用户名: 密码: 验证码:
对硝基苯酚高效降解菌的分离、鉴定及降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基酚类物质是一类重要且常用的化工原料,作为原材料或中间体被广泛应用于炸药、医药、杀虫剂、染料、木材防腐剂和橡胶等生产中;硝基酚在生产和使用过程中,会随着工业废水的排放对环境造成污染,对硝基苯酚(p-Nitrophenol,PNP)是化工、印染、医药和炸药等行业的重要原料之一,而且也是有机磷农药,如甲基对硫磷(Methyl Parathion,MP)的中间代谢产物,是一类较为普遍的环境污染物质。进入环境的PNP会长期残留在土壤和水中,对动植物和人类健康产生威胁。
     许多学者都致力于研究对硝基苯酚的生物降解,但研究只是处于筛选到的微生物只能够降解低浓度的对硝基苯酚,降解过程中产生的亚硝酸盐很难除去,也有学者利用构建基因组文库的方法克隆到了能够降解对硝基苯酚的基因簇。
     本研究利用富集培养法,从华阳农药厂污水处理池的活性污泥中筛选并获得多株能够高效降解PNP的细菌菌株,其中菌株Y1具有较好的降解性能;并对Y1的降解特性、降解机理及降解酶基因进行了研究,研究内容如下:
     1.从华阳农药厂污水处理池的活性污泥中筛选了多株能够高效降解PNP的细菌菌株,从中筛选到一株降解性能较好的菌株,将其命名为Y1,通过形态学、生理生化和16S rDNA序列同源性分析,将其鉴定为节杆菌属(Arthrobacter sp. Y1);其16S rDNA基因序列在GenBank中的注册号是EU282772。
     2.纯培养的条件下,运用紫外分光光度计法(UV-Vis)和高效液相色谱(HPLC)法,测定了菌株Y1对PNP的降解性能。在pH 7和30℃条件下,Y1能够将50 mg/L的PNP在6 h内完全降解,同时测定了不同接种量、外加碳源、温度、pH及PNP浓度对菌株降解能力和菌体生长的影响,结果表明:在以PNP为唯一碳源存在的条件下,接种量0.10~0.3 g/L、温度15~40℃、pH 6~11、PNP浓度在100~400 mg/L的条件下,菌株的降解效果较好;菌株能够耐受PNP的浓度为600 mg/L,在外加碳源(0~30 g/L)存在的条件下,能够促进菌株对PNP的降解,如果外加碳源浓度过高(30~50 g/L),菌体对PNP的降解会受到抑制。
     3.通过HPLC和UV-Vis测定表明,4-硝基儿茶酚(4-NC)是主要的代谢产物,随着降解的进行,4-NC逐渐被降解,最终转化为二氧化碳和水;Y1能够在以4-NC为唯一碳源和氮源的培养基中生长,表明菌株对PNP的降解主要是以4-NC途径进行,4-NC途径也是革兰氏阳性菌降解PNP的典型途径。
     4.研究了经PNP诱导的培养物的上清液对PNP的降解,结果发现:在不接菌的条件下,上清液能够降解PNP为二氧化碳和水,结果表明降解酶是一种胞外酶。
     5.由于菌体是通过4-NC途径对PNP进行降解,根据已注册的能够通过4-NC途径降解PNP的基因簇设计两组特异性引物,分别进行PCR扩增,其中一组引物经PCR扩增后得到一条大约1.5 kb的条带,对这个条带进行测序分析,发现它与已知编码双加氧酶的氧化酶组分同源,而且经过功能分析表明,它能够将PNP转化为4-NC,该基因的注册号为EU282773。
     6.运用SDS-PAGE对诱导和非诱导条件下菌体的全细胞蛋白质电泳分析表明,诱导条件下菌体的全细胞蛋白质电泳出现了多条差异条带,推测降解酶是诱导型表达的;菌体粗酶液活性分析表明,诱导条件下和非诱导条件下菌体的粗酶液都能够快速将对硝基苯酚降解为无毒物质;诱导条件下粗酶液降解对硝基苯酚的速率是非诱导条件下的7.2倍,说明降解酶在诱导条件下可以迅速降解对硝基苯酚,但是在非诱导条件下,降解酶可以组成型表达。
Nitroaromatic compounds are common pollutants produced in developed countries by the industrial manufacture of dyes, explosives, pesticides, herbicides and drugs. The use of such materials has resulted in the release of nitrophenols into the environment. Among them, p-nitrophenol (PNP) is one of the main hydrolysis products of parathion and methyl parathion and it shows enhanced toxicity towards soil microflora. It is also generated during formulation, distribution, and field application of pesticides or photodegradation of pesticides that contain the nitrophenol moiety. Therefore, PNP poses significant health and environmental risks, because it is toxic to many living organisms and it may accumulate in the food chain.
