用户名: 密码: 验证码:
螺杆泵定子用丁腈基橡胶的摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺杆泵采油技术适宜于高粘度、高含砂量原油开采,广泛应用于斜井、水平井、沼泽地区以及海上平台采油作业,具有不存在断杆和管漏故障,相同采油量下能耗低等特点,因此与柱塞式抽油机、电潜离心泵等采油技术相比,适用性更加广泛。近年来在我国辽河、胜利、渤海等油田的应用迅速扩大,为国家的能源开发做出突出贡献。
     螺杆泵主要是由转子(镀有耐腐蚀层的螺旋状金属杆)和定子(内部衬有橡胶的金属管)部件组成。工作过程中定子橡胶要受到金属转子的冲击以及摩擦。螺杆泵定子橡胶在腐蚀性原油介质中常出现脱胶、撕裂、胶溶等现象,磨损抗力降低,致使设备整体失效。目前,国内外对定子橡胶材料的使役性能研究已经取得了一定的进展,但有关采油井况下橡胶摩擦磨损行为的研究鲜有报道,还处于理论分析阶段。开展这方面的研究工作,一方面可以为不同工况下合理选择螺杆泵定子橡胶材料提供帮助,另一方面也为橡胶摩擦学的发展做出贡献。
     应用于定子的橡胶多种多样,对比分析材料的物理化学性能、性价比、工作油井的井况等综合因素,主要采用丁腈橡胶(NBR)。丁腈橡胶的性能主要受丙烯腈含量以及炭黑份数的影响。为此,本文将基于不同的采油工况,研究丙烯腈含量、炭黑份数对橡胶耐磨性能的影响,分析其摩擦磨损机理,为不同工况下合理选择定子橡胶材料、提高螺杆泵的使用寿命提供重要依据。
     论文通过对试验结果的比对分析,归纳出不同工况下丁腈橡胶的摩擦磨损规律。干摩擦下,炭黑份数越高、分散程度越好丁腈橡胶的耐磨性越好。但炭黑份数过高,母胶成分下降,丁腈橡胶的理化性能降低,耐磨性不再随炭黑份数的增加而提高。由于丙烯腈含量的增加,增大了分子链间的极性,丙烯腈含量越高,丁腈橡胶的耐磨性越好。干摩擦下丁腈橡胶的磨损机制以黏着磨损和滞后磨损为主;清水介质下,由于水的冷却作用,降低了温度对摩擦磨损的影响,炭黑份数对磨损量的影响甚微。硬度较小的丁腈橡胶,丙烯腈含量越高,极性越强,耐磨性越好;丙烯腈含量低的丁腈橡胶,若炭黑份数较大,由于-C≡N键少导致分子间作用力小,炭黑更容易分散进入晶格形成柔性网络结构,丁腈橡胶的耐磨性显著增强,丁腈橡胶在水中的磨损机制为磨粒磨损。原油介质下的磨损量略大于水中的磨损量,炭黑份数越高,丁腈橡胶耐磨性越好。低载荷时,由于油膜较厚,磨损主要发生在橡胶与原油之间,因此炭黑份数对丁腈橡胶的磨损性能影响不大;高载荷时,丁腈橡胶与金属轮之间形成动压润滑,磨损量随炭黑份数的增加而减小。硬度较小的丁腈橡胶,丙烯腈含量越高,极性越强,耐磨性越好,丙烯腈对磨损量的影响与水中的磨损规律一致,原油介质中其磨损机制主要是腐蚀磨损。
     论文通过对干摩擦条件下丁腈橡胶的摩擦磨损行为研究,提出炭黑作用于丁腈橡胶与金属轮摩擦副的摩擦磨损机理。磨损过程中,在剪切力的作用下,炭黑颗粒克服分子间作用力从橡胶基体中脱落,受到挤压在摩擦表面形成润滑膜,减小了基体与对偶面的直接接触,使对偶面的摩擦由橡胶与金属对磨转化为炭黑润滑膜与金属的摩擦,摩擦系数减小,降低了橡胶的磨损。然而,这层润滑膜结合不牢固,非常容易被磨损破坏,橡胶再次受到磨损,炭黑又从内部的基体脱粘重新形成润滑膜,周而复始形成循环。
     螺杆泵实际工作过程中,定子橡胶的选择需要根据工况的变化而变化,论文实现了基于采油工况的橡胶丙烯腈含量及炭黑份数的最优选择。基于不同炭黑份数下丁腈橡胶摩擦磨损试验结果,确定采油工况、丙烯腈含量、炭黑份数与橡胶耐磨性之间的定性关系,为螺杆泵的橡胶材料选择提供了理论支持。
Recent years in our country, technology of oil well using progressing cavity pump isexpanded rapidly in LiaoHe, ShengLi and BoHai sea oils, which has made outstandingcontributions for the country's energy development. Compared with the plunger typepumping unit, electric submersible centrifugal pump etc, progressing cavity pump issuitable for mining crude oil with high viscosity, high sand content, and deviated well,horizontal well, marshland, and operation of oil production in offshore platform. It is alsono break and pipe leakage failure, low energy consumption under the same oil recovery.
