用户名: 密码: 验证码:
钙基吸收剂循环脱碳再脱硫特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料燃烧产生的S02和C02被认为是分别导致酸雨和全球气候变暖的主要原因,而以化石燃料为主要能源的电力生产是最大的S02和C02排放点源。石灰石等钙基吸收剂因来源广、价格低、吸收容量大被广泛用来脱除电厂烟气中的S02,进一步研究发现钙基吸收剂还具备循环脱除烟气中C02的能力。基于前人研究成果,本文提出利用钙基吸收剂先循环脱碳再脱硫的思想,并设计了循环流化床运行流程,其中钙基吸收剂先循环脱碳再脱硫,烟气先脱硫再脱碳,既避免了烟气中S02对脱碳的不利影响,又实现了两种气体的相继脱除,是一项环保经济可行的方案。
     本文采用热重分析仪(TGA)和固定床实验等实验设备,从基础动力学入手,探讨了粒径和煅烧气氛对钙基吸收剂脱碳和脱硫的影响以及吸收剂经历的碳化循环次数对其脱硫的影响。由于吸收剂脱碳能力随循环次数的增加而下降,采用蒸汽水合的方法提高钙基吸收剂脱碳和脱硫能力。在模拟真实烟气气氛下,采用鼓泡流化床设备,研究了钙基吸收剂循环脱碳再脱硫特性以及吸收剂流化效果和颗粒磨损特性。基于“以废治废”的思想,利用煤灰与CaO水热化合反应,合成具有更大比表面积和比孔容积的吸收剂,并利用TGA进行脱碳和脱硫能力测试。实验过程借助了扫描电镜、比表面积分析仪、粒径分析仪和X射线衍射分析仪等辅助设备研究样品在不同反应阶段的特性。
     研究发现,在180目-400目的粒径范围内,粒径对碳化反应影响较小,而对硫化反应影响较大,粒径越小硫化率越高。煅烧过程中CO2浓度对碳化反应影响较大,而对硫化反应影响不大。钙基吸收剂碳化率随碳化循环次数的增加而下降,但硫化率受碳化循环次数的影响不大,40次循环后的吸收剂硫化率与新鲜剂硫化率接近,说明脱碳失效后的吸收剂剂仍是良好的脱硫剂。
     蒸汽水合法对钙基吸收剂激活作用明显,且吸收剂具有可重复水合激活特性。碳化失效的吸收剂每经历一次水合作用,其碳化活性可恢复至接近新鲜剂水平,且随后的活性下降规律与新鲜剂相同。水合后的吸收剂硫化率远高于新鲜剂硫化率。水合作用在吸收剂颗粒表面产生了大量裂缝和破碎,一方面有利于气体扩散和增大产物可自由生长的外表面积,另一方面由于增大了吸收剂磨损速度,不利于流化床运行。
     本文证实了钙基吸收剂流化床运行时团聚固结问题的存在。天然石灰石在鼓泡流化床中运行一段时间后,颗粒团聚固结导致流化效果恶化,甚至出现“死床”的现象。这是由于钙基吸收剂高温下自身的特性所造成的,粉末状新鲜石灰石在固定床上煅烧后即发生结块现象。石灰与铝酸钙水泥混合并制粒成球型颗粒的吸收剂,具有更好的循环稳定性和脱硫能力,更好的抗磨损和抗团聚性能,但是该吸收剂初始几次脱碳能力低于天然吸收剂。
     基于“以废治废”的思想以及受火山灰反应可生成高比表面积产物的启发,将煤灰与CaO在热水中混合搅拌加速火山灰反应,得到比表面积和比孔容积明显提高的钙基吸收剂。火山灰反应产物主要是CaSiO3,呈网状结构,其发达程度与CaO/煤灰配比、水热化合时间以及CaSO4或NaOH的添加量有关。合成剂比天然吸收剂具有更好是循环稳定性,但合成剂中CaO配比不宜过低,否则合成剂中有效CaO含量过低,将降低整体脱碳脱硫能力。经过多次脱碳循环失效的合成剂仍然具有良好的脱硫能力。添加少量NaOH会明显降低合成剂循环脱碳能力,但却能大幅提高脱硫能力,这是由于脱硫反应除了受气体扩散控制外,还受固态离子扩散控制,Na+离子的加入可造成更多的晶格缺陷,加速了离子扩散速率,从而提高脱硫能力。
SO2and CO2, genetated by the combustion of fossil fuels, are considered as the main contributors towards acid rain and global warming, separately. Electric power plants which use fossil fuels are the largest global source of SO2and CO2emissions. CaO-based sorbents such as limestone are widely used to retain SO2in coal-fired flue gas, due to its ease of availability, low price and large absorption capacity. Further studies have revealed that CaO-based sorbents can also capture CO2cyclically in the flue gas at high temperature. Based on previous work of other researchers, this thesis proposes the idea of using CaO-based sorbent to capture CO2cyclically and then to retain SO2. The flow chart of running with circulating fluidized beds is also ploted. To avoid the negative effect of SO2on carbonation and realize sequential removal of both gases, fresh sorbents are used to capture CO2cyclically first and then the spent ones are used to retain SO2, while flue gas is desulphated first and then decarbonated. It is obvious that using CaO-based sorbent to capture CO2and SO2sequentially is a feasible scheme and will have great economic advantages.
