用户名: 密码: 验证码:
除草剂丁草胺对牙鲆及其鳃细胞系的急性毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
除草剂丁草胺(butachlor)是目前国内使用最为广泛的三种除草剂之一,由于丁草胺的大量使用,导致其在水生环境中的普遍残留,因此丁草胺对水生生物的毒性效应引起了人们的高度重视。本文采用牙鲆和牙鲆鳃细胞系两个生物检测系统,比较研究了丁草胺对牙鲆的体内和体外急性毒性效应及其致毒机理。
     本文首先研究了丁草胺对体外培养牙鲆鳃细胞(FG)的形态、生长、抗氧化酶活性和胞内ATP水平的毒性效应。研究发现:(1)中性红(NR)吸收、MTT检测和细胞蛋白含量分析的结果表明,丁草胺对FG细胞的24h-IC50(半抑制浓度)分别是43.32、43.86和44.91μmol/L。低于10μmol/L的丁草胺对FG细胞没有毒性,刺激FG细胞的生长。丁草胺浓度高于20μmol/L时,对FG细胞的生长开始表现出抑制作用,并具有剂量效应;(2)30μmol/L丁草胺处理24h后,FG细胞的形态才开始出现明显变化,收缩变圆,空泡增多;(3)30μmol/L丁草胺处理可显著影响FG细胞的抗氧化系统中抗氧化酶的活性。FG细胞内的三种抗氧化酶:超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPX)和过氧化氢酶(CAT)的活性,在丁草胺处理后的早期(2h)急剧升高,随后逐渐下降,6或8h后降到对照水平,12或24h后不再继续下降,稳定在一个较低的水平;(4)0.1-40μmol/L丁草胺处理FG细胞24h后,所有处理组的细胞内ATP含量均明显下降。以上体外实验结果表明:丁草胺对FG细胞具有较高的急性毒性,它可以抑制FG细胞内的抗氧化酶活性,降低细胞内的ATP水平,从而抑制细胞生长,破坏细胞的形态和结构,最终导致细胞死亡。
     其次,本文研究了不同浓度丁草胺对牙鲆活体的急性毒性效应。研究发现:(1)丁草胺对牙鲆高毒,96h-LC50(半致死浓度)是6.55 nmol/L,是FG细胞的24h-IC50值的1/7000,说明牙鲆活体比体外培养FG细胞在检测丁草胺的毒性上更敏感;(2)组织病理学检查的结果表明,鳃是丁草胺对牙鲆体内毒性作用的靶器官。2.56 nmol/L丁草胺处理牙鲆96h后,鳃组织出现明显的病理学变化,包括鳃上皮细胞坏死、肿胀和脱落,柱状细胞结构破坏,鳃丝充血,使鳃的结构和功能受到明显破坏;(3)3.84 nmol/L丁草胺处理后24h、48h和96h的牙鲆鳃组织内的ATP含量均显著降低。以上体内实验结果表明:与体外培养FG细胞相比,丁草胺对牙鲆具有更高的急性致死效应,这可能与丁草胺破坏了鳃的结构和功能,导致呼吸障碍,窒息而死有关。
     最后,本文还研究了丁草胺对牙鲆和FG细胞的遗传毒性。结果表明:(1)1.28 nmol/L丁草胺处理96h后,就可观察到牙鲆血细胞的微核率明显升高,并且具有明显的剂量效应关系;(2)30μmol/L丁草胺处理FG细胞,8h后开始观察到基因组DNA的片断化,之后随着处理时间的延长,DNA片断化越来越严重,48h后基本就看不到完整的基因组DNA分子。以上结果表明丁草胺对牙鲆和FG细胞均具有较高的遗传毒性。
     以上丁草胺对牙鲆的体内和体外急性毒性研究结果告诉我们,对海水鱼类来说,丁草胺是一种高毒农药,在今后的大田施用中,要尽量避开雨天和远离海边,以避免对海水鱼类的毒害。同时,本文研究结果还为今后利用体外培养鱼类细胞的毒性检测结果来预测鱼类致死效应,提供重要的参考资料。
Butachlor is one of the most commonly used herbicides in China. The large use of it in field has resulted in the ubiquitous leftover of it in aquatic environment. Therefore, the potential toxicity of butachlor to aquatic organisms has attracted great attentions of the society. In this study the acute in vivo and in vitro toxicity of butachlor on flounder, Paralichihys olivaceus, and flounder gill (FG) cells, as well as the possible mechanisms were investigated for the risk assessment of butachlor to marine fish species.
