用户名: 密码: 验证码:
大河控制性影响下的陆架海沉积有机质的“源—汇”作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大河控制性影响下的陆架海是海岸带陆海相互作用(LOICZ)研究的关键区域。全球排名前10位的大河向其邻近陆架区输送的淡水和颗粒物质约占全世界这一总量的40%,全球80%的有机碳埋藏也主要发生在河口-陆架地区。因此,陆架海沉积有机质的“源-汇”作用是海洋碳循环和陆海相互作用研究中不可或缺的重要一环。
     渤、黄海是我国东部典型封闭--半封闭的陆架海,这里有黄河这一世界级大河的输入,其历史上每年携带高达10亿吨以上的泥沙入海,沉积物输送量排在世界第二位。此外,这里又处于东亚季风的下风带,接受了大量的来自于大气沉降输入的人为污染物,陆海相互作用活跃。由于相对封闭的海洋环境、大河物质的输入加之特有的陆架环流动力体系使得该区存在固有的物质“汇”特性。本论文以受黄河入海物质影响巨大的渤海、黄海陆架区域为研究靶区,重点研究了这一区域沉积有机质及其有机污染物的“源-汇”过程及环境效应,揭示了研究区有机碳的埋藏量及其在全球海洋碳储库中的意义,并评估了人类活动在这一陆海相互作用强烈区域的环境影响。
     论文首先通过在渤海湾及其邻近海域41个站位取得的155个样品的颗粒有机碳(POC)和颗粒氮(PN)的分析数据,分析了该区夏季POC和PN的空间分布特征、影响因子与有机碳物源。结果表明,POC与PN的空间分布特征一致,呈现近岸高,远岸低,表层低,底层高的特点。生物作用、水体温盐跃层和总悬浮颗粒物(TSM)是影响研究区POC空间分布的重要原因。POC与TSM之间具有正相关关系,不同来源的TSM是控制水体中POC浓度高低的重要因素。POC/PN这一物源指标的应用受到海水中颗粒无机氮(PIN)的影响。通过建立POC和PN的一元线性回归模型,估算了样品中PIN的含量。扣除样品中PIN的影响后,显示POC除了以海洋生物为主要来源外,周边河流的陆源输入也有重要贡献。这一成果对认识中国近海的POC物源具有一定的参考价值。
     通过对渤海表层和柱样沉积物中的总有机碳(TOC)、总氮(TN)、有机质碳稳定同位素(δ13C)及饱和烃的分析和研究发现,总有机碳、氮的空间分布一致,有机碳的高值区分布在近岸和渤海中部,这与细颗粒沉积物的分布相一致。通过有机质的C/N、613C等物源指标,认为该区有机质主要受陆源输入和海洋生物的共同作用。研究区正构烷烃主要呈现出单峰和双峰的分布特征,表明正构烷烃主要来源于陆源输入和海洋自身贡献。所有样品的气相色谱图中均不同程度的出现了鼓包(hump),显示样品中含有“色谱不能分辨”组份(UCM),这意味着沉积物受到了不同程度石油烃的污染。黄河口及其邻近海区是河流输入陆源有机碳的主要“汇”。这与世界上其它大河控制影响下的大陆边缘海地区(RiOMar)的物质“汇”作用具有可比性和一致性,意味着这些大河控制下的陆架浅海的有机碳埋藏是全球碳循环过程中的重要一环。柱样岩芯沉积物中的有机质主要受陆源和海洋自生来源作用的影响;柱样上层沉积物中UCM组份含量明显高于下层样品,上层沉积物样品中的藿烷和甾烷等生物化合物的分布特征也反映出其沉积有机质的成熟度高于下层,这可能跟人为活动导致的石油烃的输入有关。结合测年资料发现,自上世纪70年代后期开始,柱样沉积物样品的粒度明显变粗,且沉积有机质C/N比值也随之降低,这可能跟黄河1976年改道有一定的关系,导致供应该区的陆源物质不断减少。
     基于正构烷烃分子组成特征的证据,探讨了黄海陆源沉积有机质的运移,结果表明,沉积物中正构烷烃的分布也受到水动力条件的影响,细颗粒沉积区的含量最高,且北黄海正构烷烃含量明显高于南黄海,与TOC的相关性也更强,这可能跟不同海区沉积物的粒度和陆源有机质的贡献差异有一定的影响。泥质区内陆源有机质的绝对含量和相对百分含量都有明显的升高趋势,显示黄海陆架中部泥质区是陆源沉积有机质的主要“汇”。PCA分析也显示出现代黄河入海物质供应的陆源沉积有机质在波浪、潮流等综合水动力条件的影响下可以通过一定的方式在陆架运移,并在远离其输入地的弱动力区域进行沉积、埋藏。这与世界其它边缘海地区陆源沉积有机质的“源-汇”过程具有一定的可比性。
     渤、黄海陆架上受特有水动力条件形成的细颗粒泥质区成为有机碳的主要沉降区,是有机碳的“汇”。把渤、黄海视为一个整体,可得到本区单位面积有机碳的堆积量约为13.5 tC/km2/yr,有机碳的年埋藏累积量约为5.9 Mt。考虑到现代黄河的入海物质主要集中在渤海,故单独估算得到渤海单位面积有机碳和正构烷烃的埋藏堆积量分别为28 tC/km2/yr,17.2 kg/km2/yr,高于渤、黄海整体的平均水平。渤海有机碳的年埋藏累积量约为2.1 Mt,这与世界上其它大河控制影响下的边缘海地区(RiOMar)具有一定的可比性,说明渤海具有和世界上其他大河控制下的陆架浅海及高生产力海区相当的碳汇效应。黄河这一世界级大河的输入,带来了巨量的陆源颗粒物质,加之相对封闭的海区环境、特有的水动力环境等因素条件共同决定了其相对较高的碳汇效应。研究结果对于认识大河控制性影响下的陆架海在全球碳循环中的角色和作用具有重要的意义。
     对渤海55个表层沉积物样品进行了有机氯农药分析,结果表明:DDTs和HCHs两大类化合物是本区最重要的两类有机氯污染物,母体DDT在大部分样品中发生了明显的降解。在近岸区域DDT输入(如:三氯杀螨醇)主要与农业生产活动,化工企业的生产废水和防腐油漆的使用有关。主成分分析的结果可以区别出近岸区域不同农药的历史贡献和当前输入状态,并指出近期DDT和工业氯丹的使用是环境中有机氯农药的重要来源;早期输入的有机氯农药化合物的分布除了受到输入来源的影响外,在二次搬运、分选等作用下,也受到了沉积物中有机质分布的影响。通过对本区沉积物进行质量风险评价发现,DDT和chlordanes两类化合物在本区具有较高生态影响,尤其是在渤海湾等近岸区域。
     渤海柱样岩芯中PAHs的垂向变化趋势受其低环化合物组份的影响较大。渤海热解PAHs的来源主要为燃煤贡献,石油等产物的输入对本区低环PAHs化合有重要影响,考虑到渤海受大河控制性影响,高等植物来源对于低环PAHs化合物的贡献也不可忽视。DDTs的垂向沉积记录与80年代农药的禁止生产、使用及随后90年代的城市化进程的加快和土地利用方式的改变有一定的对应关系。黄海中部泥质区沉积柱中16种PAHs的垂向变化趋势与中国社会经济发展和工业化进程有着较好的阶段性响应关系。黄海沉积柱中的PAHs主要以燃煤贡献为主,其主要输入方式为大气沉降。通过对不同地区之间的PAHs沉积记录进行比较,可反映出东西方国家之间不同的经济发展和能源结构的演变历程。
The river-dominated continental shelves could serve as a key role for the study of land-ocean interaction in the coastal zone (LOICZ) in the context of the global change. Worlds 10 largest rivers transport-40% of fresh water and particulate matter into its associated marginal shelves, and over 80% of the global carbon burial occurs in these systems (Berner,1982; Hedge and Keil,1995). The sedimentary organic matter in the shelf settings should be an important process in the global cycle of carbon and land-ocean interaction.