     With the equipments of thermogravimetric analyzer (TGA) and fixed bed, this paper begins with basic kinetic research, investigating the effect of particle size and calcination atmosphere on CO2and SO2capture, and the effect of CO2looping cycles on SO2capture. As CO2carrying capacity decreases with increasing cycles, steam hydration is used to reactivate CaO-based sorbent. Under simulated flue gas atmosphere, the sequential CO2and SO2carrying capacity of CaO-based sorbent is tested in a bubbling fluidized bed and the fluidized effect and particle attrition is observed. With the idea of "treating waste with waste", coal ash and CaO are hydrated in hot water to synthesize new sorbents with specific surface area and pore volume enhanced dramatically and their CO2and SO2carrying capacity is tested using TGA. During all experimental process, a lot of auxiliary equipment such as electron microscopy scanner, surface area analyzer, particle size analyzer and X-ray diffraction analyzer, are used to identify properties of the sorbent at different stage.
     The results show that the particle size in the range of180-400mesh has little effect on CO2capture while having a great effect on SO2capture, with SO2carrying capacity increasing with decreasing particle size. Calcination condition such as CO2concentration has a large effect on CO2capture while little on SO2capture. CO2carrying capacity decreases as the number of cycles increases, while the cycle number has little influence on SO2capture. For example, the SO2carrying capacity of sorbent that has experienced40cycles is close to that of fresh sorbent. That means the CaO-based sorbent which is spent in CO2capture is still active in SO2capture and can be reused.
     It is proved that the CO2carrying capacity of spent CaO-based sorbent can be enhanced to the equivalent of fresh sorbent by steam hydration, and the new carrying capacity decreases in next few cycles at the same rate as fresh sorbent. This process can be repeated. The SO2carrying capacity of steam reactived sorbent is much higher than that of fresh sorbent. The hydration process generates a large amount of cracks on the particle surface, which benefits gas diffusion and increases the outer surface area where products can grow freely, but also intensifies sorbent attrition which is bad for fluidization.
     This thesis identifies the problem of sorbent agglomeration in fluidized beds. When the natural limestone runs in bench scale bubbling fluidized bed for few cycles, the sorbent particles agglomerate and fluidization deteriorates, even resulting in a "dead area". Apart from the reason of a small reactor size, agglomeration is a built-in problem of CaO-based sorbent at high temperature, as it can be seen that fresh limestone powder cakes after the first calcination in a fixed bed. Although the CaO-based pellets have a lower CO2carrying capacity than natural limestone for the first few cycles, they show much better performace in cycling stability, SO2carrying capacity, anti-attrition, and anti-agglomeration
     Based on the idea of "treating waste with waste" and inspired by that a pozzolanic reaction can enhance surface area, coal ash and CaO were stirred together in hot water for few hours to synthesize surface area and activity improved CaO-sorbent. The main product of the pozzolanic reaction is CaSiO3, showing network structure, and its development is related to the ratio of CaO/coal ash, hydration time, amount of CaSO4and NaOH. The synthesized sorbent has a better cycling stability than natural sorbent, however, the CaO/coal ash ratio should not be too low, otherwise the free CaO content of the synthesized sorbent decreases and consequently the overall CO2and SO2carrying capacity. The synthesized sorbent which experienced multi-cycles still keep a high SO2carrying capacity. Adding a small amount of NaOH decreases cyclic CO2carrying capacity of synthesized sorbent but enhances SO2carrying capacity dramatically. The reason is that sulphation reaction is controlled not only by gas diffusion but also solid-state iron diffusion. Na+ions generate more crystal lattice defects which can accelerate iron diffusion rate in product layer, and consequentially enhance overall SO2carrying capacity.
引文
[1]www.iPee.ch. Climate Change Report,2007.
    [2]R. D. Richter, S. Caillol. Fighting global warming:The potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2011,12(1):1-19.
    [3]S. Chen, D. Wang, Z. Xue, et al. Calcium looping gasification for high-concentration hydrogen production with CO2 capture in a novel compact fluidized bed:Simulation and operation requirements[J]. International Journal of Hydrogen Energy,2011,36(8):4887-4899.
    [4]J. C. Abanades, E. J. Anthony, J. Wang, et al. Fluidized bed combustion systems integrating CO2 capture with CaO[J]. Environmental Science & Technology,2005, 39(8):2861-2866.
    [5]T. Shimizu, T. Hirama, H. Hosoda, et al. A twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research and Design, 1999,77(1):62-68.
    [6]李英杰,赵长遂.钙基吸收剂循环锻烧/碳酸化反应过程特性研究[J].中国电机工程学报,2008,28(1):55-60.
    [7]李英杰,赵长遂.基于钙基吸收剂的循环煅烧/碳酸化反应吸收CO2的试验研究[J].动力工程,2008,28(1):117-121.