     Screw pump is mainly composed of stator and rotor (screw) components. Rotor is aspecially processed spiral metal rod, which is coated corrosion resistant layer outside, andthe stator is metal tube with rubber in the internal. In the process of the work, the statorrubber is impacted and slidded by metal rotor. Rubber of screw pump stator often appearthe phenomenon such as degumming, tearing and peptizing in the corrosive medium ofcrude oil, which lead to reducing the wear resistance, then the equipment overall failure,so screw pump stator rubber wear severely restrict the service life of screw pump. Atpresent, the research on the performance of the stator rubber at home and abroad havemade certain progress, which direction is more on the physical and chemical properties ofthe rubber material. But it is rarely reported on friction and wear behavior between therubber and metal pair in the working condition of screw pump, still in the stage oftheoretical analysis. Research work in this area, on the one hand, offer help for reasonableselection of screw pump stator rubber materials under different working conditions. Onthe other hand also contribute to the development of rubber tribology.
     There are many types of the stator rubber, comprehensive considering the materialperformance, cost-effective, oil well conditions and other factors, people mainly choosenitrile rubber (NBR). Nitrile rubber performance is affected mainly by acrylonitrile andcarbon black content.So in this paper the friction and wear behavior of commonly usedNBR and metals was studied, aimed at offering help to select screw pump stator rubbermaterials for different working conditions.
     By comparing the test results, friction and wear rule of NBR is summed up underdifferent working condition. Under dry friction, the higher the carbon black content, thebetter the dispersion degree, the better the wear resistance of NBR. But carbon blackcontents are too high, composition of masterbatch decreased, physical and chemicalproperties of the NBR reduced, wear resistance increase with the increase of carbonnumber. With increase of the acrylonitrile content, the polarity between the molecularchains is bigger, the higher the acrylonitrile content, the better the wear resistance ofNBR. The wear mechanism of NBR under dry friction mainly adhesive wear and lagwear; Under water medium, because of the cooling water, reduce the influence oftemperature on the friction and wear, content of carbon black has very little effect onamount of wear and tear. Smaller hardness of NBR, the higher the acrylonitrile content,the stronger the polarity, the better resistance to wear; Low acrylonitrile content of NBR,carbon black content is larger, due to low-C≡N keys, molecular polarity is poor, thepacking is more conducive to form a flexible network structure, to improve the wearresistance of NBR, wear mechanism is abrasive wear in the water. Wear loss under crudeoil medium is slightly larger than the water, the higher the carbon black is leaked,resistance to wear of NBR is better. At low load, due to the oil film thicker, wear mainlyoccurs between rubber and crude oil, so the carbon black content has a little influence onthe wear properties of the NBR; High load, the dynamic pressure lubrication formedbetween NBR and metal wheels, erosion rate decreases with the increase of the carbonblack was leaked. Smaller hardness, the higher the acrylonitrile content, the stronger thepolarity, resistance to wear is better, acrylonitrile affects the quantity of abrasion wearrules consistent with the water, the main wear mechanism is corrosion and wear.
