituted Keggin-typepolyoxometalates in aqueous solution[J]. Journal of Applied Electrochemistry,2008,39(3):421-427.
    [1] Mizuno N, Kamata K. Catalytic oxidation of hydrocarbons with hydrogen peroxide byvanadium-based polyoxometalates[J]. Coord Chem Rev,2011,255(19–20):2358-2370.
    [2] Lan Y Q, Li S L, Wang X L, et al. Spontaneous resolution of chiral polyoxometalate-basedcompounds consisting of3D chiral inorganic skeletons assembled from different helical units[J].Chemistry,2008,14(32):9999-10006.
    [3] Kastner K, Puscher B, Streb C. Self-assembly of a tetrahedral58-nuclear barium vanadium oxidecluster[J]. Chem Commun,2012:140-142.
    [4] Flynn C M, Pope M T.1:13Heteropolyvanadates of manganese(IV) and nickel(IV)[J]. J Am ChemSoc,1970,92(1):85-90.
    [5] Nagai K, Ichida H, Sasaki Y. The Structure of Heptapotassium Tridecavanadomanganate (IV)Octadecehydrate, K7[MnV13O38]18H2O[J]. Chem Lett,1986:1267-1270.
    [6] Fukuda N, Yamase T. Biol Pharm Bull,1997,20:927–930.
    [7]陈攀.抗肿瘤活性杂多钒酸盐-高分子缓释微球的制备[D]:[硕士学位论文].长春:东北师范大学化学学院,2009.
    [8] Li D H, Liu S X, Sun C Y, et al. A novel2D layered network based on13-vanadomanganate(IV):K3(HABOB)4[MnV13O38]·9H2O (ABOB=N-amidino-4-morpholincarboxamidine)[J]. Inorg ChemComm,2005,8(5):433-436.
    [9] Liu S X, Li D H, Xie L H, et al. Two-Dimensional Lanthanide Heteropolyvanadates of Manganese(IV)and Nickel(IV) Containing Two Types of Heteropoly Anions with1:13and1:12Stoichiometry[J].Inorg Chem,2006,45(20):8036-8040.
    [10]Ce Liu, Fang Luo, Na Liu, et al. One-Dimensional Helical Chain Based on Decatungstate and CeriumOrganic Inorganic Hybrid Materia[J]. Cryst Growth Des,2006,6:2658-2660.
    [11]Jing-Ping Wang, Jun-Wei Zhao, Xian-Ying Duan, et al. Syntheses and Structures of One-andTwo-Dimensional Organic Inorganic Hybrid Rare Earth Derivatives Based on MonovacantKeggin-Type Polyoxotungstates[J]. Cryst Growth Des,2006,6:507-513.
    [12]An H, Li Y, Wang E, et al. Self-Assembly of a Series of Extended Architectures Based onPolyoxometalate Clusters and Silver Coordination Complexes[J]. Inorg Chem,2005,44(17):6062-6070.
    [13]An H, Xiao D, Wang E, et al. Open-Framework Polar Compounds: Synthesis and Characterization ofRare-Earth Polyoxometalates (C6NO2H5)2[Ln(H2O)5(CrMo6H6O24)]0.5H2O (Ln=Ce and La)[J]. Eur JInorg Chem,2005,2005(5):854-859.
    [14]An H Y, Li Y G, Xiao D R, et al. Self-Assembly of Extended High-Dimensional Architectures fromAnderson-type Polyoxometalate Clusters[J]. Cryst Growth Des,2006,6(5):1107-1112.
    [15]Zhao J, Shi D, Chen L, et al. Tetrahedral Polyoxometalate Nanoclusters with Tetrameric Rare-EarthCores and Germanotungstate Vertexes[J]. Cryst Growth Des,2013:130828160906003.
    [16]Zhang D, Lu Y, Chen L, et al. A series of new rare earth sulfates based on lanthanide contraction anddual organic-amine templating effects[J]. CrystEngComm,2012,14(20):6627-6638.
    [17]An H, Han Z, Xu T. Three-dimensional architectures based on lanthanide-substituteddouble-Keggin-type polyoxometalates and lanthanide cations or lanthanide-organic complexes[J].Inorg Chem,2010,49(24):11403-11414.
    [18]Qin C, Song X Z, Su S Q, et al. New class of Preyssler-lanthanide complexes with modified andextended structures tuned by the lanthanide contraction effect[J]. Dalton Trans,2012,41(8):2399-2407.