    [8]陈惠超,赵长遂,李英杰,等.钙基吸收剂煅烧/加压碳酸化循环特性实验研究[J].中国电机工程学报,2010,30(29):42-48.
    [9]房凡,李振山,蔡宁生.钙基CO2吸收剂的种类和粒径对循环煅烧/碳酸化的影响[J].2008,29(4):698-702.
    [10]房凡,李振山,蔡宁生.钙基CO2吸收剂循环反应特性的试验与模拟[J].2009,29(14):30-35.
    [11]V. Manovic, E. J. Anthony. Parametric study on the CO2 capture capacity of CaO-based sorbents in looping cycles[J]. Energy & Fuels,2008,22(3):1851-1857.
    [12]J. C. Abanades, D. Alvarez. Conversion limits in the reaction of CO2 with lime[J]. Energy & Fuels,2003,17(2):308-315.
    [13]R. Barker. The reversibility of the reaction CaCO3=CaO+CO2[J]. Journal of Applied Chemistry & Biotechnology,1973,23(10):733-742.
    [14]李振山.基于化学链燃烧的吸收增强式甲烷重整制氢研究[D],2006.
    [15]D. Mess, A. F. Sarofim, J. P. Longwell. Product layer diffusion during the reaction of calcium oxide with carbon dioxide[J]. Energy & Fuels,1999,13(5):999-1005.
    [16]D. Alvarez, J. C. Abanades. Pore-size and shape effects on the recarbonation performance of calcium oxide submitted to repeated calcination/recarbonation cycles[J]. Energy & Fuels,2005,19(1):270-278.
    [17]D. Alvarez, J. C. Abanades. Determination of the critical product layer thickness in the reaction of CaO with CO2[J].Industial and Engineering Chemistry Research, 2005,44(15):5608-5615.
    [18]V. Manovic, E. J. Anthony. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles [J]. Environmental Science & Technology,2008,42(11):4170-4174.
    [19]V. Manovic, E. J. Anthony, G. Grasa, et al. CO2 looping cycle performance of a high-purity limestone after thermal activation/doping [J]. Energy & Fuels,2008, 22(5):3258-3264.
    [20]J. A. Shearer, G. W. Smith, K. M. Myles, et al. Hydration enhanced sulfation of limestone and dolomite in the fluidized bed combustion of coal[J]. J Air Pollut Control Assoc,1980,30(6):684-688.
    [21]M. C. Stewart, V. Manovic, E. J. Anthony, et al. Enhancement of indirect sulphation of limestone by steam addition[J]. Environmental Science & Technology,2010, 44(22):8781-8786.
    [22]V. Manovic, E. J. Anthony. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles[J]. Environmental Science & Technology,2007,41(4): 1420-1425.
    [23]V. Manovic, D. Lu, E. J. Anthony. Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor[J]. Fuel,2008,87(15-16):3344-3352.
    [24]V. Manovic, E. J. Anthony. Carbonation of CaO-based sorbents enhanced by steam addition[J]. Industrial & Engineering Chemistry Research,2010,49(19): 9105-9110.
    [25]P. S. Fennell, J. F. Davidson, J. S. Dennis, et al. Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems[J]. Journal of the Energy Institute,2007,80(2):116-119.
    [26]K. Wang, X. Guo, P. Zhao, et al. CO2 capture of limestone modified by hydration-dehydration technology for carbonation/calcination looping [J]. Chemical Engineering Journal,2011,173(1):158-163.
    [27]J. J. Yin, C. Zhang, C.L. Qin, et al. Reactivation of calcium-based sorbent by water hydration for CO2 capture[J]. Chemical Engineering Journal,2012,198-199: 38-44.
    [28]由长福,祁海鹰,王伟,徐旭常.中温烟气生石灰脱硫模型[J].燃烧科学与技术,2002,8(3):193-198.
    [29]祁海鹰,由长福,王爱军,来强.温度对脱硫剂钙利用率和蒸汽活化效果的影 响[J].工程热物理学报,2003,24(4):717-719.
    [30]祁海鹰,由长福,王爱军,徐旭常.蒸汽活化改善中温烟气脱硫的机理[J].中国电机工程学报,2002,22(7):119-126.
    [31]张颉,由长福,祁海鹰,陈昌和.一种利用快速水合反应制备脱硫剂粉末的方法及装置[P].中国专利:2006101655839,2009-01-14.
    [32]张颉.快速水合脱硫剂循环流态化中温烟气脱硫的过程研究[D].北京:清华大学,2008.
    [33]傅国光,颜岩,彭晓峰,王补宣.钙基脱硫剂水合改性实验分析[J].中国电机工程学报,2004,24(3):178-183.
    [34]V. Materic, C. Sheppard, S. I. Smedley. Effect of repeated steam hydration reactivation on CaO-based sorbents for CO2 capture[J]. Environmental Science & Technology,2010,44(24):9496-9501.