     Firstly, the cytotoxic effects of butachlor on the cellular morphology, proliferation, activities of antioxidant enzymes and ATP level of FG cells were examined. Results indicated that: (1) the 24h-IC50 values (median inhibition concentration) of butachlor in FG cells were 43.32, 43.86 and 44.91μmol/L for neutral red (NR) uptake, MTT assay and cell protein assay, respectively. No acute cytotoxicity was observed in FG cells exposed to butachlor, which was lower than 10μM. Above 20μmol/L, the cytotoxicity of butachlor to FG cells was obvious and dose-dependent; (2) Obviously morphological alterations like shrinkage and vacuolation began to appear in FG cells exposed to 30μmol/L butachlor for 24h; (3) Butachlor can markedly affect the activities of antioxidant enzymes of Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in FG cells exposed to 30μmol/L butachlor. And a quick increase of the enzyme activity was observed in the initial 2h exposure period, then drop to the level of control cells after 6 or 8h treatment, and stop at a constant level after 12 or 24 h treatment with a level lower than that of the control; (4) ATP contents in all the treated FG cells, the doses of butachlor ranging from 0.1 to 40μmol/L, were inhibited with a dose-dependent responsive. All the above in vitro results indicated that butachlor is high toxic to FG cells. It can result in the changes of the cellular morphology, inhibition of the cell proliferation and antioxidant enzyme activity, and drop of the ATP level in treated FG cells.
     Secondly, acute in vivo effects of butachlor on flounder were investigated. Results indicated that: (1) butachlor caused much higher acute lethality on live flounder and the 96h-LC50 value (median lethal concentration) for live fish was 6.55 nmol/L, about 1/7000 of 24h-IC50 value in FG cells; (2) In live fish, histopathological examination showed that gill was the primary target organ of butachlor. butachlor, badly impaired the respiration of gills, by formation of lesions, breakdown of pillar cells, edema, lifting and detachment of lamellar epithelium, and blood congestion. The disfunction of gills caused suffocation to fish with extremely high acute lethality to flounder by butachlor; (3) ATP content in the gill tissues of flounder exposed to 3.84 nmol/L butachlor was also decreased for all the treatment intervals. All the in vivo results indicated that butachlor posed much higher lethality on flounder than in vitro cultured FG cells. This might be related to the extreme toxic of butachlor to the structure and function of flounder gill.
     In the end, genotoxicity of butachlor on flounder and FG cells were studied. Results indicated that: (1) the fragmentation of genomic DNA of FG cells exposed to 30μmol/L butachlor was first observed after 8h exposure, and as increase of exposure time, the DNA damage became more severe; (2) the ratios of micronucleus in the erythrocytes of flounder exposed to 1.28~3.84 nmol/L butachlor for 96h were significantly increased in contrast to control. The above genetoxicity results indicated that butachlor was genotoxic to flounder and FG cells.
     Taken together, butachlor is high toxic to marine fish flounder. Therefore, great caution should be taken in the field use of butachlor, such as keep away from raining and sea shore, to avoid any disaster to marine organism. And also, the results obtained can provide us a good guidance for the forecast of in vivo toxicity from the in vitro cytotoxic data.