     With large inputs of particulate materials and anthropogenic pollutants via rivers (e.g. Yellow River-the second largest sediment-load river in the world) and atmospheric deposition, the Bohai and Yellow Sea located in East China are the typical enclosed-semienclosed shelf seas with active land-Ocean interaction. The relative enclosed setting, large river inputs and typical shelf hydrodynamics forced the sink characteristics in this region. In this work, the soures and sinks of sedimentary organic matter (SOM) as well as the organic pollutant materials were examined in order to better characterize the importance of organic carbon burial in these shelf regions around the world, and also to evaluate the human influence in these shelf regions.
     Based on the analyses of particulate organic carbon (POC) and particulate nitrogen (PN) in the Bohai Bay and its adjacent sea, the results show that the spatial distribution patterns of POC and PN are similar in the study area. The concentrations of POC and PN in the coastal regions are higher than those in the outer shelf, and the concentrations of POC and PN are higher at the bottom water layers than those at the surface water layers. Biological effect, thermocline and concentration of TSM are the main factors affecting the spatial distribution of POC. The POC/PN ratio to evaluate the sources of POC is influenced by the presence of particulate inorganic nitrogen (PIN). Removing the content of PIN in the samples, the POC/PON ratio suggested that the terrestrial input originating from the nearby rivers is also an important source of POC, in addition to the major contribution from the marine primary production. This method could be applied to identify the sources of POC in other coastal areas of China.
     According to the analysis of total organic carbon (TOC), total nitrogen (TN), stable carbon isotopic composition and aliphatic hydrocarbons in the surface and cores sediment samples from the Bohai Sea, the results indicate that TOC showed a direct relationship with sediment grain size with the finest sediment having the highest TOC, suggesting that the hydrodynamics in Bohai was the main driving force in the accumulation of SOM.δ13C, the corrected TOC/ON ratios and TAR of n-alkanes indicated a mixed marine/terrestrial source for the SOM. The ubiquitous presence of UCM, composition patterns of hopanes and steranes, and PCA results indicated that the petroleum contamination in Bohai. The Huanghe River Estuary (HRE) and its adjacent area is the main sink for the Huanghe river-derived OC. This draws a similarity with other large river-dominated ocean margins (RiOMar) in the world, suggesting that the preservation of terrestrial OC in these large river-dominated coastal margins should be an important process in the global cycle of carbon. For the core samples, the C/N ratio of the bulk organic matter and the composition of the n-alkanes suggested that the sedimentary organic matter (OM) was of mixed marine and terrestrial sources. The presence of unresolved complex mixtures (UCM) in the surface layers and the patterns of biomarkers (hopanes and steranes) indicated more petroleum-derived inputs in recent years due to oil exploration and heavy traffic in Bohai. The coarser sediment grain size and decreasing C/N ratios since the mid of 1970s could be attributed to the relocation of the Yellow River course into the sea from the central Bohai to the south Bohai to decrease the influence of Yellow River-derived sediments and associated OM on the central Bohai.
     Based on the molecular composition feature of n-alkane in surface sediments, the dispersal of terrestrial organic matter (TOM) in the YS was identified. The results indicated that the distribution of n-alkanes content was influenced by the hydrodynamics, with the highest content found in the fine-grained mud area. The concentration of n-alkanes in the northern YS together with the correlation with TOC was higher than that of the southern YS, which could be related with the different sediment grain size and contribution of TOM in various regions. The concentrations and relative abundance of TOM in shelf mud areas increased distinctly, suggesting the central mud areas in the middle shelf of YS could be the main sink for the TOM. The PCA analysis also revealed that the riverine TOM from Huanghe could transport along the shelf under the special hydrodynamics, and then deposit and accumulate in the regions far distance from the original entrance. This source to sink process draws similarity with TOM in other shelf margins in the world.
     The fine-grained mud areas induced by the specific hydrodynamic conditions on the shelves of the Bohai and Yellow Seas are important sink for the organic carbon (OC). The weighted average accumulation rates of OC and alkanes in Bohai Sea were calculated as approximately 28 tC/km2/yr and 17.2 kg/km2/yr, respectively, which is higher than the mean values of the whole areas of the Bohai and Yellow Sea. The total OC budget for the entire Bohai could be estimated as 2.1 Mt/yr. This average OC accumulation rate in Bohai Sea draws similarity with other river-dominated ocean margins (RiOMar) in the world, suggesting the regional OC burial in the Bohai Sea could serve as an important role in the carbon sink by comparing with other RiOMar and coastal systems with high primary production preservation. The large riverine inputs of the terrestrial organic matter; relatively enclosed marine environments and special hydrodynamic conditions could serve as the key factor in maintaining the high carbon sink in this region, which are essential for the understanding of the role of large rivers and associated margins in the global cycles of carbon.
     Fifty-five surface sediment samples covering virtually the entire Bohai Sea (Bohai) were analyzed for organochlorine pesticides (OCPs). The results showed that DDTs and HCHs could be the most two important pesticides contaminants in Bohai. (DDE+DDD)/DDT ratios indicated that the degradation of the parent DDT occurred significantly. High concentrations of DDTs were observed in the coastal areas especially the isolated sites neighboring the harbor or port regions, suggesting the recent DDT inputs from wastewater derived from agriculture activity (e.g. dicofol) and chemical plant as well as the usage of antifouling paint. The contribution of the previous and current input of pesticides in the coastal areas was distinguished by means of principal component analysi. And the distribution of these relatively "old" accumulated pesticides could also be influenced by the distribution of organic matter due to the post-depositional sorption in addition to the input sources. DDTs and chlordanes are the two-main species of pesticides with more ecotoxicological concern in Bohai.
     The vertical distribution patterns of total PAHs in the two cores in Bohai was mainly dominated by the abundance of the low-molecular weight component, which influenced by the petroleum-related contributions. The pyrogenic PAHs in Bohai two cores were mainly from the incomplete combustion of coal or biomass burning. In addition, in the context of the large river dominated conditions, the biogenic contribution from higher plants for the low molecular PAH compounds could be inevitable. The vertical record of DDTs could reflected the official ban of the production for these chemicals in 1980s and the large-scale land use transformation and citifying process in the following 1990s. The 16 PAHs variation in the sediment core in the central mud of southern Yellow Sea follows closely with the stage features of historical economic development in China. The historical profile of PAH distributions in this region is different from those in the United States and Europe, owning to the different evolution course of energy structures between these western and oriental countries.
引文
[I]Aboul-Kassim T A T, Simoneit B R T. Lipid geochemistry of surficial sediments from the coastal environment of Egypt I. Aliphatic hydrocarbons--characterization and sources. Marine Chemistry,1996,54(1-2):135-158.
    [2]Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea. Marine Geology,1991,98:51-72.
    [3]Aller R C, Blair N E, Xia Q, Rude P D. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Continental Shelf Research,1996,16(5-6):753-786.
    [4]Allison M, Bianchi T, McKee B A, Sampere T P. Carbon burial on river-dominated continental shelves: impact of historical changes in sediments loading adjacent to the Mississippi River. Geophysical Research Letters,2007,34: L01606,doi:10.1029/2006GL028362.
    [5]Baliso B M, Fasham J R, Bowles M C, etal. Ocean biogeochemistry and global change. IGBP Science,2001,2:1-36.
    [6]Barber J, Sweetman A, Jones K. Hexachlorobenzene-sources, environmental fate and risk characterization. Science Dossier, EuroChlor, Belgium. www.eurochlor.org.2005.
    [7]Battle M, Bender M L, Tans P P, White J W, Ellis J T, Conway T, Francey R J. Global Carbon Sinks and Their Variability Inferred from Atmospheric O2 and 13C. Science,2000, 287(5462):2467-2470.