     Based on research of the friction and wear behavior of NBR under dry frictioncondition, friction and wear mechanism is proposed.Under the action of shear force inwear process, carbon black particles to overcome molecular inter-atomic forces fall offfrom the rubber matrix, by forming a lubrication film extrusion on the friction surface,reduce the substrate, direct contact with the dual surface friction by rubber and metal tomake dual surfaces into carbon black of lubricant and metal friction, the friction coefficient decreases, and reduce the wear of rubber. However, this layer of lubricationfilm combined with the weak, very easy to damage and wear off, rubber wear, has beengiven to the inside of the carbon black and debonding from matrix to form the lubricationfilm, the cycle form a circle.
     In the screw pump working process, the choice of the stator rubber need variesaccording to the working conditions, this paper realized the optimal selection of NBRbased on the production condition of acrylonitrile and carbon black content. Based on thefriction and wear test results under different carbon black and acrylonitrile content, thequalitative relationship is determined which between production conditions, acrylonitrilecontent, carbon black content and rubber abrasion resistance, it provides theoreticalsupports for screw pump rubber material selection.
引文
[1]王世杰,李勤.潜油螺杆泵采油技术及系统设计[M].北京:冶金工业出版社,2006.
    [2]孙浩.转速对螺杆泵定子磨损影响的机理分析与速度优化[D].沈阳:沈阳工业大学,2011.
    [3] Clegg J D, Bucaram S M, Hein Jr N W. Recommendations and comparisons for selectingartificial-lift methods[J]. Journal of Petroleum Technology,1993,45(12):1128~1131.
    [4] Kahali K, Rai R, Mukerjie R K. Artificial lift methods for marginal fields. Proc SPE Prod OperSymp,1991,4:597~605.
    [5]张连山.螺杆泵采油系统技术发展现状与动向研究[J].石油机械,1994,22(1):46~50.
    [6] Beauquin J L, Boireau C, Lemay L, et al. Development status of a metal progressing cavity pumpfor heavy-oil and hot-production wells[J]. Journal of Petroleum Technology,2006,58(5):59~61.
    [7]梁丙雪.潜油螺杆泵专用稀土永磁同步电动机研究[D].沈阳:沈阳工业大学,2008.
    [8]王欣欣.潜油螺杆泵直驱永磁电动机的研究[D].沈阳:沈阳工业大学,2012.
    [9]孙喜寿.机械采油方法的正确选择[J].国外油田工程,1994,(3):13~14.
    [10]胡茂军,王军,高原.螺杆泵井合理转速的确定与应用[J].油气田地面工程,2009,28(11):38~39.
    [11] Bratu C, Seince L. New Progressing Cavity pump (NPCP) for multiphase and viscous liquidproduction[J]. International Thermal Operations and Heavy Oil Symposium Proceedings,2005,(2005): B81~B87.
    [12] Bohorquez M, Rubiano E, Labrador L, et al. Implementation of bottom-drive progressive-cavitypumps technology in La Cira-Infantas oil field as a reliable artificial lift method[C]. Society ofPetroleum Engineers2013SPE Artificial Lift Conference,2013,19~27.
    [13]熊希.地面驱动螺杆泵采油系统优化设计[D].武汉:长江大学,2012.
    [14] Ano. Nitrile rubber in China[J]. European Rubber Journal,1999,18(11):7~9.
    [15]金红杰,吴恒安,曹刚,等.螺杆泵系统漏失和磨损机理研究[J].工程力学,2010,27(4):179~184.
    [16]魏纪德.螺杆泵工作特性研究及应用[D].大庆:大庆石油学院,2007.
    [17] Zhao Ruidong, Zhang Jianjun, Tao Zhen, et al. The new research of subsurface systemperformance curves of sucker rod pumping[J]. Society of Petroleum Engineers-InternationalPetroleum Technology Conference.2013,7:5418~5426.
    [18]廖开贵,李允,陈次昌.采油螺杆泵研发新进展[J].国外油田工程,2006,22(10):41~43.
    [19]曹刚,刘合,黄有泉,等.国外螺杆泵举升工艺的新进展[J].石油机械,2004,32(3):54~55.
    [20] Mills R A. Progressing cavity oil well pump-past, present and future[J]. The Journal of CanadianPetroleum Technology,1994,33(4):5~6.