引文
白洁,李岿然,唐学玺等。久效磷对中国对虾体内SOD活力影响的初步研究。海洋通报,1998, 17(4):41-45
    陈刚,耿德贵,朱必才等。除草剂精禾草克对黄鳝细胞遗传毒性的研究。动物学杂志,2000,35(5):15-19
    陈一安,林应椿,王青松。丁草胺在蔬菜及环境中的残留探讨[J]。福建省农科院学报,1995,10(3):47-49
    陈万义,薛振祥,王能武。新农药研究与开发。北京化学工业出版利,2001,111-113
    丁中海,杨怡,金洪钧等。三种农药对斑马鱼的急性毒性和生物浓缩系数。应用生态学报,2004,15(5):888-890
    范立民,陈家长,吴伟等。4种除草剂对黄鳝遗传毒性的研究。农业环境科学学报,2005,24(4):701-704
    范立民,马晓燕,胡庚东等。除草剂丁草胺对两种与的急性毒性研究。湛江海洋学院学报(自然科学版),2005,24(4):377-379
    封少龙,罗屿,钟远等。应用单细胞凝胶电泳技术测定农药对蚯蚓的DNA损伤。南京大学学报(自然科学版),2000,36(5):649-652
    胡庚东,陈家长,吴伟等。除草剂丁草胺对黄鳝的遗传毒性。湛江海洋大学报,2005,25(1):43-46
    胡家会,张士璀,张永忠等。水胺硫磷对玫瑰无须鲃精子的体外毒性作用。高技术通讯,2005,15(2):104-107
    耿宝荣,姚丹,张秋金等。敌敌畏和丁草胺对沼洼蝌蚪的毒性影响。中国环境学,2005,25(9):118-121
    苟中坤.。有机磷农药的匈曼反应。分析化学,1994,22(1) :41-43
    楼允东,吴萍。两种农药对泥鳅红细胞微核和核异常的诱导。上海水产大学学报. 1994,3(3):104-110
    潘元海,魏爱雪,赵国栋等。水中痕量有机磷农药的高效液相色谱/质谱分析。环境科学进展,1999,7(1):32-40
    沈光平。微核与染色体畸变的相关性。遗传,1985,7(1):15-17
    单敏,虞云龙,方华。丁草胺对土壤微生物数量和酶活性的影响。农药学学报,2005,7(4):383-386
    宿烽。有机锡化合物和烟碱类杀虫剂对牙鲆鱼鳃细胞株(系)的毒性效应与作用机理研究。中国海洋大学博士论文,2005.6
    谭文捷,李发生,杜晓明。解淀粉芽胞杆菌对水中丁草胺的降解及影响。环境科学研究,2005,18(3):71-74
    王朝晖,尹伊伟。常见拟除虫菊酯(原药、商品)及助溶剂对水生生物毒性的比较。暨南大学学报(自然科学版),2000,18(1):98-10
    王朝晖,尹伊伟。甲氰菊酯对白鲢(Hypophtalmichthys molitrix)腮组织病理学研究。暨南大学学报,1996,17(1):74-79
    谢文平,马广智。氯氰菊酯对草鱼鳃和肝组织超氧化物歧化酶(SOD)活性的影响。水产科学,2003,22(6):5-7
    徐炜。高效液相色谱法测定环境水体中8种农药残留量。环境与健康杂志,2000,20(6):362-363
    薛清清,姚丹,黄泽宇。杀虫剂敌敌畏和除草剂丁草胺对饰纹姬蝌蚪的急性毒性试验。四川动物,2005,24(2):209-212
    杨桂华,王丽文,那杰等。除草剂丁草胺对蟾蜍心电图的影响。中国现代实用医学杂志,2005,4(3):8-10
    杨桂华,王丽文,卜宁等。除草剂丁草胺对蟾蜍心肌收缩力的影响。中华医学实践杂志,2005,4(4):309-311
    姚斌,徐建民,张超兰。除草剂丁草胺的环境行为综述。生态环境,2003,12(1):66-70
    张坤。环境与可持续发展:中日友好环境保护中心2000年论文集。北京:气象出版利,2001,99-105
    张曙明,田金改,高大兵等。中药中有机磷农药残留量的毛细管气相色谱测定方法.分析测试学报。1999,18(5):15-17
    郑和辉,叶常明。环境样品中乙草胺和丁草胺的残留分析。中国环境科学,2001,21(3):217-220
    周建平,张大弟。丁草胺在土壤中的残留降解及对蔬菜生长的影响[J]。上海环境科学,1991,10(10):34-36
    Alazemi B.M., Lewis J.W., Andrews E.B. Gill damage in the freshwater fishGnathonemus petersii (family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environ. Technol. 1996, 17(3):225-238
    Ateeq B., Abil Farah M., Ali M.N. et al. Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenozyacetic acid and butachlor. Mutiation Research, 2002, 518:135-144
    Ateeq B., Abul Farah M., Ahmad W. Evidence of apoptotic effects of 2,4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscop7y and DNA degradation studies. Life Sciences, 2006, 78:977-986
    Ateeq B., Abul Farah M., Ahmad W. Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlorophenoxyacetic-acid- and butachlor-exposed erythrocytes of Clarias batrachus. Ecotoxicology and Environmental Safety, 2005, 62:348-354
    Ateeq B., Farah M.A., Ali M.N. et al. Clastigenicity of pentachlorophenol,24-D and butachlor evaluated by Allium root tip test. Mutation Research, 2002, 514:105-113
    Babich H., Borenfreund E. In vitro cytotoxicity of organic pollutants to bluegill sunfish(BF-2) cells. Environ Res. 1987, 42(1):229-237