    [19]Reinoso S, Giménez-Marqués M, Galán-Mascarós J R, et al. Giant Crown-Shaped PolytungstateFormed by Self-Assembly of CeIII-Stabilized Dilacunary Keggin Fragments[J]. Angew Chem, Int EdEngl,2010: n/a-n/a.
    [20]Wu C-D, Lu C-Z, Zhuang H-H, et al. Hydrothermal Assembly of a Novel Three-DimensionalFramework Formed by [GdMo9-12O42]Anions and Nine Coordinated GdIIICations[J]. J Am Chem Soc,2002,124(15):3836-3837.
    [21]Lan Q, Tan H, Liu D, et al. A Series of Inorganic Aggregates Composed of [MnV713O38]polyoxoanions and Transition metal Cations[J]. J Solid State Chem,2013,199:129-133.
    [22]Wu Q, Hao X, Feng X, et al. A hexa-{MnIII–Schiff-base}-decorated cyclic polyoxovanadate asphotocatalyst for dye degradation[J]. Inorg Chem Comm,2012,22:137-140.
    [23]Li Y-W, Li Y-G, Wang Y-H, et al. A New Supramolecular Assembly Based on Triple-Dawson-TypePolyoxometalate and3d-4f Heterometallic Cluster[J]. Inorg Chem,2009,48(14):6452-6458.
    [24]Bi L-H, Kortz U, Dickman M H, et al. Polyoxoanion with Octahedral Germanium(IV) Hetero Atom:Synthesis, Structure, Magnetism, EPR, Electrochemistry and XPS Studies on the Mixed-Valence14-Vanadogermanate [GeVV12VIV2O40]8[J]. Journal of Cluster Science,2006,17(2):143-165.
    [25]Li C, Zhang Y, O’halloran K P, et al. Electrochemical behavior of vanadium-substituted Keggin-typepolyoxometalates in aqueous solution[J]. Journal of Applied Electrochemistry,2008,39(3):421-427.
    [1] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusters Nanoscale Magnets[J].Chem Rev,1998,98(1):239-272.
    [2] Judd D A, Nettles J H, Nevins N, et al. Polyoxometalate HIV-1protease inhibitors. A new mode ofprotease inhibition[J]. J Am Chem Soc,2001,123(5):886-897.
    [3] Hasenknopf B, Micoine K, Lac te E, et al. Chirality in Polyoxometalate Chemistry[J]. Eur J InorgChem,2008:5001-5013.
    [4] L C. Supramolecular coordination chemistry[J]. Annu Rep Prog Chem, Sect A: Inorg Chem2006,102:353-378.
    [5] Xin F, Pope M T. Lone-Pair-Induced Chirality in Polyoxotungstate Structures: Tin(II) Derivatives ofA-Type XWn-9O34(X=P, Si). Interaction with Amino Acids[J]. J Am Chem Soc,1996,118(33):7731-7736.
    [6] Inoue M, Yamase T. Synthesis and Crystal Structures of γ-Type Octamolybdates Coordinated byChiral Lysines[J]. Bull Chem Soc Jpn,1995,68:3055-3063.
    [7] Kortz U, Savelieff M G, Ghali F Y, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIVfunctionalized by amino acids[J]. Angew Chem Int Ed2002,41(21):4070-4073.
    [8] Fang X K, Anderson T M, Hill C L. Enantiomerically pure polytungstates: chirality transfer throughzirconium coordination centers to nanosized inorganic clusters[J]. Angew Chem Int Ed,2005,44(23):3540-3544.
    [9] Fang X K, Anderson T M, Hou Y, et al. Stereoisomerism in polyoxometalates: structural andspectroscopic studies of bis(malate)-functionalized cluster systems[J]. Chem Commun,2005,(40):5044-5046.
    [10]Lenoble G, Hasenknopf B, Thouvenot R. A Strategy for the Analysis of Chiral Polyoxotungstates byMultinuclear (31P,183W) NMR Spectroscopy Applied to the Assignment of the183W NMR Spectra ofα1-[P2W17O61]10-and α1-[YbP2W17O61]7-[J]. J Am Chem Soc,2006,128(17):5735-5744.
    [11]Streb C, Long D L, Cronin L. Engineering porosity in a chiral heteropolyoxometalate-basedframework: the supramolecular effect of benzenetricarboxylic acid[J]. Chem Commun2007,(5):471-473.
    [12]Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: from selfassembly to designer materials and devices[J]. Chem Rev,2007,36(1):105-121.
    [13]Boglio C, Hasenknopf B, Lenoble G, et al. Sensing the Chirality of Dawson LanthanidePolyoxometalates [α1-LnP2W17O61]7by Multinuclear NMR Spectroscopy[J]. Chem–Eur J,2008,14(5):1532-1540.