    [8]Baumard P, Budzinski H, Michon Q, Garrigues P, Burgeot T, Bellocq J. Origin and Bioavailability of PAHs in the Mediterranean Sea from Mussel and Sediment Records. Estuarine, Coastal and Shelf Science,1998,47(1):77-90.
    [9]Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean:Its geochemical and environmental significance. American Journal of Science,1982,282: 451-473.
    [10]Bi N, Yang Z, Wang H, Hu B, Ji Y. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period. Estuarine, Coastal and Shelf Science,2010,86(3):352-362.
    [11]Bianchi T, Allison M. Large-river delta-front estuaries as natural "recorders" of global environmental change. Proceedings of the National Academy of Sciences 2009,106: 8085-8092.
    [12]Bianchi T S, Mitra S, McKee B A. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments:implications for differential sedimentation and transport at the coastal margin. Marine Chemistry,2002,77(2-3):211-223.
    [13]Bidleman T F, Jantunen L M M, Helm P A, Brorstrom-Lunden E, Juntto S. Chlordane Enantiomers and Temporal Trends of Chlordane Isomers in Arctic Air. Environ. Sci. Technol.,2002,36(4):539-544.
    [14]Bigot M, Saliot A, Cui X, Li J. Organic geochemistry of surface sediments from the Huanghe estuary and adjacent Bohai Sea (China). Chemical Geology,1989,75(4): 339-350.
    [15]Bj?rseth A, Ramdahl T. Sources of emissions of PAH. In handbook of polycyclic aromatic hydrocarbons (Edited by Bj?rseth, A. and Ramdahl, T.),1985,2:1-20. Marcel Dekker, New York.
    [16]Blair N E, Leithold E L, Aller R C. From bedrock to burial:the evolution of particulate organic carbon across coupled watershed-continental margin systems. Marine Chemistry, 2004,92(1-4):141-156.
    [17]Bornhold B, Yang Z, Keller G, Prior D, Wiseman W,. Wang Q, Wright L, Xu W, Zhuang Z. Sedimentary framework of the modern Huanghe (Yellow River) delta. Geo-Marine Letters, 1986,6(2):77-83.
    [18]Bouloubassi I, Fillaux J, Saliot A. Hydrocarbons in Surface Sediments from the Changjiang (Yangtze River) Estuary, East China Sea. Marine Pollution Bulletin,2001,42(12): 1335-1346.
    [19]Burguess M J, Ahrens, C.W. Hickey. Geochemistry of PAHs in aquatic environments: source, persistence and distribution. In: P.E.T. Douben, Editor, PAHs:An Ecotoxicological Perspective, John Wiley & Sons, Chichester (2003), pp.35-45.2003.
    [20]Cauwet G, Miller A, Brasse S, Fengler G, Mantoura R F C, Spitzy A. Dissolved and particulate organic carbon in the western Mediterranean Sea. Deep Sea Research Part II: Topical Studies in Oceanography,1997,44(3-4):769-779.
    [21]CCME. (Canadian Council of Ministers of the Environment). Canadian sediment quality guidelines for the protection of aquatic life. In:Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, Winnipeg, MB.,2002.
    [22]Chen S J, Luo X J, Mai B X, Sheng G Y, Fu J M, Zeng E Y. Distribution and Mass Inventories of Polycyclic Aromatic Hydrocarbons and Organochlorine Pesticides in Sediments of the Pearl River Estuary and the Northern South China Sea. Environmental Science & Technology,2006,40(3):709-714.
    [23]Cheng P, Gao S, Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis. Estuarine, Coastal and Shelf Science,2004,60(2): 203-212.
    [24]Chu Z X, Sun X G, Zhai S K, Xu K H. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology,2006,227(1-2):13-30.
    [25]Collister J W, Lichtfouse E, Hieshima G, Hayes J M. Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado). Organic Geochemistry,1994,21(6-7):645-659.
    [26]Datta D K, Gupta L P, Subramanian V. Distribution of C, N and P in the sediments of the Ganges-Brahmaputra-Meghna river system in the Bengal basin. Organic Geochemistry 30, 75-82.1999.
    [27]de Haas H, van Weering T C E. Recent sediment accumulation, organic carbon burial and transport in the northeastern North Sea. Marine Geology,1997,136(3-4):173-187.
    [28]de Haas H, van Weering T C E, de Stigter H. Organic carbon in shelf seas:sinks or sources, processes and products. Continental Shelf Research,2002,22(5):691-717.
    [29]Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the East China Sea. Global Biogeochem. Cycles,2006,20(3):GB3014.
    [30]Eglinton G, Hamilton. Leaf epicuticular waxes. Science,1967,156:1322-1335.
    [31]Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie F T, Moore B, III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. The Global Carbon Cycle:A Test of Our Knowledge of Earth as a System. Science,2000,290(5490):291-296.
    [32]Feng J, Guo Z, Chan C K, Fang M. Properties of organic matter in PM2.5 at Changdao Island, China--A rural site in the transport path of the Asian continental outflow. Atmospheric Environment,2007,41(9):1924-1935.
    [33]Fernandez P, Vilanova R M, Martinez C. The historical record of atmospheric pyrolytic pollution over Europe registered in the remote mountain lakes. Environmental Science and Technology,34:1906-1913.2000.
    [34]Fisher T R, Hagy J D, Rochellenewall E. Dissolved and particulate organic carbon in the Chesapeake Bay. Estuaries,1998,21(2):215-229.
    [35]Fry B, Sherr E B.δ13 C measurements as indicators of carbon flow in marine and freshwater ecosystems. Marine Science,1984,27:13-47.
    [36]Fu J M, Mai B X, Sheng G Y, Zhang G, Wang X M, Peng P A, Xiao X M, Ran R, Cheng F Z, Peng X Z, Wang Z S, Wa Tang U. Persistent organic pollutants in environment of the Pearl River Delta, China:an overview. Chemosphere,2003,52(9):1411-1422.
    [37]Fu J M, Sheng G Y. Biological composition of typical source rocks and related oils of terrestrial origin in the People's Republic of China, a review. Applied Geochemistry 1989,4: 13-22.
    [38]Galy V, France-Lanord C, Lartiges B. Loading and fate of particulate organic carbon from the Himalaya to the Ganga-Brahmaputra delta. Geochimica et Cosmochimica Acta,2008, 72(7):1767-1787.
    [39]Gao S, Jia J J. Sediment and carbon accumulation in a small tidal basin:Yuehu, Shandong Peninsula, China. Regional Environmental Change,2004,4(1):63-69.
    [40]Gao S, Jia J-J, Zhao Y Y, Li F Y. Particulate carbon burial in mud areas of the bohai and yellow seas. Journal of Geoscience of China,2002,4(2):1-6.
    [41]Gebhardt A C, Gaye-Haake B, Unger D, Lahajnar N, Ittekkot V. Recent particulate organic carbon and total suspended matter fluxes from the Ob and Yenisei Rivers into the Kara Sea (Siberia). Marine Geology,2004,207(1-4):225-245.
    [42]GEF. Project ID 2932:Alternatives to DDT Usage for the Production of Anti-fouling Paint, http://www.gefonline.org/projectDetails.cfm?projID=2932.2005.
    [43]Gogou A, Apostolaki M, Stepanou E. Determination of organic molecular markers in marine aerosols and sediments:one-step flash chromatography compound class fractionation and capillary gas chromatographic analysis.. Journal of Chromatography, 1998,799:215-231.
    [44]Goncalves C, Esteves da Silva J C G, Alpendurada M F. Chemometric interpretation of pesticide occurence in soil samples from an intensive horticulture area in north Portugal. Analytica Chimica Acta,2006,560(1-2):164-171.
    [45]Gong Z M, Tao S, Xu F L, Dawson R, Liu W X, Cui Y H, Cao J, Wang X J, Shen W R, Zhang W J, Qing B P, Sun R. Level and distribution of DDT in surface soils from Tianjin, China. Chemosphere,2004,54(8):1247-1253.