    Babich H., Borenfreund E. Cytotoxicity and genotoxicity assays with cultured fish cells: a review. Toxicol. In Vitro. 5(1):91-100
    Babich H., Goldstein S.H., Borenfreund E. In vitro cyto- and genotoxicity of organomercurials to cells in culture. Toxicol. Lett. 1990, 50: 143-149
    Babín M.M., J.V. Tarazona. In vitro toxicity of selected pesticides on RTG-2 and RTL-W1 fish cell lines. Environmental Pollution. 2005, 135:267-274
    Banerjee B D, Seth V, Bhattacharya A. Biochemical effects of some pesticides on lipid peroxidation and free radical scavengers. Toxicology Letters, 1999, 107:33-47
    Bhavan P. Saravana, P. Geraldine. Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcolmsonii exposed to endosulfan. Aquatic Toxicology 2000, 50:331-339
    Biagianti-Risbourg S. Les perturbations (ultra) structurales du foie des poissons utilise′es comme biomarqueurs de la qualite′sanitaire des milieux aquatiques. In: Lagadic, Amiard, J.C., Caquet, T. and Ramande F (Eds), Utilisation de biomarqueurs enécotoxicologie, aspects fondamentaux. Masson Pub., Paris, 1997. pp. 355-391
    Bieberstein U., Braunbech T. Light and scanning election microscopic cytopathology of 3,5-dichlorophenol in the permanent fish cell line RTG-2. Ecotoxicol Environ Saf, 1998, 41:298-306
    Borenfreund E., Puerner J.A. Toxicity determined in vitro by morphological alterations and neural red absorption. Toxicol. Lett. 1985a, 24:119-124
    Borenfreund E., Puerner J.A. A simple quantitative procedure using monolayer cultures for cytotoxicity assays. J. Tiss. Cult. Meth. 1985b, 9:7-9
    Braunbeck T. Cytological alterations in fish hepatocytes following in vivo and in vitro sublethal exposure to xenobiotics–structural biomarkers of environmental contamination. In: Fish ecotoxicology ed. Braunbeck, T., Hinton, D. E., and Streit, B, 1998,61-140
    Briischweiler B.J., Friedrich E. Wiirgler et al. Cytotoxicity in vitro of organotin compounds to fish hepatoma cells PLHC-1 (Poeciliopsis lucida) .Aquatic Toxicology. 1995,32:143-160
    Brunetti R, Majone F, GOLA I, et al. The micronucleus test: example of application to marine ecology. Mar Ecol Ser, 1988, 44:65-68
    Bury N.R., Jie L., Flik G. et al. Cortisol protectes against copper induced nedcrosis and promotes apoptosis in fish gill cholride cells in vitro. Aquatic Toxicology, 1998, 40:193-202
    Castano A., Cantarino M.J., Castillo J.V.. Correlations between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout bioassay. Division of Environmental Toxicology. 1996, 32(11):2141-2157
    Castano A., Gomez-Lechon M.J.. Comparison of basal cytotoxicity data between mammalian and fish cell lines: A literature survey. Toxicology in Vitro, 2005, 19:695-705
    Castaneda, A.R., Bhuiyan, S.I.. Groundwater contamination by ricefield pesticides and some influencing factors. J. Environ. Sci. Health , 1996, 31 (1), 83–99