    [35]H. Chen, Z. Zhao, X. Huang, et al. Novel optimized process for utilization of CaO-based sorbent for capturing CO2 and SO2 sequentially[J]. Energy & Fuels, 2012,26(9):5596-5603.
    [36]H. Gupta, L. S. Fan. Carbonation-calcination cycle using high reactivity calcium xxide for carbon dioxide separation from flue gas[J]. Industrial & Engineering Chemistry Research,2002,41(16):4035-4042.
    [37]M. V. Iyer, H. Gupta, B. B. Sakadjian, et al. Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO[J]. Industrial & Engineering Chemistry Research,2004,43(14):3939-3947.
    [38]H. Lu, E. P. Reddy, P. G Smirniotis. Calcium oxide based sorbents for capture of carbon dioxide at high temperatures[J]. Industial and Engineering Chemistry Research,2006,45(11):3944-3949.
    [39]H. Lu, A. Khan, P. G. Smirniotis. Relationship between structural properties and CO2 capture performance of CaO-based sorbents obtained from different organometallic precursors[J]. Industial and Engineering Chemistry Research,2008, 47(16):6216-6220.
    [40]W. Q. Liu, N. W. Low, B. Feng, et al. Calcium precursors for the production of CaO sorbents for multicycles CO2 capture [J]. Environmental Science & Technology,2010,44(2):841-847.
    [41]Z. S. Li, N. S. Cai, Y. Y. Huang, et al. Synthesis, experimental studies,and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & Fuels,2005,19(4): 1447-1452.
    [42]C. S. Martavaltzi, A. A. Lemonidou. Development of new CaO based sorbent material for CO2 removal at high temperature [J]. Microporous and Mesoporous Materials,2008,110(1):119-127.
    [43]W. Q. Liu, B. Feng, Y. Q. Wu, et al. Synthesis of sintering-resistant sorbents for CO2 capture [J]. Environmental Science & Technology,2010, (44):3093-3097.
    [44]M. Xie, Y. Qi, Z. Zhou, et al. Sorption-enhanced steam methane reforming by in situ CO2 capture on a CaO-Ca9Al6O18 sorbent[J]. Chemical Engineering Journal, 2012,207-208:142-150.
    [45]Z. Zhou, Y. Qi, M. Xie, et al. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance [J]. Chemical Engineering Science,2012,74:172-180.
    [46]J. H. Yang, S. M. Shih, C. I. Wu, et al. Preparation of high surface area CaCO3 for SO2 removal by absorption of CO2 in aqueous suspensions of Ca(OH)2[J]. Powder Technology,2010,202(1-3):101-110.
    [47]Z. Yang, M. Zhao, N. H. Florin, et al. Synthesis and characterization of CaO nanopods for high temperature CO2 capture[J]. Industrial & Engineering Chemistry Research,2009,48(24):10765-10770.
    [48]Y. J. Li, C. S. Zhao, C. R. Qu, et al. CO2 capture using CaO modified with ethano I/water solution during cyclic calcination/carbonation[J]. Chemical Engineering & Technology,2008,31(2):237-244.
    [49]Y. Li, C. Zhao, H. Chen, et al. Enhancement of Ca-based sorbent multicyclic behavior in Ca looping process for CO2 separation [J]. Chemical Engineering & Technology,2009,32(4):548-555.
    [50]Y. Li, C. Zhao, H. Chen, et al. Modified CaO-based sorbent looping cycle for CO2 mitigation[J]. Fuel,2009,88(4):697-704.
    [51]Y. Li, C. Zhao, L. Duan, et al. Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture[J]. Fuel Processing Technology,2008, 89(12):1461-1469.
    [52]J. Adanez, L. F. Diego, F. Garcia-Labiano. Calcination of calcium acetate and calcium magnesium acetate:effect of the reacting atmosphere [J]. Fuel,1999,78: 583-592.
    [53]A. A. Patsias, W. Nimmo, B. M. Gibbs, et al. Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace[J]. Fuel,2005,84: 1864-1873.
    [54]Y. Li, C. Zhao, H. Chen, et al. Cyclic CO2 capture behavior of KMnO4-doped CaO-based sorbent [J]. Fuel,2010,89(3):642-649.
    [55]C.H. Huang, K. P. Chang, C. T. Yu, et al. Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica[J]. Chemical Engineering Journal, 2010,161(1-2):129-135.
    [56]J. A. Shearer, I. Johnson, C. B. Turner. Effects of sodium chloride on limestone calcination and sulfation in fluidized-bed combustion [J]. Environmental Science & Technology,1979,13(9):1113-1118.
    [57]C. Chen, Z. Ye, C. Wang. Enhancement of direct sulfation of limestone by addition[J]. Fuel Processing Technology,2009,90(7-8):889-894.
    [58]C. Wang, X. Shen, Y. Xu. Investigation on sulfation of modified Ca-based sorbent[J]. Fuel Processing Technology,2002,79(2):121-133.
    [59]C. Salvador, D. Lu, E. J. Anthony, et al. Enhancement of CaO for CO2 capture in an FBC environment [J]. Chemical Engineering Journal,2003,96(1-3):187-195.