    [21] Oulette, Michael J. Progressive cavity pumps improve Badger Paper's coating kitchen[J]. Pulpand Paper,2000,74(2):3.
    [22] Wright D W, Adair R L. Progressive cavity pumps deliver highest mechanical efficiency/lowestoperating cost in mature Permian Basin waterflood [J]. Production Operations Symposium,1993,(3):123~130.
    [23]王世杰,李福宝,孙书会,等.潜油螺杆泵采油作业在线监控技术研究[J].中国机械工程,2004,15(14):56~59.
    [24] Lea James F, Winkler Herald W. What’s new in artificial lift [J]. World Oil,2005,226(5):35~36.
    [25] Jose Gamboa, Aurelio Olivet, Sorelys Espin. New approach for modeling progressive cavitypumps performance [R]. Society of Petroleum Engineers, SPE84137-MS:2003,13~21.
    [26] Klein S. Advances expand application or progressive cavity pumps[R]. The American Oil&GasReporter,38(6):83~85,1995.
    [27]褚楔军.一种等壁厚空心螺杆泵转子[P].中国专利:CN101070843,2007-11-14.
    [28]朱成林,朱丽君,才小丽.耐高温螺杆泵采油装置[P].中国专利:CN201221462,2009-04-15.
    [29]王忠超.丁腈橡胶性能影响因素研究[D].兰州:西北师范大学,2012.
    [30] Namboodiri C S S, Tripathy D K. Strain-dependent isothermal damping behavior of filled EPDMrubber[J]. Effect of Vulcanizing System,1992,17(3):171~178.
    [31] Klein Steven. Development of composite progressing cavity pumps[J]. Proceedings of theAnnual Southwestern Petroleum Short Course,2003,4:74~78.
    [32]黄有泉,何艳,曹刚.大庆油田螺杆泵采油技术新进展[J].石油机械,2003,31(11):65~69.
    [33] Lea James F, Winkler Herald W. What’s new in artificial lift [J]. World Oil,2005,226(5):31~32.
    [34]聂瑞.采油螺杆泵定子橡胶磨损检测方法研究[D].沈阳:沈阳工业大学,2012.
    [35]吕晓仁,何恩球,罗旋,等.基于摩擦学系统理论的采油螺杆泵定子橡胶磨损分析[J].润滑与密封,2013,38(10):87~90.
    [36]朱立群,黄慧洁,赵波.丁腈橡胶硫化胶在乙二醇中的加速老化失效及寿命预测[J].航空材料学报,2007,27(3):69~73.
    [37]禹权,黄承亚,叶素娟.氢化丁腈橡胶的研究进展[J].特种橡胶制品,2006,27(2):56~62.
    [38]赵丽,李忠明.丁腈橡胶改性进展[J].四川化工,2005,8(1):18~22.
    [39]杨建,田明,贾清秀,等.丁腈橡胶石墨纳米复合材料的制备结构及性能研究[J].特种橡胶制品,2007,28(1):1~5.
    [40] James F L, Herald W. What’s new in artificial lift [J]. World Oil,2003,224,(4):75-87.
    [41] James F L, Herald W, Robert E S. What’s new in artificial lift [J]. Part1-Fourteen new systemsfor beam, progressing-cavity, plunger-lift pumping and gas lift [J]. World Oil,2004,225(4):66-68.
    [42] Lea James F, Winkler Herald W, Snyde Robert E. What’s new in artificial lift [J]. World Oil,2007,228(5):59~67.
    [43] Lea James F, Winkler Herald W. What’s new in artificial lift [J]. World Oil,2009,230(5):77~85.
    [43]姚兴芳,范时军,张世锋.丁腈橡胶增韧环氧树脂研究进展[J].热固性树脂,2009,24(3):52~55.
    [44]占升忠.高性能螺杆泵定子橡胶材料研究[D].吉林:吉林大学,2012.
    [45]陈玉祥,王霞,周松,等.提高螺杆泵定子橡胶材料寿命的分析与研究[J].排灌机械,2005,23(4):6~9.