    [14]An H Y, Wang E B, Xiao D R, et al. Chiral3D architectures with helical channels constructed frompolyoxometalate clusters and copper-amino acid complexes[J]. Angew Chem Int Ed,2006,45(6):904-908.
    [15]Tan H, Li Y, Zhang Z, et al. Chiral polyoxometalate-induced enantiomerically3D architectures: a newroute for synthesis of high-dimensional chiral compounds[J]. J Am Chem Soc,2007,129(33):10066-10067.
    [16]Lan Y Q, Li S L, Su Z M, et al. Spontaneous resolution of a3D chiral polyoxometalate-basedpolythreaded framework consisting of an achiral ligand[J]. Chem Commun2008,(1):58-60.
    [17]Lan Y Q, Li S L, Wang X L, et al. Spontaneous resolution of chiral polyoxometalate-based compoundsconsisting of3D chiral inorganic skeletons assembled from different helical units[J]. Chemistry,2008,14(32):9999-10006.
    [18]Zheng S T, Zhang J, Yang G Y. Designed synthesis of POM-organic frameworks from {Ni6PW9}building blocks under hydrothermal conditions[J]. Angew Chem Int Ed,2008,47(21):3909-3913.
    [19]Day V W, Klemperer W G, Schwartz C. Synthesis, characterization, and interconversion of theniobotungstic acid Nb3-2W4O19Hand its anhydride and alkyl/silyl esters[J]. J Am Chem Soc,1987,109(20):6030-6044.
    [20]Lu M, Kang J, Wang D, et al. Enantiopure1,1'-binaphthyl-based polyoxometalate-containingmolecular hybrids[J]. Inorg Chem,2005,44(22):7711-7713.
    [21]Long D L, K gerler P, Farrugia L J, et al. Linking Chiral Clusters with Molybdate Building Blocks:From Homochiral Helical Supramolecular Arrays to Coordination Helices[J]. Chem Asian J,2006,1:352-357.
    [22]Strandberg R. Multicomponent Polyanions.12. The Crystal Structure of Na6Mo18P2O62(H2O)24, aCompound Containing Sodiumcoordinated18-Molybdodiphoshate Anions[J]. Acta Chem Scand,1975,A29:350-358.
    [23]D'amour H. Vergleich der Heteropolyanionen [PMo9O31(H2O)3]3-,[P2Mo18O62]6-and [P2W18O62]6-[J].Acta Crystallogr, Sect B: Struct Sci,1976,32:729-740.
    [24]Pope M T. Structural isomers of1:12and2:18heteropoly anions. Novel and unexpected chirality[J].Inorg Chem,1976,15:2008-2010.
    [25]Garvey J F, Pope M T. Chirality of oxidized and reduced octadecamolybdodiphosphate anions.Observation of a Pfeiffer effect[J]. Inorg Chem,1978,17(5):1115-1118.
    [26]Wu X. Contribution to the chemistry of phosphomolybdic acids, phosphotungstic acids, and alliedsubstances [J]. J Biol Chem,1920,43:189-220.
    [27]Pope M T. Heteropoly and Isopoly Oxometalates[M]. Springer-Verlag: Berlin,1983,1-10.
    [1] Anderson J S. Constitution of the poly-acids[J]. Nature,1937,140:850.
    [2] Evans H T. The crystal structure of ammonium and patassium molybdotellurates[J]. J Am Chem Soc,1948,70:1291-1292.
    [3] Evans H, Jnr. The molecular structure of the hexamolybdotellurate ion in the crystal complex withtelluric acid (NH4)6[TeMo6O24].Te(OH)6.7H2O[J]. Acta Crystallographica Section B,1974,30(9):2095-2100.
    [4] An H Y, Han Z B, Xu T Q, et al. Self-assembly of polyoxometalate clusters and metal-organiccoordination fragments into1D homochiral chains[J]. Inorg Chem Comm,2008,11(8):914-917.
    [5] An H Y, Li Y G, Xiao D R, et al. Self-Assembly of Extended High-Dimensional Architectures fromAnderson-type Polyoxometalate Clusters[J]. Cryst Growth Des,2006,6(5):1107-1112.
    [6] Martin C, Lamonier C, Fournier M, et al. Preparation and Characterization of6-Molybdocobaltate and6-Molybdoaluminate Cobalt Salts.Evidence of a New Heteropolymolybdate Structure[J]. Inorg Chem,2004,43:4636-4644.
    [7] Khenkin A M, Neumann. R. Aerobic Oxidation of Vicinal Diols Catalyzed by an Anderson-TypePolyoxometalate,[IMo6O24]5-[J]. Adv Synth Catal,2002,344:1017-1021.