    [60]E. P. Reddy, P. G. Smirniotis. High-temperature sorbents for CO2 made of alkali metals doped on CaO supports[J]. The Journal of Physical Chemistry B,2004, 108(23):7794-7800.
    [61]B. Feng, W. Q. Liu, X. Li, et al. Overcoming the problem of loss-in-capacity of calcium oxide in CO2 capture [J]. Energy & Fuels,2006,20(6):2417-2420.
    [62]P. Gruene, A. G. Belova, T. M. Yegulalp, et al. Dispersed calcium oxides as a reversible and efficient CO2-sorbent at intermediate temperatures[J]. Industial and Engineering Chemistry Research,2011,50(7):4042-4049.
    [63]V. Manovic, E. J. Anthony. CO2 carrying behavior of calcium aluminate pellets under high-temperature/high-CO2 concentration calcination conditions[J]. Industrial & Engineering Chemistry Research,2010,49(15):6916-6922.
    [64]V. Manovic, E. J. Anthony. Screening of binders for pelletization of CaO-based sorbents for CO2 capture[J]. Energy & Fuels,2009,23(10):4797-4804.
    [65]V. Manovic, Y. Wu, I. He, et al. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles [J]. Environmental Science & Technology,2012,46(22):12720-12725.
    [66]V. Manovic, E. J. Anthony. Reactivation and remaking of calcium aluminate pellets for CO2 capture[J]. Fuel,2011,90(1):233-239.
    [67]W. Jozewicz, J. C. S. Chang, T. G. Brna, et al. Reactivation of solids from furnace injection of limestone for sulfur dioxide control [J]. Environmental Science & Technology,1987,21(7):664-670.
    [68]K. T. Lee, S. Bhatia, A. R. Mohamed. Preparation and chracterization of CaO/CaSO4/coal fly ash sorbent for sulfur dioxide removal part 1[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2006,28(13): 1241-1249.
    [69]K. T. Lee, S. Bhatia, A. R. Mohamed, et al. Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization[J]. Chemosphere,2006,62(1): 89-96.
    [70]K. T. Lee, A. R. Mohamed, S. Bhatia, et al. Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents[J]. Chemical Engineering Journal,2005,114(1-3): 171-177.
    [71]K. K. Kind, P. D. Wasserman, G. T. Rochelle. Effects of salts on preparation and use of calcium silicates for flue gas desulfurization[J]. Environmental Science & Technology,1994,28(2):277-283.
    [72]J. Zhang, S. W. Zhao, C. F. You, et al. Rapid hydration preparation of calcium-based sorbent made from lime and fly ash[J]. Industrial & Engineering Chemistry Research,2007,46(16):5340-5345.
    [73]R. Barker. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage [J]. Journal of Applied Chemistry and Biotechnology,1974,24(4-5): 221-227.
    [74]N. H. Florin, A. T. Harris. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles[J]. Chemical Engineering Science,2009,64(2):187-191.
    [75]H. Lua, P. G. Smirniotisa, F. O. Ernstb, et al. Nanostructured Ca-based sorbents with high CO2 uptake efficiency [J]. Chemical Engineering Science,2009,64(9): 1936-1943.
    [76]罗聪,郑瑛,丁宁,等.纳米复合钙基高温C02吸收剂的合成与性能[J].中国电机工程学报,2011,31(8):45-50.
    [77]S. F. Wu, Q. H. Li, J. N. Kim, et al. Properties of a Nano CaO/Al2O3 CO2 Sorbent[J]. Industrial & Engineering Chemistry Research,2008,47(1):180-184.
    [78]Y. Zhu, S. Wu, X. Wang. Nano CaO grain characteristics and growth model under calcinations [J]. Chemical Engineering Journal,2011,175(15):512-518.
    [79]S. F. Wu, Y. Q. Zhu. Behavior of CaTiO3/Nano-CaO as a CO2 reactive adsorbent[J]. Industrial & Engineering Chemistry Research,2010,49(6):2701-2706.
    [80]K. Laursen, W. Duo, J. R. Grace, et al. Sulfation and reactivation characteristics of nine limestones [J]. Fuel,2000,79(2):153-163.
    [81]E. J. Anthony, D. L. Granatstein. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy and Combustion Science,2001,27(2):215-236.
    [82]P. Sun, J. R. Grace, C. J. Lim, et al. Removal of CO2 by calcium-based sorbents in the presence of SO2[J]. Energy & Fuels,2007,21(20):163-170.
    [83]C. Wang, L. Jia, Y. Tan. Simultaneous carbonation and sulfation of CaO in oxy-fuel CFB combustion[J]. Chemical Engineering & Technology,2011,34(10): 1685-1690.
    [84]H. Ryu, J. R. Grace, C. J. Lim. Simultaneous CO2/SO2 capture characteristics of three limestones in a fluidized-bed reactor[J]. Energy & Fuels,2006,20(4): 1621-1628.
    [85]F. N. Ridha, V. Manovic, A. Macchi, et al. The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived A1(OH)3 binder [J]. Applied Energy,2012,92:415-420.