    [46] Moore D F. The Friction and Lubrication of Elastomers[M]. Pergamon, Oxford,1992.
    [47]王霞,陈玉祥,周松,等.采油用螺杆泵定子橡胶及其性能的改进[J].材料导报,2005,19(11):82~84.
    [48]魏纪德,吴文祥,曾艳.螺杆泵定子橡胶溶胀对容积效率的影响及对策[J].石油机械,2005,33(04):16~18+75~76.
    [49]田野.基于机械与容积效率的螺杆泵转速控制方法研究[D].沈阳:沈阳工业大学,2012.
    [50] Savkoor A R. On the friction of rubber[J]. Wear,1965,8(2):22~224.
    [51] Schallamach A. Friction and abrasion of rubber[J]. Wear,1957/1958,1:384~385.
    [52]盖伟涛,戴瑾华.井下螺杆泵定子的失效分析及解决方法[J].石油矿场机械,2008,37(9):71~73.
    [53] Maity S K, Chakraborty K K. Studies on curing characteristics of natural rubber, nitrile rubberand silicone rubber-based gum vulcanizates in the presence of boron compounds[J]. Journal ofElastomers and Plastics,1993,25(4):358~380.
    [54]霍绪尧.石油中水质量分数对采油螺杆泵定子橡胶磨损性能的影响[D].沈阳:沈阳工业大学,2012.
    [55]韩佳轩.螺杆泵定子橡胶的疲劳寿命研究[D].大庆:东北石油大学,2013.
    [56]杜秀华.采油螺杆泵螺杆—衬套副力学特性及磨损失效研究[D].大庆:大庆石油学院,2010.
    [57] Gent A N, Pulford C T R. Mechanisms of rubber abrasion[J]. Appl. Polym. Sci.1983,(28):40~43.
    [58]杨秀萍,郭津津.单螺杆泵定子橡胶温度场分析[J].润滑与密封,2008,33(7):53~55.
    [59] Khalf A I, Nashar D E El, Maziad N A. Effect of grafting cellulose acetate andmethylmethacrylate as compatibilizer onto NBR/SBR blends[J]. Materials and Design,2010,31(5):2592~2598.
    [60] Shokri A A, Bakhshandeh G, Farahani T D. An investigation of mechanical and rheologicalproperties of NBR/PVC blends: influence of anhydride additives, mixing procedure and NBRform[J]. Iranian Polymer Journal (English Edition),2006,15(3):227~237.
    [61]叶卫东,韩道权,宋玉杰,等.螺杆泵定子与转子的接触分析[J].石油矿场机械,2008,37(8):25~28.
    [62] Fukahori Y, Yamazaki. Mechanism of rubber abrasion. Part II: General rule in abrasion patternformation in rubber-like mateials[J]. Wear,1994,178:103~109.
    [63] Fukahori Y, Yamazaki. Mechanism of rubber abrasion. Part III: How is friction linked to fracturein rubber abrasion[J]. Wear,1995,188:15~19.
    [64]林浩.螺杆泵内原油介质的流动特性及其含蜡量对定子磨损的影响[D].沈阳:沈阳工业大学,2012.
    [65]温诗铸.材料磨损研究的进展与思考[J].摩擦学学报,2008,28(1):1~5.
    [66] Han Baoguo, Zhang Lingyan, Ou Jinping. Influence of Water Content on Conductivity andPiezoresistivity of Cement-based Material with both Carbon Fiber and Carbon Black[J]. Journal ofWuhan University of Technology(Materials Science Edition),2010,01:147~151.
    [67]吕晓仁,王世杰,孙浩.干摩擦和原油润滑下丁腈橡胶、氟橡胶磨损行为研究[J].润滑与密封,2011,36(8):63~66.
    [68]柳琼俊,张嗣伟.干摩擦条件下丁腈橡胶磨损金属的机理[A].见:第六届全国摩擦学学术会议论文集(上册)[C].西安,1997.229~231.
    [69]张嗣伟.橡胶磨粒磨损机理的研究[J].固体润滑,1987,7(3):131~137.
    [70]何世权.纳米Fe_3O_4磁性复合丁腈橡胶的摩擦、磨损性能研究[D].兰州:兰州理工大学,2008.