    [46]Goni M A, Cathey M W, Kim Y H, Voulgaris G. Fluxes and sources of suspended organic matter in an estuarine turbidity maximum region during low discharge conditions. Estuarine, Coastal and Shelf Science,2005,63(4):683-700.
    [47]Goni M A, Monacci N, Gisewhite R, Ogston A, Crockett J, Nittrouer C. Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea). Estuarine, Coastal and Shelf Science,2006, 69(1-2):225-245.
    [48]Goni M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta,1998,62(18):3055-3075.
    [49]Goni M A, Teixeira M J, Perkey D W. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science, 2003,57(5-6):1023-1048.
    [50]Gordon E S, Goni M A. Controls on the distribution and accumulation of terrigenous organic matter in sediments from the Mississippi and Atchafalaya river margin. Marine Chemistry,2004,92(1-4):331-352.
    [51]Gordon E S, Goni M A, Roberts Q N, Kineke G C, Allison M A. Organic matter distribution and accumulation on the inner Louisiana shelf west of the Atchafalaya River. Continental Shelf Research,2001,21(16-17):1691-1721.
    [52]Grimalt J, Albaiges J. Sources and occurrence of C12---C22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochimica et Cosmochimica Acta,1987,51(6):1379-1384.
    [53]Guo L. Cycling of dissoved and colloidal organic matter in oceanic environments as revealed by carbon and thorium isotopes. ph D. dissertation, Texas A M University,1995: 177-205.
    [54]Guo Z, Lin T, Zhang G, Hu L, Zheng M. Occurrence and sources of polycyclic aromatic hydrocarbons and n-alkanes in PM2.5 in the roadside environment of a major city in China. Journal of Hazardous Materials,2009,170(2-3):888-894.
    [55]Guo Z, Lin T, Zhang G, Yang Z, Fang M. High-Resolution Depositional Records of Polycyclic Aromatic Hydrocarbons in the Central Continental Shelf Mud of the East China Sea. Environmental Science & Technology,2006,40(17):5304-5311.
    [56]Guo Z, Lin T, Zhang G, Zheng M, Zhang Z, Hao Y, Fang M. The sedimentary fluxes of polycyclic aromatic hydrocarbons in the Yangtze River Estuary coastal sea for the past century. Science of The Total Environment,2007,386(1-3):33-41.
    [57]Guo Z G, Li J Y, Feng J L, Fang M, Yang Z S. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002. Chinese Science Bulletin 2006,51:2133-2140.
    [58]Haibucher D, Wei H, Pohlmann T, Suendermann J, Feng S. Variability of the Bohai Sea circulation based on model calculations. Journal of Marine System,2004,44:153-174.
    [59]Harji R R, Yvenat A, Bhosle N B. Sources of hydrocarbons in sediments of the Mandovi estuary and the Marmugoa harbour, west coast of India. Environment International,2008, 34(7):959-965.
    [60]Harrad S, Hassoun S, Romero M S C, Harrison R M. Characterization and source attribution of the semi-volatile organic content of atmospheric particles and associated vapour phase in Birmingham, UK. Atmospheric Environment,2003,37:4985-4991.
    [61]Hedges J I, Keil R G. Sedimentary organic matter preservation:an assessment and speculative synthesis. Marine Chemistry,1995,49(2-3):81-115.
    [62]Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean? Organic Geochemistry,1997,27(5-6):195-212.
    [63]Hernes P J, Peterson M L, Murray J W, et al. Particulate carbon and nitrogen fluxes and compositions in the central equatorial Pacific. Deep Sea Research I,2001,48:1999-2023.
    [64]Hitch R K, Day H R. Unusual persistence of DDT in some Western USA soils. Bulletin of Environmental Contamination and Toxicology,1992,48(2):259-264.
    [65]Hites R A, Laflamme R E, Windsor Jr J G, Farrington J W, Deuser W G. Polycyclic aromatic hydrocarbons in an anoxic sediment core from the Pettaquamscutt River (Rhode Island, U.S.A.). Geochimica et Cosmochimica Acta,1980,44(6):873-878.
    [66]Hong S H, Yim U H, Shim W J, Oh J R, Viet P H, Park P S. Persistent organochlorine residues in estuarine and marine sediments from Ha Long Bay, Hai Phong Bay, and Ba Lat Estuary, Vietnam. Chemosphere,2008,72(8):1193-1202.
    [67]Hostettler F D, Pereira W E, Kvenvolden K A, van Geen A, Luoma S N, Fuller C C, Anima R. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores. Marine Chemistry,1999,64(1-2):115-127.
    [68]Hu J, Wan Y, Shao B, Jin X, An W, Jin F, Yang M, Wang X, Sugisaki M. Occurrence of trace organic contaminants in Bohai Bay and its adjacent Nanpaiwu River, North China. Marine Chemistry,2005,95(1-2):1-13.
    [69]Hu J, Zhang G, Li K, Peng P a, Chivas A R. Increased eutrophication offshore Hong Kong, China during the past 75 years:Evidence from high-resolution sedimentary records. Marine Chemistry,2008,110(1-2):7-17.
    [70]Hu J F, Peng P A, Jia G D, Mai B X, Zhang G. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China.. Marine Chemistry,2006,98:274-285.
    [71]Hu L M, Guo Z G, Feng J L, Yang Z S, Fang M. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China. Marine Chemistry,2009a,113(3-4):197-211.
    [72]Hu L M, Zhang G, Zheng B H, Qin Y W, Lin T, Guo Z G. Occurrence and distribution of organochlorine pesticides (OCPs) in surface sediments of the Bohai Sea, China. Chemosphere,2009b,77:663-672.
    [73]Huang J, Lin P L, Liu K K. Dissolved and particulate organic carbon in the southern East China Sea. Continental Shelf Research,2000,20:545-569.
    [74]Hung C-C, Gong G-C, Chen H-Y, Hsieh H-L, Santschi P H, Wade T L, Sericano J L. Relationships between pesticides and organic carbon fractions in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan. Environmental Pollution,2007,148(2): 546-554.
    [75]IPCC. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Investgovernmental Panel on Climate Change,2007, Cambridge, UK:Cambridge University Press.
    [76]Iwata H, Tanabe S, Sakai N, Nishimura A, Tatsukawa R. Geographical distribution of persistent organochlorines in air, water and sediments from Asia and Oceania, and their implications for global redistribution from lower latitudes. Environmental Pollution,1994, 85(1):15-33.
    [77]Jeng W-L. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry,2006,102(3-4): 242-251.
    [78]Jeng W-L, Huh C-A. A comparison of sedimentary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough. Continental Shelf Research,2008, 28(4-5):582-592.
    [79]Kim G, Yang H-S, Kodama Y. Distributions of transition elements in the surface sediments of the Yellow Sea. Continental Shelf Research,1998,18(12):1531-1542.
    [80]Kondo M. Oceanographic investigation of fishing ground in the East China Sea and the Yellow Sea.11 Chatacteristic of the mean temperature and salinity distribution measured at 50 m and near the bottom. Bull. Seikai. Reg. Fish Lab,1985,62:19-66.
    [81]Kovacs A, Vasas A, Hohmann J. Natural phenanthrenes and their biological activity. Phytochemistry,2008,69(5):1084-1110.
    [82]Krauss M, Wilcke W, Martius C, Bandeira A G, Garcia M V B, Amelung W. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environmental Pollution,2005,135(1):143-154.
    [83]Krauss M, Wilcke W, Zech W. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils:depth distribution as indicator of different fate. Environmental Pollution,2000,110(1):79-88.
    [84]Lee K T, Tanabe S, Koh C H. Distribution of organochlorine pesticides in sediments from Kyeonggi Bay and nearby areas, Korea. Environmental Pollution,2001,114(2):207-213.