    Cengiz Elif Ipek, Erhan Unlu. Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish, Gambusia affinis: A microscopic study. Environmental Toxicology and Pharmacology xxx (2005) xxx–xxx
    Colborn T, Dumanoski D, Mvers J P, et al. Our stolen future: are we threatening our fertility, intelligence, and survival? A scientific detective story. New York:1996, Dutton Books
    Doyotte A, Cossu C. Jacquin M, et al. Antioxidant enzymes glutathione and lipid peroxidation as relevant biomarker of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquat. Toxicol. 1997, 39:93-110
    Dutta H. M., J. S. D. Munshi, P. K. Roy, N. K. Singh et al. Ultrastructural changes in the respiratory lamellae of the catfish, heteropneustes fossilis after sublethal exposure to Malathion. Environmental Pollution, 1996, 92(3):329-341
    Eller L.L. Histopathologic lesions in cutthroat trout (Salmo clarki) exposed chronically to the insecticide endrin. Amer. J. Pathol. 1971,64:321
    Evans D. H. Kinetic studies of ion transport by gill epithelium. Am. J. Physiol., 1980, 238R: 224-30
    Evans, D.H.The fish gill: Site of action and model for toxic effects of environmental pollutants. Environ. Health Persp. 1987,71, 47-58
    Fan, L.M., Ma, X.Y., Hu, G.D., et al. The studies on the acute toxicity of butachlor on two species of fish. J. Zhanjiang Ocean University. 2005, 24(4), 377-379
    Fanta E., Flávia Sant Anna Rios, Silvia Romao, et al. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicology and Environmental Safety. 2003, 54:119-130
    Farah, M.A., Ateeq, B., et al. Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms. Chemosphere. 2004, 55, 257–265
    Fridovich I. Superoxide radical and superoxide dismutase. Accounts Chem Res.1972, 5:321-326
    Fridovich I. The biology of oxygen radicals. Science, 1978, 201:875-880
    Gamble SC, Goldfrab PS., Porte C., et al. Glutathione Peroxidase and other antioxidant enzyme function in marine invertebrate (Mytilu edulis, Pecten maximus, Carcinus mamas and Asterias rubens). Mar. Environ. Res. 1995, 39:191-197
    Geng B.R., Yao D., Xue Q.Q. Genotoxicity of the pesticide Dichlorvos and herbicide Butachlor in Rhacophorus megacephalus tadpoles. Acta Zoologica Sinica, 2005, 51(3):447-454
    Geng B.R., Yao D., Xue Q.Q. Acute toxicity of the pesticide dichlrvos and the herbicide butachlor to tadpoles of four anuran species. Bull. Environ. Contam.Toxicol. 2005, 75:343-349
    Gisberta E., A. Rodríguezb, L. Cardona, et al. Recovery of Siberian sturgeon yearlings after an acute exposure to environmental nitrite: changes in the plasmatic ionic balance, Na+–K+ ATPase activity, and gill histology. Aquaculture, 2004, 239:141-154
    Gorge G, Nagel R. Toxicity of lindane, atrazine, and deltamethrin to early life stages of zebrafish (B. ririo). Ecotoxicol Environ Safety, 1990,20:246-255
    Gülden, M., Seibert, H. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals. Aquat. Toxicol. 2005, 72, 327–337.