    [71]赵云峰,张继华,游少雄,等.丁腈橡胶/酚醛树脂/受阻酚AO80三元阻尼橡胶的结构与性能[J].航空材料学报,2009,29(3):71~77.
    [72]刘其霞,姜生,晏雄.受阻酚/羧基丁腈橡胶复合材料的结构及动态力学性能[J].复合材料学报,2009,26(4):8~14.
    [73]王其磊,杨逢瑜,杨倩,等.纳米Fe3O4与纳米SrO·6Fe2O3填充丁腈橡胶复合材料的摩擦磨损性能比较[J].摩擦学学报,2010,30(2):128~134.
    [74]左雯雯,李锦春,尤秀兰,等.芳纶浆粕增强丁腈橡胶复合材料的摩擦磨损性能[J].化工学报,2010,61(5):1331~1336.
    [75]王哲,王世杰,孙浩,等.干摩擦及原油润滑条件下丁腈橡胶-钢摩擦副的磨损机理研究[J].组合机床与自动化加工技术,2010(9):6~8.
    [76]关红艳.SrO·6Fe2O3磁性丁腈橡胶的摩擦、磨损机理与热氧老化研究[D].兰州:兰州理工大学,2011.
    [77] Yuzeng Zhang,Yan Mingyin, Wang Shijie, et al. Effect of speed on the wear behavior ofFKM/NBR blends under dry sliding[J]. Mechanical Materials and Manufacturing Engineering II,2013,248:316~319.
    [78] Fan Ruxin. Opportunities and Challenges for Being a Carbon Black Great Power[J]. ChinaRubber,2012,24:9~16.
    [79] Chen Qianying, Gao Jing, Dai Kun. Nonlinear Current-voltage Characteristics of ConductivePolyethylene Composites with Carbon Black Filled PET Microfbrisls[J]. Chinese Journal ofPolymer Science,2013,31(2):211~217.
    [80] Xu D, Karger-Kocsis J. Unlubricated rolling and sliding wear against steel of carbon-blackreinforced and in situ cured polyurethane containing ethylene/propylene/diene rubbercompounds[J]. Journal of Applied Polymer Science,2010,115(3):1651~1662.
    [81] Shojaei A, Arjmand M, SaffarA. Studies on the friction and wear characteristics of rubber-basedfriction materials containing carbon and cellulose fibers[J]. Journal of Materials Science,2010,46(6):1890~1901
    [82]安晓英.NdFeB磁性丁腈橡胶复合材料的性能研究[D].兰州:兰州理工大学,2008.
    [83]关长斌,任艳军,卢硕,等.稀土CeO2对橡胶材料耐磨性的影响[J].摩擦学学报,2006,26(2):179~182.
    [84]李铁.三元乙丙橡胶(EPDM)的应用研究及其新型共泥物的制备、结构与性能[D].北京:北京化工大学,2006.
    [85]龚国芳,王新,曲敬信,等.两种UHMWPE/Kaolin复合材料在干摩擦条件下的滑动摩擦磨损性能研究[J].摩擦学学报,2000,20(5):321~325.
    [86]关兵峰,马国富,魏荣梅,等.基于填充橡胶中炭黑分散程度的橡胶疲劳破坏模型[J].世界橡胶工业,2011,38(6):20~23.
    [87]马建华,吴友平.炭黑与白炭黑补强溶聚丁苯橡胶和乳聚丁苯橡胶胎面胶性能的对比研究[J].橡胶工业,2012,59(2):84~90.
    [88]何仁洋,张嗣伟,王德国,等.边界润滑条件下天然橡胶-钢磨损机理的研究[J].摩擦学学报,2001,21(6):439~442.
    [89]刘海春,张嗣伟.清水介质条件下天然橡胶磨损45#钢的机理研究[J].摩擦学学报,1996,16(4):16~24.
    [90]刘海春,张嗣伟.几种橡胶磨损45#钢的影响因素分析[J].摩擦学学报,1997,17(4):33~38.