    [85]Li J, Lin T, Qi S, Zhang G, Liu X, Li K. Evidence of local emission of organochlorine pesticides in the Tibetan plateau. Atmospheric Environment,2008,42(32):7397-7404.
    [86]Li J, Zhang G, Qi S, Li X, Peng X. Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China. Science of The Total Environment,2006,372(1):215-224.
    [87]Lima A L, Farrington J W, Reddy C M. Combustion-derived polycyclic aromatic hydrocarbons in the environment-a review. Environ Forensics,2005,2005(6):109-131.
    [88]Liu J, Saito Y, Wang H, Yang Z G, Nakashima R. Sedimentary evolution of the holocene subaqueous clioform off the shandong Peninsula in the Yellow Sea. Marine Geology,2007, 236:165-187.
    [89]Liu J P, Milliman J D, Gao S, Cheng P. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology,2004,209(1-4):45-67.
    [90]Liu J P, Xu K H, Li A C, Milliman J D, Velozzi D M, Xiao S B, Yang Z S. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology,2007,85(3-4): 208-224.
    [91]Liu M, Cheng S, Ou D, Yang Y, Liu H, Hou L, Gao L, Xu S. Organochlorine pesticides in surface sediments and suspended particulate matters from the Yangtze estuary, China. Environmental Pollution,2008,156(1):168-173.
    [92]Liu W, Chen J, Lin X, Fan Y, Tao S. Residual concentrations of micropollutants in benthic mussels in the coastal areas of Bohai Sea, North China. Environmental Pollution,2007, 146(2):470-477.
    [93]Liu W X, Chen J L, Lin X M, Tao S. Distribution and characteristics of organic micropollutants in surface sediments from Bohai Sea. Environmental Pollution,2006, 140(1):4-8.
    [94]Liu Z, Xia D, Berne S, Wang K, Marsset T, Tang Y, Bourillet J F. Tidal deposition systems of China's continental shelf, with special reference to the eastern Bohai Sea. Marine Geology,1998,145(3-4):225-253.
    [95]Loh A N, Bauer J E. Distribution, partitioning and fluxes of dissolved and particulate organic C,N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research, 2000,47:2287-2613.
    [96]Long E R, Field L J, MacDonald D D. Predicting toxicity in marine sediments with numerial sediment quality guidelines. Environmental Toxicology and Chemistry,1998, 17(4):714-727.
    [97]Long E R, MacDonald D D. Incidence of adverse biological effects within ranges of chemical concentration in marine and estuarine sediments. Environmental Management, 1995,19:81-97.
    [98]Louati A, Elleuch B, Kallel M, Saliot A, Dagaut J, Oudot J. Hydrocarbon Contamination of Coastal Sediments from the Sfax Area (Tunisia), Mediterranean Sea. Marine Pollution Bulletin,2001,42(6):444-451.
    [99]Lundstedt S, Haglund P, Oberg L. Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gaswork soil. Environmental Toxicology & Chemistry,2002,22:1413-1420.
    [100]Ma M, Feng Z, Guan C, Ma Y, Xu H, Li H. DDT, PAH and PCB in Sediments from the Intertidal Zone of the Bohai Sea and the Yellow Sea. Marine Pollution Bulletin,2001,42(2): 132-136.
    [101]Macdonald R W, Solomon S M, Cranston R E, Welch H E, Yunker M B, Gobeil C. A sediment and organic carbon budget for the Canadian Beaufort Shelf. Marine Geology, 1998,144(4):255-273.
    [102]Mackenzie A S. Applications of biological markers in petroleum geochemistry. In:Brooks, J., Welte, D. (Eds.), Academic Press, London,. Advances in Petroleum Geochemistry, 1984,1:115-214.
    [103]Mai, Qi, Zeng E Y, Yang, Zhang G, Fu, Sheng, Peng, Wang. Distribution of Polycyclic Aromatic Hydrocarbons in the Coastal Region off Macao, China: Assessment of Input Sources and Transport Pathways Using Compositional Analysis. Environmental Science & Technology,2003,37(21):4855-4863.
    [104]Mai B, Fu J, Zhang G, Lin Z, Min Y, Sheng G, Wang X. Polycyclic aromatic hydrocarbons in sediments from the Pearl river and estuary, China: spatial and temporal distribution and sources. Applied Geochemistry,2001,16(11-12):1429-1445.
    [105]Manz M, Wenzel K D, Dietze U, Sch rmann G. Persistent organic pollutants in agricultural soils of central Germany. Science of The Total Environment,2001,277(1-3): 187-198.
    [106]Martin J M, Zhang J, Shi M C, Zhou Q. Actual flux of the Huanghe (Yellow River) sediment to the Western Pacific Ocean. Netherlands Journal of Sea Research,1993,31(3): 243-254.
    [107]McKee B A, Bianchi T. The RiOMar Initiative:Workshop Planned.2001.
    [108]Meire R O, Azeredo A, Pereira M S, Torres J P M, Malm O. Polycyclic aromatic hydrocarbon assessment in sediments of national parks in southeast Brazil Chemosphere, 2008,73 180-185.
    [109]Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnlogic, and paleclimatic processes. Organic Geochemistry,1997,27:213-250.
    [110]Muller P J. ratios in Pacific deep-sea sediments:Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochimica et Cosmochimica Acta,1977,41(6): 765-776.
    [111]Muller-Karger F E R, Varela R, Thunell R, Luersen R, Hu C, Walsh J J. The importance of continental margins in the global carbon cycle. Geophysical research letters,2005,32: L01602, doi:10.1029/2004GL021346.
    [112]Nishimura M, Baker E W. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochimica et Cosmochimica Acta,1986,50(2): 299-305.
    [113]Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Marine Chemistry,2004,92(1-4):239-261.
    [114]Pang X, Li M, Li S, Jin Z. Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay Basin. Part 2:evidence for significant contribution of mature source rocks to "immature oils" in the Bamianhe field. Organic Geochemistry,2003,34(7): 931-950.
    [115]Parsons T R. Particulate organic carbon in the Sea, In "Chemical Oceanography" (Riley J P and Skirrow G eds). Academic Press, London,2:365-383. Riley, J.P.,1975. Chemical Oceanography (2nd Edition),2:365-383.1975.
    [116]Pelejero C. Terrigenous n-alkane input in the South China Sea:high-resolution records and surface sediments. Chemical Geology,2003,200(1-2):89-103.
    [117]Peng X Z, Zhang G, Zheng L P, Mai B X, Zeng S W. The vertical variations of hydrocarbon pollutants and organochlorine pesticide residues in a sediment core in Lake Taihu, East China. Geochemistry:Exploration, Environment, Analysis,2005,5(1):99-104.
    [118]Pereira W E, Hostelle F D, Luoma S N. Sedimentary record of anthropogenic and biogenic polycyclic aromatic hydrocarbons in San Francisco Bay, California. Marine chemistry, 1999,64:99-113.
    [119]Peters K E, Walters C C, Moldowan J M. Biomarkers and isotopes in petroleum exploration and earth history, seconded. Cambridge University Press, UK. The Biomarker Guide,2005, 2:700 pp.
    [120]Pietzsch R, Patchineelam S R, Torres J P M. Polycyclic aromatic hydrocarbons in recent sediments from a subtropical estuary in Brazil. Marine Chemistry,2010,118(1-2):56-66.
    [121]Qiu Y J, Bigot M, Saliot A. Non-aromatic hydrocarbons in suspended matter from Changjiang (Yangtse River) estuary:Their characterization and variation in winter and summer (low- and high-flow) conditions. Estuarine, Coastal and Shelf Science,1991,33(2): 153-174.
    [122]Ramaswamy V, Gaye B, Shirodkar P V, Rao P S, Chivas A R, Wheeler D, Thwin S. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Marine Chemistry,2008,111:137-150.