    [86]G. S. Grasa, I. Nacional. Sulfation of CaO particles in a carbonation/calcination loop to capture CO2[J]. Industrial and Engineering Chemistry Research,2008, 47(5):1630-1635.
    [87]D. Y. Lu, R. W. Hughes, E. J. Anthony. Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds[J]. Fuel Processing Technology, 2008,89(12):1386-1395.
    [88]R. Chirone, L. Massimilla, P. Salatino. Comminution of carbons in fluidized bed combustion [J]. Progress in Energy and Combustion Science,1991,17(4): 297-326.
    [89]S. Lee, X. Jiang, T. C. Kleener, et al. Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber [J]. Industial and Engineering Chemistry Research,1993,32(11):2758-2766.
    [90]A. Benedetto, P. Salatino. Modelling attrition of limestones during calcination and sulfation in a fluidized be reactor[J]. Powder Technology,1998,95(2): 119-128.
    [91]L.Jia, R. Hughes, D. Lu, et al. Attrition of calcining limestones in circulating fluidized-bed systems [J]. Industial and Engineering Chemistry Research,2007, 46(15):5199-5209.
    [92]B. Gonzalez, M. Alonso, J. C. Abanades. Sorbent attrition in a carbonation/calcination pilot plant for capturing CO2 from flue gases[J]. Fuel,2010 89(10):2918-2924.
    [93]F. Montagnaro, P. Salatino, F. Scala. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions [J]. Experimental Thermal and Fluid Science,2010,34(3):352-358.
    [94]F. Montagnaro, P. Salatino. The influence of sorbent properties and reaction temperature on sorbent attrition, sulfur uptake, and particle sulfation pattern during fluidized-bed desulfurization[J]. Combustion Science and Technology,2002, 174(11-12):151-169.
    [95]X. Yao, H. Zhang, H. Yang, et al. An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed[J]. Fuel Processing Technology,2010,91(9):1119-1124.
    [96]J. J. Saastamoinen, T. Shimizu. Attrition-enhanced sulfur capture by limestone particles in fluidized beds[J]. Industial and Engineering Chemistry Research,2007, 46(4):1079-1090.
    [97]J. J. Saastamoinen, T. Shimizu, A. Tourunen. Effect of attrition on particle size distribution and SO2 capture in fluidized bed combustion under high CO2 partial pressure conditions[J]. Chemical Engineering Science,2010,65(1):550-555.
    [98]王爱军,祁海鹰,由长福,徐旭常.循环流化床烟气脱硫技术实验研究[J].燃 烧科学与技术,2000,6(4):351-355.
    [99]李飞,祁海鹰,由长福.T-T吸收剂脱硫模型的改进及与双流体模型的藕合[J].工程热物理学报,2009,30(2):336-338.
    [100]李玉然,王静,祁海鹰,由长福.T-Tb吸收剂中温固硫及磨耗特性的实验研究[J].清华大学学报(自然科学版),2010,50(7):1032-1036.
    [101]Y. Li, H. Qi, C. You, L. Yang. Comprehensive sulfation model verified for T-T sorbent clusters during flue gas desulfurization at moderate temperatures[J]. Fuel, 2010,89(8):2081-2087.
    [102]Y. Li, H. Qi, C. You, X. Xu. Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures [J]. Fuel,2007,86(5-6):785-792.
    [103]E. J. Anthony, D. L. Granatstein. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy and Combustion Science,2001,27 (2):215-236.
    [104]C. C. Dean, J. Blarney, N. H. Florin, et al. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production[J]. Chemical Engineering Research and Design,2011,89(6):836-855.
    [105]P. S. Fennell, R. Pacciani, J. S. Dennis, et al. The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand[J]. Energy & Fuels,2007,21(1):2072-2081.
    [106]李英杰,赵长遂,陈惠超.循环煅烧/碳酸化反应中CaO微观结构变迁特性[J],东南大学学报(自然科学版),2009,32(2):262-268.
    [107]刘妮,程乐鸣,骆仲泱,等.钙基吸收剂微观结构特性及其反应性能[J].化工学报,2004,55(4):635-639.
    [108]A. Coppola, F. Montagnaro, P. Salatino, et al. Fluidized bed calcium looping:The effect of SO2 on sorbent attrition and CO2 capture capacity[J], Chemical Engineering Journal,2012,207-208:445-449.
    [109]Y. Li, S. Buchi, J. R. Grace, et al. SO2 removal and CO2 capture by limestone resulting from calcination/sulfation/carbonation cycles[J]. Energy & Fuels,2005, 19(5):1927-1934.
    [110]尚建宇,王河山,王松岭,等.钙基脱硫剂空隙结构的分形特性研究[J].动力工程,2009,29(2):190-194.
    [111]V. Manovic, E. J. Anthony, D. Y. Lu. Sulphation and carbonation properties of hydrated sorbents from a fluidized bed CO2 looping cycle reactor[J]. Fuel,2008, 87(13-14):2923-2931.