    [91] Sam S T, Ismail H, Ahmad Fauzi M N, et al. The effect of carbon black on the properties ofmagnetic ferrite filled natural rubber composites[J]. Journal of Reinforced Plastics andComposites,2008,27(16-17):1893~1908.
    [92]吕仁国,李同生,刘旭军.橡胶摩擦磨损特性的研究进展[J].高分子材料科学与工程,2002,18(5):12~15.
    [93]张嗣伟.国外橡胶磨损研究的进展[J].固体润滑,1989,9(1):1~9.
    [94] Wu Honghuan, Zhu Dongmei, Luo Fa, et al. Study on Microwave Dielectric Property of CarbonBlack and Short Carbon Fibers[J]. Chinese Journal of Aeronautics,2006,19(suppl): s130~s133.
    [95]王磊磊,张新民.填充橡胶摩擦磨损的研究进展[J].合成橡胶工业,2009,32(5):429~434.
    [96]李静萍.炭黑分散程度对以天然橡胶为主的载重轮胎胎面硫化胶性能的影响[J].轮胎工业,1994,4:41~42.
    [97]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展[J].光谱学与光谱分析,2000,20(2):134~142.
    [98]杨清芝.现代橡胶工艺学[M].北京:化学工业出版社,2005.
    [99] Beauquin J. L, Boireau C, Lemay L, et al. Development status of a metal progressing cavitypump for heavy oil and hot production wells. International Thermal Operations and Heavy OilSymposium Proceedings,2005(2005): A573~A580.
    [100]何仁洋,张嗣伟.塑料与橡胶材料磨损金属的研究进展[J].摩擦学学报,2000,20(3):232~235.
    [101]何仁洋,张嗣伟,王德国.干摩擦条件下天然橡胶/钢的磨损机理研究[J].摩擦学学报,2001,21(4):260~265.
    [102] Katbab A A. Nazockdast H, Bazgir S. Carbon black-reinforced dynamically cured EPDM/PPthermoplastic elastomers. I. Morphology, rheology, and dynamic mechanical properties[J].Journal of Applied Polymer Science,2000,75(9):1127~1137.
    [103]方晓波,黄承亚,朱立新.石墨和二硫化钼填充氟橡胶的摩擦磨损特性研究[J].润滑与密封,2008,33(3):72~75.
    [104] Wang J, Jobando V O, Quarles C A. Positron Study of Carbon Black Parameters: Structure andSurface Area[A]. In: Wang J. Book of Abstracts of the9th International Workshop on Positronand Positronium Chemistry[C].Wuhan:2008.8.
    [105] Yuzeng Zhang, Yan Mingyin, Wang Shijie, et al. The relationship between oil resistance andabrasion resistance of FKM/NBR blends in oil medium[J].2013International Conference onquality, reliability, risk, maintenance, and safety Engineering,2013, II:1173~1176.
    [106] Liang X G, Ge X S, Chang Y P, et al. The Measurement of Thermal Conductivities of Silica andCarbon Black Powders at Different Pressures by Thermal Conductivity Probe[J]. Journal ofThermal Science,1992,1(2):75~79.
    [107]张育增,闫明印,王世杰,等.干摩擦条件下FKM/NBR共混胶磨损行为研究[J].润滑与密封,2013,38(12):32~35.
    [108]王世杰,张育增,闫明印,等.原油介质中FKM/NBR混炼胶磨损行为研究[J].润滑与密封,2014,39(1):51~54.
    [109]周平.炭黑填充不相容高分子复合体系的结构与性能研究[D].上海:上海交通大学,2007.
    [110] Bhowmick A K, Basu S, De S K. The effects of carbon black-vulcanization system interactionson rubber network structures and properties[J]. Rubber Chemistry and Technology.1982,55(1):20~23.
    [111]关兵峰,魏海捷,马国富,等.炭黑填充橡胶补强机理的研究进展[J].特种橡胶制品,2010,31(2):59~64.
    [112]李赓.再生炭黑橡胶补强性能的研究[D].杭州:浙江大学,2006.
    [113] Gamboa Jose, Olivet Aurello, Espin Sorelys. New Approach for Modeling ProgressiveCavity Pumps Performance[J]. Proceedings-SPE Annual Technical Conference andExhibition,2003,807~815.