    [123]Ramos C S, Parrish C C, Quibuyen T A O, Abrajano T A. Molecular and carbon isotopic variations in lipids in rapidly settling particles during a spring phytoplankton bloom. Organic Geochemistry,2003,34(2):195-207.
    [124]Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea water, In: Hill, M.N. (ed) The sea. Wiley, New York,.1963:26-77.
    [125]Riley J P. Chemical Oceanography (2nd Edition).1975,2:365-383.
    [126]Ruttenberg K C, Goni M A. Phosphorus distribution, C:N:P ratios, and [delta]13Coc in arctic, temperate, and tropical coastal sediments:tools for characterizing bulk sedimentary organic matter. Marine Geology,1997,139(1-4):123-145.
    [127]Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T-H, Kozyr A, Ono T, Rios A F. The Oceanic Sink for Anthropogenic CO2. Science,2004,305(5682):367-371.
    [128]Saito Y, Yang Z S. Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea. Proceedings of International Symposium on Global Fluxes of Carbon and its Related Substances in the Coastal-Ocean-Atmosphere System, Hokkaido University (Sapporo),1994:7-12.
    [129]Satpathy S N, Rath A K, Manta S R, Kumarawswamy S, Ramakrishnan B, Adhya T K, Sethunathan N. Effect of hexachlorocyclohexane on metel4ne production and emission from flooded rice soil. Chemosphere,1997,34(12):2663-2671.
    [130]Schlitzer R. Export and Sequestration of Particulate Organic Carbon in the North Pacific from Inverse Modeling Workshop on Synthesis of JGOFS North Pacific Process Study, 2002.
    [131]Schrag D P. Storage of Carbon Dioxide in offshore sediments. Science,2009,325: 1658-1659.
    [132]Schubert C J, Calvert S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments::implications for nutrient utilization and organic matter composition. Deep Sea Research Part I:Oceanographic Research Papers, 2001,48(3):789-810.
    [133]Shi W, Sun M-Y, Molina M, Hodson R E. Variability in the distribution of lipid biomarkers and their molecular isotopic composition in Altamaha estuarine sediments:implications for the relative contribution of organic matter from various sources. Organic Geochemistry, 2001,32(4):453-467.
    [134]Sikes E L, Uhle M E, Nodder S D, Howard M E. Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their [delta] 13C distributions in the Hauraki Gulf, New Zealand. Marine Chemistry,2009,113(3-4):149-163.
    [135]Simoneit B R T, Sheng G, Chen X, Fu J, Zhang J, Xu Y. Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment, 1991,10:2111-2129.
    [136]Strandberg B, van Bavel B, Bergqvist P A, Broman D, Ishaq R, Naf C, Pettersen H, Rappe C. Occurrence, Sedimentation, and Spatial Variations of Organochlorine Contaminants in Settling Particulate Matter and Sediments in the Northern Part of the Baltic Sea. Environmental Science & Technology,1998,32(12):1754-1759.
    [137]Su Y S, Wen X C. Water masses in China Seas. Oceanology of China Seas (1),1994, Kluwer Academic Publisher: 3-16.
    [138]Sundermann J, Feng S Z. Analysis and modelling of the Bohai sea ecosystem--a joint German-Chinese study. Journal of Marine Systems,2004,44(3-4):127-140.
    [139]Tao S, Li B G, He X C, Liu W X, Shi Z. Spatial and temporal variations and possible sources of dichlorodiphenyltrichloroethane (DDT) and its metabolites in rivers in Tianjin, China. Chemosphere,2007,68(1):10-16.
    [140]Tao S, Liu W, Li Y, Yang Y, Zuo Q, Li B, Cao J. Organochlorine Pesticides Contaminated Surface Soil As Reemission Source in the Haihe Plain, China. Environmental Science & Technology,2008,42(22):8395-8400.
    [141]Tesi T, Miserocchi S, Goni M A, Langone L, Boldrin A, Turchetto M. Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy). Estuarine, Coastal and Shelf Science,2007,73(3-4):431-446.
    [142]Tolosa I, Bayona J M, Albaiges J. Aliphatic and Polycyclic Aromatic Hydrocarbons and Sulfur/Oxygen Derivatives in Northwestern Mediterranean Sediments:Spatial and Temporal Variability, Fluxes, and Budgets. Environmental Science & Technology,1996, 30(8):2495-2503.
    [143]Volkman J K, Farrington J W, Gagosian R B. Marine and terrigenous lipids in coastal sediments from the Peru upwelling region at 15°S: Sterols and triterpene alcohols. Organic Geochemistry,1987,11(6):463-477.
    [144]Volkman J K, Holdsworth D G, Neill G P, Bavor Jr H J. Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Science of The Total Environment,1992,112(2-3):203-219.
    [145]Walker K, Vallero D A, Lewis R G. Factors Influencing the Distribution of Lindane and Other Hexachlorocyclohexanes in the Environment. Environ. Environmental Science & Technology,1999,33(24):4373-4378.
    [146]Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature,1991,350(6313):53-55.
    [147]Wan Y, Hu J, Liu J, An W, Tao S, Jia Z. Fate of DDT-related compounds in Bohai Bay and its adjacent Haihe Basin, North China. Marine Pollution Bulletin,2005,50(4):439-445.
    [148]Wang H J, Yang Z S, Saito Y, Liu J P, Sun X X, Wang Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):Impacts of climate change and human activities. Global and Planetary Change,2007,57(3-4):331-354.
    [149]Wang X-C, Sun S, Ma H-Q, Liu Y. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao, China. Marine Pollution Bulletin, 2006,52(2):129-138.
    [150]Watson R T, Noble I R. Carbon and the science-policy nexus:the Kyoto challege. In: Steffen W, Jager J, Carson D, Bredshaw C, eds. Challenges of a Changing Earth. Proceedings of the Global Change Open Science Conference. Berlin: Springer.2001: 57-64.
    [151]Wilcke W, Amelung W, Krauss M, Martius C, Bandeira A, Garcia M. Polycyclic aromatic hydrocarbon (PAH) patterns in climatically different ecological zones of Brazil. Organic Geochemistry,2003,34(10):1405-1417.
    [152]Willett K L, Ulrich E M, Hites R A. Differential Toxicity and Environmental Fates of Hexachlorocyclohexane Isomers. Environmental Science & Technology,1998,32(15): 2197-2207.
    [153]Williams P M, Carlucci A F, Olson R. A deep profile of some biologically important properties in the central North Pacific gyre. Oceanologica Acta,1980,3(4):471-476.
    [154]Wu S-P, Tao S, Zhang Z-H, Lan T, Zuo Q. Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China. Atmospheric Environment,2005,39(38):7420-7432.
    [155]Wu Y, Dittmar T, Ludwichowski K-U, Kattner G Zhang J, Zhu Z Y, Koch B P. Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea. Marine Chemistry,2007,107(3):367-377.
    [156]Wu Y, Zhang J, Mi T-z, Li B. Occurrence of n-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea. Marine Chemistry,2001,76(1-2): 1-15.
    [157]Wu Y, Zhang J, Zhou Q. Persistent organochlorine residues in sediments from Chinese river/estuary systems. Environmental Pollution,1999,105(1):143-150.
    [158]Wurl O, Obbard J P. Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore's coastal marine sediments. Chemosphere, 2005,58(7):925-933.
    [159]Xu D, Deng L, Chai Z, Mao X. Organohalogenated compounds in pine needles from Beijing city, China. Chemosphere,2004,57(10):1343-1353.
    [160]Xu S S, LIU W X, Tao S. Emissions of polycyclic aromatic hydrocarbons in China. Environ Sci Technol,2006,40:702-708.
    [161]Xu X, Yang H, Li Q, Yang B, Wang X, Lee F S C. Residues of organochlorine pesticides in near shore waters of LaiZhou Bay and JiaoZhou Bay, Shandong Peninsula, China. Chemosphere,2007,68(1):126-139.
    [162]Yan W, Chi J, Wang Z, Huang W, Zhang G. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environmental Pollution,2009,157(6):1823-1830.