    Hatakeyama S., Sugaya Y. A freshwater shrimp (Paratya compressa improvisa) as a sensitive test organism to pesticides. Environmental Pollution, 1989, 59(4):325-336
    Heath A.G. Respiratory and cardiovascular responses. Water Pollution and Fish Physiology. CRC Press, Boca Raton, Florida, 1987, pp. 31-50
    Hill A.B., Jefferies P.R., Quistad G.B., et al. Dialkylquinoeimine metabolites of chloroacetanilide herbicides induce sister chromatid exchanges in cultures human lymphocytes. Mutat Res., 1997, 12(2-3):159-171
    Hinton D.E., Couch J.A. Architectural pattern, tissue and cellular morphology in livers of fishes: relationship to experimentally-induced neoplastic responses. In: Braunbeck, T., Hinton, D.E., Streit, B. (Eds.), Fish Ecotoxicology. Birkhaüser, Boston, 1998, pp.141-164
    Hsu K.Y., Lin H.J., Lin J.K., et al. Mutagenicity study of butachlor and its metabolites using Salmonella typhimurium. J Microbiol Immunol Infect, 2005, 38:409-416
    Hughes G. M. Morphometrics of fish gills. Respir. Physiol., 1972, 14:1-25
    Jiraungkoorskul W., E Suchart Upatham, Maleeya Kruatrachue, et al. Histopathological Effects of Roundup, a Glyphosate Herbicide, on Nile tilapia (Oreochromis niloticus). ScienceAsia. 2002, 28:121-127
    Johnson D.W. Pesticides and fishes-a review of selected literature. Trans. Amer. Fish. Soc. 1968,97:398
    Junghans M., Backhaus T., Faust M., et al. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Management Science,2003, 59:1101-1110
    Kamer L, Rinkevich B. In vitro application of the comet assay for aquatic genotoxicity: considering a primary culture versus a cell line. Toxicol. in Vitro, 2002, 16:177-184
    Kammann U,Bunke M., Steinhart H. et al., A permanent fish cell line (EPC) for genotoxicity testing of marine sediments with the comet assay. Mutat. Res. 2001, 498:67-77
    King, S.F. Some effects of DDT on the guppy and the brown trout. US fish wildlife serv., Spec. Sci. Rep. Fish. 1962, 399. 20pp
    Kobayashi N. Comparative sensitivity of varies developmental stages of sea urchins to some chemicals. Mar Biol. 1980, 58:163-171
    Kocan R.M., Landolt M.L., Sabo K.M. In vitro toxicity of eight mutagens/carcinogens for three fish cell lines. Bull Environ Contain Toxico. 1979, 23:269-274
    Kocan R.M., Sabo K.M., Landolt M.L. Cytotoxicity/Genotoxicity: The application of cell culture techniques to the measurement of marine sediment pollution. Aquat Toxico1. 1985, 6:165-177
    Kolpoth M., Rusche B., Nusse M. Flow cytometric measurement of micronuclei induced in a permanent fish cell line as a possible screening test for the genotoxicity of industrial waste waters. Mutagenesis. 1999, 14:397-402
    Lackner R. Oxidative stress in fish by environmental pollutants. In: Braunbeck, T., Hinton, D.E., Streit, B. (Eds.), Fish Ecotoxicology. Birkhau ser, Berlin, 1998, pp. 203-224
    Laurent P. Gill internal morphology. In Fish Physiology, ed. W. S. Hoar & D. J. Randall. Academic Press, New York, Vol. XA, 1984, pp. 73-183
    Laurent P., Perry S.F. Environmental effects on fish gill morphology. Phys. Zool. 1991, 64(1):4-25
    Li, H.Y., Zhang, S.C.. In vitro cytotoxicity of the organophosphorus pesticide parathion to FG-9307 cells. Toxicol. In Vitro., 2001, 15(6):643-647
    Li H.Y and Zhang S.C. In Vitro Cytotoxicity of the Organophorus Insecticide Methylparathion to FG-9307, the Gill Cell Line of Flounder (Paralichtys Olivaceus). Cell Biol Toxicol. 2002, 18:235-241
    Lin M.F., Wu C.L., Wang T.C. Pesticide clastogenicity in Chinese Hamster ovary cells.Murat Res., 1987, 188(3):241-250
    Livingstone DR, Lips F, Martinez PG. Pipe RK. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar. Bio1.1992,112: 265-276
    Llopis I, Arandiga R, Real E, et al. Lymphangiomyomatosis mimicking an abdominal lymphoma. Haematologica. 2002, 87(10):23