    [114]刘霞.丁腈橡胶/天然橡胶共混胶的硫化性能和力学性能[J].橡胶参考资料,2003,33(2):52~55.
    [115]曹刚,张士诚,周琼,等.丙烯腈含量对螺杆泵定子橡胶机械物理性能的影响[J].合成材料老化与应用,2013,42(3):28~31.
    [116]张益,王世杰,吕晓仁,等.天然石油介质中丁腈橡胶-45#钢摩擦规律研究[J].润滑与密封,2010,35(8):51~53.
    [117] Kader M Abdul, Bhowmick Anil K. Thermal ageing, degradation and swelling of acrylaterubber, fluororubber and their blends containing polyfunctional acrylates[J]. Polymer Degradationand Stability.2003,79(2):283~295.
    [118]胡海霞.环氧树脂及尼龙66基复合材料的摩擦磨损性能[D].吉林:吉林大学,2008.
    [119]刘明海.BaO·6Fe2O3丁腈磁性橡胶摩擦磨损性能研究[D].兰州:兰州理工大学,2007.
    [120]周先辉,孙友松,王万顺.炭纤维织物/环氧树脂基复合材料的摩擦磨损性能研究[J].摩擦学学报,2008,28(1):56~62.
    [121]徐恒斌.采油用单螺杆泵磨损失效及参数优选研究[D].大庆:东北石油大学,2013.
    [122]田雪梅,乔红斌,古绪鹏,等.特种丁腈橡胶耐磨性能研究[J].化工新型材料,2013,41(3):133~135.
    [123]袁峰,王长生.摩擦磨损试验磨痕检测新方法的研究[J].机械工程师,2009,(12):121~123.
    [124]黄智文.谈谈磨粒磨损[J].表面技术,2000,29(4):34~36.
    [125]周松青,肖汉宁,李贵毓.原位合成碳化硅-硼化钛复相陶瓷的高温摩擦性能及其磨损机理[J].硅酸盐学报,2006,34(2):152~157.
    [126]续海峰.粘着磨损机理及其分析[J].机械管理开发,2007,(4):95~96+98.
    [127]颜录科,李炜光,寇开昌,等.BaSO4/PTFE复合材料在干摩擦条件下的摩擦磨损机理研究[J].航空材料学报,2010,30(5):78~81.
    [128] Tang Junshi, Song Qiang, He Bailei, et al. Oxidation behavior of a kind of carbon black[J].Science in China E: Technological Sciences,2009,52(6):1535~1542.
    [129]孙福庆,谭蓉,于德林,等.浅析双速采油螺杆泵对高含水期驱油特点的适应性[J].油田节能,2004,15(3):30~32.
    [130]周海兰,赵永武,陈晓春,等.干摩擦和水润滑条件下单晶硅的摩擦磨损性能研究[J].中国机械工程,2012,23(14):1738~1741.
    [131]潘镱.炭黑粒子在聚合物中凝聚特性研究[D].上海:华东理工大学,2012.
    [132] Wu Xiaofeng, Zhang Guangan, Wu Fufa. Microstructure and dry sliding wear behavior of castAl-Mg2Si in-situ metal matrix composite modified by Nd[J]. Rare Metals,2013,32(3):284~289.
    [133] Liu Xinying, Xiang Xiongzhi, Niu Fei, et al. Properties of copper/graphite/carbon nanotubescomposite reinforced by carbon nanotubes[J]. Rare Metals,2013,32(3):278~283.
    [135]王慰祖,黄平.不同表面粗糙度的摩擦副润滑状态的Stribeck曲线研究[J].摩擦学学报,2004,24(3):254~257.
    [136]李鹤尊,张晓昊.利用Stribeck曲线评价润滑油性能的方法研究[J].润滑油,2009,24(5):61~64.
    [137] Han Zhou, Zhang Yusheng, Lu Ke. Friction and Wear Behaviors of Nanostructured Metals[J].Journal of Materials Science& Technology,2008,24(4):483~494.
    [138]关跃.HNBR复合材料抗烧蚀机理及橡胶表面减摩改性研究[D].北京:北京化工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700