    [163]Yang R Q, Jiang G B, Zhou Q F, Yuan C G, Shi J B. Occurrence and distribution of organochlorine pesticides (HCH and DDT) in sediments collected from East China Sea. Environment International,2005a,31(6):799-804.
    [164]Yang R Q, Lv A H, Shi J B, Jiang G B. The levels and distribution of organochlorine pesticides (OCPs) in sediments from the Haihe River, China. Chemosphere,2005b,61(3): 347-354.
    [165]Yang S, Youn J-S. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology,2007,243(1-4):229-241.
    [166]Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology,2007,240(1-4):169-176.
    [167]Yunker M B, Macdonald R W, Cretney W J, Fowler B R, McLaughlin F A. Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment. Geochimica et Cosmochimica Acta,1993,57(13):3041-3061.
    [168]Yunker M B, Macdonald R W, Vingarzan R, Mitchell R H, Goyette D, Sylvestre S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry,2002,33(4):489-515.
    [169]Yunker M B, Snowdon L R, Macdonald R W, Smith J N, Fowler M G, Skibo D N, McLaughlin F A, Danyushevskaya A I, Petrova V I, Ivanov G I. Polycyclic Aromatic Hydrocarbon Composition and Potential Sources for Sediment Samples from the Beaufort and Barents Seas. Environmental Science & Technology,1996,30(4):1310-1320.
    [170]Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Marine Chemistry,2007,105(1-2):70-89.
    [171]Zhang G, Parker A, House A, Mai B, Li X, Kang Y, Wang Z. Sedimentary Records of DDT and HCH in the Pearl River Delta, South China. Environ. Sci. Technol.,2002,36(17): 3671-3677.
    [172]Zhang J, Wen H W, Chong S M. Huanghe (Yellow River) and its estuary:Sediment origin, transport and deposition. Journal of Hydrology,1990,120(1-4):203-223.
    [173]Zhang J, Wu Y, Jennerjahn T C, Ittekkot V, He Q. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics. Marine Chemistry,2007, 106(1-2):111-126.
    [174]Zhang S, Gan W B, Ittekkot V. Organic matter in large turbid rivers:Huanghe and its estuary. Marine Chemistry,1992,3853~68.
    [175]Zhou H, Zhang Z N, Liu X S, Tu L H, Yu Z S. Changes in the shelf macrobenthic community over large temporal and spatial scales in the Bohai Sea, China. Journal of Marine Systems,2007,67(3-4):312-321.
    [176]Zhu C, Xue B, Pan J, Zhang H, Wagner T, Pancost R D. The dispersal of sedimentary terrestrial organic matter in the East China Sea (ECS) as revealed by biomarkers and hydro-chemical characteristics. Organic Geochemistry,2008,39(8):952-957.
    [177]Zhu Y, Chang R. Preliminary Study of the Dynamic Origin of the Distribution Pattern of Bottom Sediments on the Continental Shelves of the Bohai Sea, Yellow Sea and East China Sea. Estuarine, Coastal and Shelf Science,2000,51(5):663-680.
    [178]Zhuo Y Z, Zhang J, Wu Y, al e. Bulk particulate organic carbon in the East China Sea:tidal influence and bottom transport Progress in Oceanography,2006,69:37-60.
    [179]渤海地质.中国科学院海洋研究所海洋地质研究室.1985:60-70.
    [180]蔡德陵,石学法,周卫健,刘卫国,张淑芳,曹蕴宁,韩贻兵.南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据.科学通报,2001,46:16-23.
    [181]程鹏,高抒.北黄海西部海底沉积物的粒度特征和净输运趋势.海洋与湖沼,2000,31:604-615.
    [182]池继松,颜文,张干,郭玲利,刘国卿,刘向,邹世春.大亚湾海域多环芳烃和有机氯农药的高分辨沉积记录.热带海洋学报,2005,24(6):44-52.
    [183]范德江,孙效功,杨作升,郭志刚.沉积物物源定量识别的非线性规划模型.沉积学报,2002b,20(1):30-33.
    [184]范德江,杨作升,孙效功,张东奇,郭志刚.东海陆架北部长江、黄河沉积物影响范围的定量估算.青岛海洋大学学报,2002-32(5):748-756.
    [185]冯士祚,李凤岐,李少菁.海洋科学导论.1999,北京:高等教育出版社:1-503.
    [186]冯士祚,张经,魏皓.渤海环境动力学导论.2007,北京:科学出版社:1-10.
    [187]高全洲,沈承德,孙彦敏,易惟熙等.北江流域有机碳侵蚀通量的初步研究.环境科学,2001,22:12-18.
    [188]高抒.全球变化中的浅海沉积作用与物理环境演化.地学前缘,2002,9(2):329-335.
    [189]郭良波,江文胜,李凤岐,王修琳.渤海COD与石油烃环境容量计算.中国海洋大学学报,2007,37:310-316.
    [190]郭志刚,杨作升,雷坤.冲绳海槽中南部及其邻近陆架悬浮体的分布、组成、和影响因子分析.海洋学报,2001,23:66-73.
    [191]郭志刚,杨作升,林田,李钜源.东海泥质区单体正构烷烃的碳同位素组成及物源分析.第四纪研究,2006,26(3):384-390.
    [192]郭志刚,杨作升,曲艳慧.东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究.海洋与湖沼,1999,30(4):421-426.
    [193]郭志刚,杨作升,张东奇,范德江,雷坤.冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用.海洋学报,2002,24:71-80.
    [194]国家海洋局.2006年中国海洋质量公报。北京.2006.
    [195]胡敦欣,杨作升,等.东海海洋通量关键过程.北京:海洋出版社,2001:pp 3-24.
    [196]胡利民,邓生贵,郭志刚,刘勇.夏季渤海湾及其邻近海域颗粒有机碳的分布与物源分析.环境科学,2009,30:39-46.
    [197]蒋东辉,高抒,李凤业.渤海海峡区域现代沉积速率分布的数值计算.海洋科学,2003,27:34-37.
    [198]金海燕,林以安,陈建芳.东海颗粒有机碳的分布特征及其影响因子分析.海洋学报,2005,27(5):46-53.
    [199]康跃惠,盛国英,傅家谟,麦碧娴,等.珠江澳门河口沉积物柱样品正构烷烃研究.地球化学,2000,29:302-310.
    [200]蓝先洪,张训华,张志殉.南黄海沉积物的物质来源及运移研究.海洋湖沼通报,2005,(4):53-60.
    [201]李斌,吴莹,张经.北黄海表层沉积物中多环芳烃的分布及其来源.中国环境科学,2002,22(5):429-432.
    [202]李凤业,高抒,贾建军,赵一阳.黄、渤海泥质沉积区现代沉积速率.海洋与湖沼,2002,33:364-369.
    [203]李凤业,史玉兰.渤海南部现代沉积物堆积速率和沉积环境.黄渤海海洋,1995a,13(2):33-37.
    [204]李凤业,史玉兰.渤海现代沉积研究.海洋科学,1995b,(2):47-50.
    [205]李凤业,史玉兰,申顺喜,何丽娟.同位素记录南黄海现代沉积环境.海洋与湖沼,1996,27:584-589.
    [206]李广雪,杨子庚,刘勇.中国东部海域海底沉积环境成因研究.北京:科学出版社,2006.
    [207]李国刚.中国近海细粒沉积的矿物和化学组成及其来源和运移的研究.中国科学院海洋研究所博士论文,1988.
    [208]李惠敏,霍家明,于卉.海河流域水污染现状与水资源质量状况综合评价.水资源保护,2000,4:12-14,44-45.
    [209]李久海,董元华,曹志洪,王辉.慈溪市农田表层、亚表层土壤中多环芳烃(PAHs)的分布特征.环境科学学报,2007,27(11):1909-1914.