    [112]B. Dou, Y. Song, Y. Liu, et al. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor[J]. J. Hazard. Mater,2010,183(1-3):759-765.
    [113]J. W. Butler, C. J. Lim, J. R. Grace. CO2 capture capacity of CaO in long series of pressure swing sorption cycles[J]. Chemical Engineering Research and Design, 2011,89(9):1794-1804.
    [114]V. Manovic, D. Lu, E. J. Anthony. Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor [J]. Fuel,2008,87(15-16):3344-3352.
    [115]蔡宁生,房凡,李振山.钙基吸收剂循环煅烧/碳酸化法捕集CO2的研究进展[J].中国电机工程学报,2010,30(26):35-43.
    [116]P. Sun, J. R. Grace, C. J. Lim, et al. Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions [J]. Environmental Science & Technology,2007,41(8):2943-2949.
    [117]V. Manovic, E. J. Anthony. Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent [J]. Fuel,2008,87(8-9):1564-1573.
    [118]曹立勇,何榕.氧化钙孔隙参数对固硫反应速率的影响[J].清华大学学报(自然科学版),2010,(2):283-286.
    [119]P. Lisbona, A. Martinez, Y. Lara, et al. Integration of carbonate CO2 capture cycle and coal-fired power plants. A comparative study for different sorbents[J]. Energy & Fuels,2010,24(1):728-736.
    [120]L. M. Romeo, Y. Lara, P. Lisbona, et al. Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants [J]. Fuel Processing Technology,2009,90(6):803-811.
    [121]E. Bouquet, G. Leyssens, C. Schonnenbeck, et al. The decrease of carbonation efficiency of CaO along calcination-carbonation cycles:Experiments and modeling[J]. Chemical Engineering Science,2009,64(9):2136-2146.
    [122]V. Manovic, E. J. Anthony. Competition of sulphation and carbonation reactions during looping cycles for CO2 capture by CaO-based sorbents[J]. The Journal of Physical Chemistry A,2010,114(11):3997-4002.
    [123]H. Chen, C. Zhao, L. Duan, et al. Enhancement of reactivity in surfactant-modified sorbent for CO2 capture in pressurized carbonation[J]. Fuel Processing Technology, 2011,92(3):493-499.
    [124]B. Arias, G. S. Grasa, J. C. Abanades. Effect of sorbent hydration on the average activity of CaO in a Ca-looping system[J]. Chemical Engineering Journal,2010, 163(3):324-330.
    [125]P. Sun, J. R. Grace, C. J. Lim, et al. Investigation of attempts to improve cyclic CO2 capture by sorbent hydration and modification[J]. Industial and Engineering Chemistry Research,2008,47(6):2024-2032.
    [126]V. Manovic, E. J. Anthony. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles[J]. Environmental Science & Technology,2007, 41(12):4435-4440.
    [127]S. Smedley, V. Materic, C. M. Henderson. Gas separation process[P]:US, WO2009148334.2009-12-10.
    [128]V. Materic, S. Edwards, S. I. Smedley, et al. Ca(OH)2 superheating as a low-attrition steam reactivation method for CaO in calcium looping applications[J]. Industial and Engineering Chemistry Research,2010,49(24):12429-12434.
    [129]C. Hawthorne, H. Dieter, A. Bidwe, et al. CO2 capture with CaO in a 200 kWth dual fluidized bed pilot plant[J]. Energy Procedia,2011,4:441-448.
    [130]A. Charitos, C. Hawthorne, A. R. Bidwe, et al. Parametric investigation of the calcium looping process for CO2 capture in a lOkWth dual fluidized bed[J]. International Journal of Greenhouse Gas Control,2010,4(5):776-784.
    [131]H. Lu, P. G Smirniotis. Calcium oxide doped sorbents for CO2 uptake in the presence of SO2 at high temperatures [J]. Industial and Engineering Chemistry Research,2009,48(11):5454-5459.
    [132]F. Zeman. Effect of steam hydration on performance of lime sorbent for CO2 capture[J]. International Journal of Greenhouse Gas Control,2008,2(2):203-209.
    [133]F. Donat, N. H. Florin, E. J. Anthony, et al. Influence of high temperature steam on the reactivity of CaO sorbent for CO2 capture [J]. Environmental Science& Technology,2012,46(2):1262-1269.
    [134]F. Montagnaro, F. Ii, C. Universitario, et al. Steam reactivation of a spent sorbent for enhanced SO2 capture in FBC[J]. AIChE Journal,2006,52(12):4090-4098.
    [135]R. H. Borgwardt. Calcium oxide sintering in atmospheres containing water and carbon dioxide[J]. Industial and Engineering Chemistry Research,1989,28(1961): 493-500.
    [136]C. Wang, L. Jia, Y. Tan, et al. The effect of water on the sulphation of limestone [J]. Fuel,2010,89(9):2628-2632.
    [137]V. Manovic, M. C. Stewart, A. Macchi, et al. Agglomeration of sorbent particles during sulfation of lime in the presence of steam[J]. Energy & Fuels,2010,24(12): 6442-6448.