    [8] Zhang J, Hao J, Wei Y, et al. Nanoscale Chiral Rod-like Molecular Triads Assembled from AchiralPolyoxometalates[J]. J Am Chem Soc,2009,132:14-15.
    [9] Wu Q, Chen W-L, Liu D, et al. New class of organic-inorganic hybrid aggregates based onpolyoxometalates and Metal-Schiff-base[J]. Dalton Trans,2011,40(1):56-61.
    [10]Wu Q, Li Y-G, Wang Y-H, et al. Polyoxometalate-based {MnIII2}-Schiff base composite materialsexhibiting single-molecule magnet behaviour[J]. Chem Comm,2009,(38):5743-5745.
    [11]Favette S, Hasenknopf B, Vaissermann J, et al. Assembly of a polyoxometalate into an anisotropicgel[J]. Chem Comm,2003,(21):2664-2665.
    [12]Song Y-F, Long D-L, Kelly S E, et al. Sorting the Assemblies of Unsymmetrically CovalentlyFunctionalized Mn-Anderson Polyoxometalate Clusters with Mass Spectrometry[J]. Inorg Chem,2008,47(20):9137-9139.
    [13]Zhang H, Duan L, Lan Y, et al. Synthesis, crystal structure, and photochromism of noveltwo-dimensional supramolecular networks based on Keggin-type polyoxoanion and lanthanidecoordination cations[J]. Inorg Chem,2003,42(24):8053-8058.
    [14]Qin C, Wang X-L, Yuan L, et al. Chiral Self-Threading Frameworks Based on PolyoxometalateBuilding Blocks Comprising Unprecedented Tri-Flexure Helix[J]. Cryst Growth Des,2008,8(7):2093-2095.
    [15]Jing-Yang Niu, Wu Q, Wang J-P.1D and2D polyoxometalate-based composite compounds.Synthesisand crystal structure of [{Ba(DMSO)5(H2O)}2-(SiMo12O40)] and[{Ba(DMSO)3(H2O)3}{Ba(DMSO)5(H2O)}(GeMo12O40)[J]. Dalton Trans,2002,2002:2512-2516.
    [16]Tian A X, Ying J, Peng J, et al. Assembly of the highest connectivity Wells-Dawson polyoxometalatecoordination polymer: the use of organic ligand flexibility[J]. Inorg Chem,2008,47(8):3274-3283.
    [17]Yang G S, Zang H Y, Lan Y Q, et al. Synthesis and characterization of two {Mo6}-based/templatedmetal-organic frameworks[J]. CrystEngComm,2011,13:1461-1466.
    [18]Luo Q H, Howell R C, Dankova M, et al. Coordination of rare-earth elements in complexes withmonovacant Wells-Dawson polyoxoanions[J]. Inorg Chem,2001,40(8):1894-1901.
    [19]Shivaiah V, Nagaraju M, Das S K. Formation of a Spiral-Shaped Inorganic-Organic Hybrid Chain,[CuII(2,2‘-bipy)(H2O)2Al(OH)6Mo6O18]nn-: Influence of Intra-and Interchain SupramolecularInteractions[J]. Inorg Chem,2003,42(21):6604-6606.
    [20]An H, Xiao D, Wang E, et al. Open-Framework Polar Compounds: Synthesis and Characterization ofRare-Earth Polyoxometalates (C6NO2H5)2[Ln(H2O)5(CrMo6H6O24)]0.5H2O (Ln=Ce and La)[J]. Eur JInorg Chem,2005,2005(5):854-859.
    [21]Inoue M, Yamase T. Synthesis and Crystal Structures of γ-Type Octamolybdates Coordinated byChiral Lysines[J]. Bull Chem Soc Jpn,1995,68:3055-3063.
    [22]Kortz U, Savelieff M G, Ghali F Y, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIVfunctionalized by amino acids[J]. Angew Chem Int Ed2002,41(21):4070-4073.
    [23]An H Y, Wang E B, Xiao D R, et al. Chiral3D architectures with helical channels constructed frompolyoxometalate clusters and copper-amino acid complexes[J]. Angew Chem Int Ed,2006,45(6):904-908.
    [24]Sadakane M, Dickman M H, Pope M T. Chiral polyoxotungstates.1. Stereoselective interaction ofamino acids with enantiomers of [CeIIIP2W17O61)(H2O)x]7-. The structure ofDL-[Ce2(H2O)14-8(P2W17O61)2][J]. Inorg Chem,2001,40(12):2715-2719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700