    [210]李庆玲,徐晓琴,黎先春,王小如.加速溶剂萃取/气相色谱-质谱测定海洋沉积物中的痕量多环芳烃.分析测试学报,2006,25(5):33-37.
    [211]李学刚,宋金明.海洋沉积物中的碳的来源、迁移与转化.海洋科学集刊,2004,46:106-117.
    [212]林晶,吴莹,张经.长江有机碳通量的季节变化及三峡工程对其影响.中国环境科学,2007,27(2):246-249.
    [213]林秀梅,刘文新,陈江麟,许姗姗,陶澍.渤海表层沉积物中多环芳烃的分布与生态风险评价.环境科学学报,2005,25(1):70-75.
    [214]林峥,麦碧娴,张干,盛国英,闵育顺,傅家谟.沉积物中多环芳烃和有机氯农药定量分析的质量保证和质量控制.环境化学,1999,18(3):115-121.
    [215]刘成,王兆印,何耘,吴永胜.环渤海湾诸河口底质现状的调查研究.环境科学学报,2003,25:222-225.
    [216]刘国卿,张干,李军,李可昌.多环芳烃在珠江口的百年沉积记录.环境科学,2005,26(3):141-145.
    [217]刘敏,侯立军,邹惠仙,杨毅,陆隽鹤,王晓蓉.长江口潮滩表层沉积物中多环芳烃分布特征.中国环境科学,2001,21:343-346.
    [218]刘占飞,彭兴跃,徐立,洪华生等.台湾海峡1997年夏季和1998年冬季两航次颗粒有机碳研究.台湾海峡,2000,19:95-101.
    [219]路瑞,秦延文,郑丙辉,张雷.沉积物中有机氯农药超声提取分析方法研究.环境科学研究,2008,21(3):135-140.
    [220]麦碧娴,林峥,张干.珠江三角洲河流和珠江口表层沉积物中有机污染物研究—多环芳烃和有机氯农药的分布及特征.环境科学学报,2000,20(2):192-197.
    [221]孟伟,雷坤,郑炳辉,王福,王宏,李建芬,李勇.渤海湾西岸潮间带现代沉积速率研究.海洋学报,2005,27:67-72.
    [222]孟伟,刘征涛,范薇.渤海主要河口污染特征研究.环境科学研究,2004,17(6):66-69.
    [223]宁修仁,史君贤,刘子琳,陈忠元,刘镇盛等.长江口及浙江近海夏季叶绿素a和ATP的分布特征.海洋学报,1986,8:603-610.
    [224]欧冬妮,刘敏,许世远,程书波,侯立军,王丽丽.长江口滨岸水和沉积物中多环芳烃分布特征与生态风险评价.环境科学,2009,30(10):3043-3049.
    [225]秦蕴珊,赵一阳,陈丽蓉,赵松龄.黄海地质.1989,北京:海洋出版社.
    [226]丘耀文,周俊良,Maskaoti K,颜文,洪华生,王肇鼎.大亚湾海域多氯联苯及有机氯农药研究.海洋环境科学,2002,21(1):46-51.
    [227]丘耀文,周俊良,Maskaoui K,洪华生,王肇鼎.大亚湾海域水体和沉积物中多环芳烃分布及其生态危害评价.热带海洋学报,2004,23(4):72-80.
    [228]申顺喜,李安春,袁魏.南黄海中部的低能沉积环境.海洋与湖沼,1996,27:518-523.
    [229]施治,潘波,范巍,刘宇,曹军,李本纲,徐福留,沈伟然,秦宝平,孙韧,张震,陶澍;含硫沉积物中有机氯农药的样品提取、净化与测定.农业环境科学学报,2003,22(6):689-692.
    [230]石学法,陈春峰,刘焱光,任红,王慧艳.南黄海中部沉积物粒径趋势分析及搬运作用.科学通报,2002,47(6):452-456.
    [231]石学法,申顺喜,Hi-il Y,陈志华,孟毅.南黄海现代沉积环境及动力沉积体系.科学通报,2001,46:1-6.
    [232]宋金明.中国海洋生物地球化学过程研究的最新进展.海洋科学,2006,30(2):69-77.
    [233]孙湘平.中国近海区域海洋.海洋出版社,2006,北京:1-15.
    [234]孙治涛.东海颗粒有机碳通量的模式计算.中国科学院-硕士学位研究生学位论文,2001.
    [235]汤毓祥,邹娥眉,李兴宰等.南黄海环流的若干特征.海洋学报,2000,22:1-16.
    [236]万国江.现代沉积的210Pb计年.第四纪研究,1997,3:230-239.
    [237]王爱军,朱诚.黄河断流对全球气候变化的响应.自然灾害学报,2002,11(2):103-107.
    [238]王伟,祁士华,龚香宜,吕春玲,苏秋克.泉州湾沉积物中有机氯农药含量及风险评估.环境科学研究,2006,19(4):14-18.
    [239]吴德星,兰健.中国东部陆架边缘海海洋物理环境演变及其环境效应.地球科学进展,2006,21:667-672.
    [240]吴莹.渤黄东海及其若干河口的烃类有机地球化学.华东师范大学博士后研究工作报告,2001.
    [241]吴莹,张经.多环芳烃在渤海海峡柱状沉积物中的分布.环境科学,2001a,22(3):74-77.
    [242]杨守业,李从先,Lee C B, Na T K.黄海周边河流的稀土元素地球化学及沉积物物源示踪.科学通报,2003,48(11):1233-1236.
    [243]杨作升,戴慧敏,王开荣.1950-2000年黄河入海水沙的逐日变化及其影响因素.中国海洋大学学报,2005,35(2):237-244.
    [244]杨作升,范德江,郭志刚,毛登.东海陆架北部泥质区表层沉积物碳酸盐粒级分布与物源分析.沉积学报,2002,20(1):1-6.
    [245]袁东星,杨东宁,陈猛,许鹤翔,钱耀荣,王建林.厦门西港及闽江口表层沉积物中多环芳烃和有机氯污染物的含量及分布.环境科学学报,2001,21(1):107-112.
    [246]翟世奎,孟伟,于志刚.三峡工程一期蓄水后的长江口海域环境.北京:科学出版社,2008.
    [247]张龙军,夏斌,桂祖胜.2005年夏季环渤海16条主要入海河流的污染状况.环境科学,2007,28(11):2409-2415.
    [248]张岩松,章飞军,郭学武,张曼平.黄海夏季水域沉降颗粒物垂直通量的研究.海洋与 湖沼,2004,35(3):230-238.
    [249]张岩松,章飞军,郭学武,张曼平.黄海秋季典型站位沉降颗粒物的垂直通量.地球化学,2005,34(2):123-128.
    [250]张宗雁,郭志刚,张干,李军,池继松.东海泥质区表层沉积物中有机氯农药的分布.中国环境科学,2005b,25(6):724-728.
    [251]张宗雁,郭志刚,张干,刘国卿,郭玲利.东海泥质区表层沉积物中多环芳烃的分布特征及物源.地球化学,2005-34(4):379-386.
    [252]张祖麟,洪华生,陈伟琪,王新红,林建清,余刚.闽江口水、间隙水和沉积物中有机氯农药的含量.环境科学,2003,24(1):117-120.
    [253]赵保仁,庄国文,曹德明,雷方辉.渤海的环流、潮余流及其对沉积物分布的影响.海洋与湖沼,1995,26:466-473.
    [254]赵继生,姬泓巍,郭志刚.冬季东海典型海域颗粒有机碳的垂直分布.海洋科学,2003,27(6):59-63.
    [255]中国环境保护部.中华人民共和国履行《关于持久性有机污染物的斯德哥尔摩公约》国家实施计划。.2007.
    [256]中国科学院海洋研究所海洋地质研究室.渤海地质.1985:60-70.
    [257]朱纯,潘建明,卢冰,扈传昱,刘小涯,叶新荣,薛斌.长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示.海洋学报,2005,27:59-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700