    [138]Y. Wu, V. Manovic, I. He, et al. Modified lime-based pellet sorbents for high-temperature CO2 capture:Reactivity and attrition behavior[J]. Fuel,2012,96: 454-461.
    [139]V. Manovic, E. J. Anthony. Long-term behavior of CaO-based pellets supported by calcium aluminate cements in a long series of CO2 capture cycles[J]. Industial and Engineering Chemistry Research,2009,48(19):8906-8912.
    [140]V. Manovic, E. J. Anthony. Reactivation and remaking of calcium aluminate pellets for CO2 capture[J]. Fuel,2011,90(1):233-239.
    [141]蒋敏华,肖平,北京.大型循环流化床锅炉技术[M].北京:中国电力出版社,2009.
    [142]D. C. Chitester, R. M. Komosky. Characteristics of fluidization at high pressure[J]. Chemical Engineering Science,1984,39(2):253-261.
    [143]X. Wang, M. Li, S. Li, et al. Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent:A comparative study of thermodynamic and experimental work[J]. Fuel Processing Technology,2010,91(12):1812-1818.
    [144]陈鸿伟,赵争辉,黄新章,等.蒸汽活化钙基吸收剂联合脱碳脱硫特性[J].化工学报,2012,63(8):2567-2575.
    [145]G. Xiao, J. R. Grace, C. J. Lim. Attrition characteristics and mechanisms for limestone particles in an air-jet apparatus[J]. Powder Technology,2011,207(1-3): 183-191.
    [146]Z. Chen, J. R. Grace, C. Jim Lim. Limestone particle attrition and size distribution in a small circulating fluidized bed[J]. Fuel,2008,87(7):1360-1371.
    [147]卢国懿,薛峰,赵江涛.对我国粉煤灰利用现状的思考[J].中国矿业,2011,20:193-196.
    [148]M. Ahmaruzzaman. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science,2010,36(3):327-363.
    [149]K. Lee, O. Koon. Modified shrinking unreacted-core model for the reaction between sulfur dioxide and coal fly ash/CaO/CaSO4 sorbent[J]. Chemical Engineering Journal,2009,146(1):57-62.
    [150]王晋刚,胡金榜,王道斌,等.粉煤灰与氢氧化钙火山灰反应制备烟气脱硫剂的动力学分析[J].化学反应工程与工艺,2006,22(4):329-334.
    [151]赵融芳,沈友良.人工火山灰质材料调质改性Ca(OH)2脱硫剂的研究进展[J].化工进展,2010,29(10):1817-1825.
    [152]张虎,佟会玲,董善宁,等.使用添加剂调质钙基脱硫剂[J].化工学报,2006,57(2):385-389.
    [153]C. F. Liu, S. M. Shih. Effect of NaOH addition on the reactivities of iron blast furnace slag/hydrated lime sorbents for low-temperature flue gas desulfurization[J]. Industial and Engineering Chemistry Research,2004,43(1):184-189.
    [154]张虎,佟会玲,董善宁,等.添加剂调质下脱硫剂活性影响因素的实验研究[J].热能动力工程,2006,21(4):397-400.
    [155]C. F. Liu, S. M. Shih, J. H. Yang. Reactivities of NaOH enhanced iron blast furnace slag/hydrated lime sorbents toward SO2 at low temperatures:Effects of the presence of CO2, O2, and NOx[J]. Industial and Engineering Chemistry Research, 2010,49(2):515-519.
    [156]王晋刚,胡金榜,唐雪娇,等.烟尘水热化合反应制备钙基脱硫剂工艺优化[J].南开大学学报(自然科学版),2006,1:14-18.
    [157]C. F. Liu, S. M. Shih, R. B. Lin. Effect of Ca(OH)2/fly ash weight ratio on the kinetics of the reaction of Ca(OH)2/fly ash sorbents with SO2 at low temperatures [J]. Chemical Engineering Science,2004,59(21):4653-4655.
    [158]N. M. Noor, K.T. Lee, N. F. Zainudin, et al. Preparation, optimization and activity of active absorbent synthesized from oil palm ash for flue gas desulfurization[C]. The Seventh Asia-Pacific International Symposium on Combustion and Energy Utilization, Hong Kong SAR,2004:1-8.
    [159]A. R. Mohamed, N. F. Zainudin, K. T. Lee, ey al. Reactivity of absorbent prepared from oil palm ash for flue gas desulfurization:Effect of SO2 concentration and reaction temperature[J]. Studies in Surface Science and Catalysis,2006,159: 449-452.
    [160]K. T. Lee, S. Bhatia, A. R. Mohamed. Preparation and characterization of sorbents prepared from ash (waste material) for sulfur dioxide (SO2) removal[J]. Journal of Material Cycles and Waste Management,2005,7(1):16-23.
    [161]K. T. Lee, A. M. Mohtar, N. F. Zainudin, et al. Optimum conditions for preparation of flue gas desulfurization absorbent from rice husk ash[J]. Fuel,2005,84(2-3): 143-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700