    Magwood, S., George S. In vitro alternatives to whole animal testing, comparative cytotoxicity studies of divalent metals in established cell lines derived from tropical and temperate water fish species in a neutral red assay. Mar. Environ. Res. 1996, 42(1-4):37-40
    Mallatt J. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can. J. Fish Aquat. Sci., 1985, 42:630-48
    Maria Ruiz-Leal, Stephen George. An in vitro procedure for evaluation of early stage oxidative stress in an established fish cell line applied to investigation of PHAH and pesticide toxicity. Marine Environmental Research, 2004, 58:631-635
    Marshall W.S. On the involvement of mucus secretion in teleost osmoregulation. Can. J. Zool. 1978, 56(5):1088-1091
    McCord JM, Fridovich I. Superoxide dismutase: An enzyme function for erythrocuprein. J Biol Chem. 1969, 224: 6049-6055
    Michiels C and Remacle J. Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance. Eur. J. Biochem. 1988, 177: 437-441
    Mirjana P.,G?ran I V Klobu,Nina Moja, et al. Detection of DNA damage in haemocytes of zebra mussel using comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2001,490(2):209-214
    Mishra A.K., Pandey A.B. Toxicity of three herbicides to some nitrogen-fixing cyanobacteria. Ecotoxicology and Environmental Safety, 1989, 17(2):236-246
    Moretti M., M. Marcarelli, M. Villarini, et al. In vitro testing for genotoxicity of the herbicide terbutryn: cytogenetic and primary DNA damage. Toxicology in Vitro. 2002, 16:81-88
    Munshi J. S. D. & Hughes G. M. Structure of respiratory islets of accessory respiratory organs and their relationship with the gills in the climbing perch, Anabas testudineus (Teleostei, Perciformes). J. Morph., 1991, 209:241-56
    Natarajan, A.T., 1993. An overview of the results of testing of known or suspectedmutagens using mammalian cells in vitro. Mutat. Res. 287, 113–118
    Ohyama T., Jin K., Katoh Y., et al. Fate and behavior of herbicides,butachlor, CNP, Chlomathoxynil, and simetryne in river water, shellfish, and sediments of the Ishikari River. Bull Environ Contam Toxicol., 1987, 39(4):555-562
    Oulmi Y, Negele RD, Braunbeck T. Cytopathology of liver and kidney in rainbow trout (Oncorhynchus mykiss) after long-term exposure to sublethal concentrations of linuron. Dis Aquat Org. 1995, 21:35-52
    Ou Y.H., Chung P.C., Chang Y.C.. Butachlor, a Suspected Carcinogen, Alters Growth and Transformation Characteristica of Mouse Cells. Chem. Res. Toxicol., 2000, 13:1321-1325
    Ou Y.H., Lin J.K.. Biotransformation of butachlor through mercapturic acid pathway in rat tissue homogenates. J Toxicol Environ Health., 1992, 35(1):19-29)
    Panneerselvam N., Sinha S., Shanmugam G.. Butachlor is cytotoxia and clastogenic and induces apoptosis in mammalian cells. Indian J Exp Biol., 1999, 37(9):888-892
    Poleksic V, Karan V. Effects of trifluralin on carp: biochemical and histological evaluation. Ecotoxicol Environ Saf. 1999, 43(2):213-21
    Powell M.D., Wright G.M., Speare D.J. Morphological changes in rainbow trout (Oncorhynchus mykiss) gill epithelia following repeated intermittent exposure to chloramine-T. Can. J. Zool. 1995, 73:154-165
    Rachlin J.W., and Perlmutter A. Fish cells in culture for study of aquatic toxicants. Water Res. 1968, 2: 409-414
    Rajyalakshmi T., Srinivas T., Swamy K.V., et al. Action of the herbicide butachlor on cholinesterases in freshwater snail Pila globosa(Swainson). Drug Chem Toxicol., 1996, 19(4):325-331
    Randall D. J., Perry, S. F., Heming, T. A. Gas transfer and acid base regulation in Salmonids. Comp. Biochem. Physiol. 1982, 73B:93-103
    Richmonds C., Dutta, H.M. Histopathological changes induced by malathion in the gills of Bluegill Lepomis macrochirus. Bull. Environ. Contam. Toxicol. 1989, 43:123-130
    Rurangwa E., A. Biegniewska, E. Slominska, et al. Effect of tributyltin on adenylate content and enzyme activities of teleost sperm: a biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility. Comparative Biochemistry and Physiology Part C. 2002, 131:335-344
    Saito H., Iwami S., Shigeoka T.. In vitro cytotoxicity of 45 pesticides to goldfish GF-scale(GFS)cells. Chemosphere, 1991, 23(4):525-537
    Saito H., Shigeoka T.. Comparative cytotoxicity of chlorophenols to cultured fish cells. Environmental Toxicity and Chemistry. 1994, 13(10):1649-1650
    Singh N.P., McCoy M.T., Tice R.R., et al. A simple technique quantitation of low levels DNA damage in individual cells. Exp. Cell Res. 1988, 175: 184-191
    Schirmer K., Dixon D.G., Greenberg B.M., et al. Ability of 16 priority PAHs to be directively cytotoxic to a cell line from the rainbow trout gill. Toxicology, 1998, 127(1-3):129-141
    Schmid W. The micronuclei test. Mutat. Res. 1975, 31(1):9-15
    Schultz N., Norrgren L., Grawe J., et al. Micronulei frequency in circulating erythrocytes from rainbow trout (Oncorhynchus mykiss) subjected to radiation, an image analysis and flow cytometric study. Comp. Biochem. Physiol. 1993, 105(C):207-211
    Segner H. Fish cell lines as a tool in aquatic toxicology. In:Braumnbeck T., Hinton D.E., Streit B. (Eds.), Fish Ecotoxicology. Birkhauser Verlag, Basel. 1998, pp. 1-38
    Selvi M, Sarikaya R, Erkoc F, Kocak O. Investigation of acute toxicity of chlorpyrifos-methyl on guppy Poecilia reticulata. Chemosphere. 2005, 60(1):93-6
    Sinha S., Panneerselvam N., Shanmugam G.. Genotoxicity of the herbicide butachlor in cultures human lymphocytes. Mutation Research, 1995, 344:63-67
    Sinhaseni T., Resprateep T. Histopathological effects of paraquat and gill function of Puntius gonionotus, Bleeker. Bull. Environ. Contam. Toxicol. 1987, 38:308-312
    Stein J.E., et al. Bioindicators of contaminant exposure and sublethal effects: studies with benthic fish in Puget sound, Washington. Environ Toxicol and Chem. 1992, 11:701-714
    Stentiford G.D., M. Longshaw, B.PLyons, et al. Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants. Marine Environmental Research. 2003, 55:137-159
    Suseela M.R. Effect of butachlor on growth and nitrogen fixation by Anabaena sphaerica. J Environ Biol., 2001, 22(3):201-203
    Tantawy A.A. Effect of two herbicides on some biological and parameters of biomphalaria alexandrina. J Egypt Soc Parasitol., 2002, 32(3):837-847
    Thomas P. Effects of cadmium and Aroclor 1254 on lipid peroxidation, glutathione peroxidase activity and selected antioxidants in Atlantic croaker tissues. Aquat Toxicol. 1993, 27:159-178
    Thophon S., Kruatrachue, M., Upatham, E. S., Pokethitiyook, P., Sahaphong, S., Jaritkhuan, S.. Environ. Pollut. 2003, 121, 307-320
    Tomlin, C., 1994. The Pesticide Manual, 10th ed., Crop Protection Publications, British Crop Protection Council, Farnham, Surrey, UK
    Tong, S.L., Li, H. and Miao, H.Z., 1997. The establishment and partial characterization of a continuous fish cell line FG-9307 from the gill of flounder Paralichthys olivaceus. Aquaculture 156, 327-333
    Yu Y.L., Wu X.M., Li S.N., et al. Bioavailability of butachlou and myclobutanil residues in soil to earthworms. Chemosphere, 2005, 59:961-967
    Wang T.C., Lee T.C., Lin M.F., et al. Induction of sister-chromatid exchanges by pesticides in primary rat tracheal epithelial cells and Chinese hamster ovary cells. Mutat Res., 1987, 188(4):311-321
    Wany Y.S., Jaw C.G., Tang H.C. et al. Accumulation and release of herbicides butachlor, thiobencarb, and chlomethoxyfen by fish, clam, and shrimp. Bull Environ Contam Toxicol., 1992, 48(3):474-480
    Winston GW, Oxidants and antioxidants in aquatic animals. Comp. Biochem. Physiol. 1991. C100:l73-176
    Zhang Y.Q., Zhang H.Q., Zhong C.G., et al. Behaviors of C14-butachlor, C14-chlorpyrifos and C14-DDT in Rana japonica japonica guenther. Acta Agriculturae Sinica, 2002, 16(3):174-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700