     Many researchers have focused on the biodegradation of PNP. Most of them reported the PNP degradation at relative low concentrations. And the nitrite, which was toxic to many of the organisms, was rarely removed during PNP biodegradation, except the Rhodococcus Wratislaviensis by which detoxified PNP with an additional anoxic process. Also, there had been reports of cloning degrading gene clusters using the method of genome library construction.
     In this study, an effective PNP-mineralizing strain Y1 was isolated from the activated sludge by the enrichment technique. Its degrading abilities, mineralizing-mechanism degrading genes and enzymes were investigated. The main results are as follows:
     1. Several degrading bacteria were isolated from the activated sludge. And one of them Y1, was selected because of its effective degrading ability. Based on the results of phenotypic features, physiological-biochemical properties, and phylogenetic similarity of 16S rRNA gene sequences, strain Y1 was designated as Arthrobacter sp. Y1. Its 16S rRNA partial sequence was deposited in the GenBank under accession No. EU282772.
     2. The growth and degrading abilities were investigated under pure-culturing conditions by UV-Vis and HPLC. Strain Y1 could degrade 50 mg/L PNP within 6 h under the condition of pH 7 and 30℃. The effect of degrading abilities on PNP degradation under different inocula biomass amount, additional carbon source, temperature, initial pH and PNP concentrations were also investigated to determine the optical conditions. Results showed that the isolate could effectively degrade PNP with inocula 0.10~0.3 g/L, at 15~40℃, pH 6~11 and the PNP concentration was in 100~400 mg/L. Y1 could tolerant concentrations of PNP up to 600 mg/L, which was the highest among reported. Degradation could be effectively improved with the existing additional carbon sources (0~30 g/L). If the glucose concentration exceeded 30 g/L, however, degradation was repressed.
     3. 4-Nitrocathechol (4-NC) was detected as the main intermediate product by HPLC, which implied that degradation was mainly processed through the 4-NC pathway, the typical degrading pathway in gram-positive bacteria. Degradation of 4-NC using the isolate was investigated, which showed that the Y1 could also live on 4-NC as the sole carbon, nitrogen and energy source.
     4. Degradation of PNP by the supernatant of the inoculated cultures induced by PNP was investigated. Results revealed that the supernatant could degrade 50 mg/L PNP within 24 h. It is hypothesized that the degrading enzymes responsible for PNP degradation was secreted from bacterial cells.
     5. There had been publications of degrading gene cluster, which reported that a gene cluster responsible for the PNP conversion into 4-NC, was cloned by the method of constructing genome library. So a pair of primers was designed according to the consensus sequences coding for the PNP hydroxylase and phenol hydroxylase. A 1.5 kb fragment was obtained by PCR and was ligated into the expression vector to form into the recombinant plasmid. The recombinant plasmid was transformed into E.coli BL21. Screening of the recombinant strains was achieved by the PNP conversion in the plates containing PNP. Investigation of the PNP conversion by the recombinant strain showed that the fragment we obtained was functionally expressed. Sequence analysis of the fragment showed that it encoded the oxygenase component of PNP hydroxylase which was similar to the PNP hydroxylase reported. Its sequence was deposited in into the GenBank under accession No. EU282773.
     6. SDS-PAGE analysis of the total proteins of strain under induced and noninduced cultures indicated that the degrading enzymes in Arthrobacter sp. Y1 could be inducible. Enzymetic degradation assays indicated that crude enzyme extracts could rapidly degrade PNP under induced and noninduced conditions. But the degradation rate in induced conditions were 7.2 times faster than in the noninduced ones, which implied that degrading enzymes in Arthrobacter sp. Y1 could be constitutively expressed.
引文
Ahren, D., Ursing B. M., Tunlid A. (1998) Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiol Lett 158:179-184
    Allis, J. W., Robinson B. L. (1994) A kinetic assay for p-nitrophenol hydroxylase in rat liver microsomes. Anal Biochem 219:49-52
    Aryal, P., Yoshikawa K., Terashita T., Guengerich F. P., Shimada T., Oda Y. (1999) Development of a new genotoxicity test system with Salmonella typhimurium OY1001/1A2 expressing human CYP1A2 and NADPH-P450 reductase. Mutat Res 442:113-120
    Barr, D. B. et al. (2002) Measurement of p-nitrophenol in the urine of residents whose homes were contaminated with methyl parathion. Environ Health Perspect 110 Suppl 6:1085-1091
    Beunink, J., Rehm H. J. (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl Microbiol Biotechnol 34:108-115
    Bhatti, Z. I., Toda H., Furukawa K. (2002) p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Res 36:1135-1142
    Bhushan, B., Chauhan A., Samanta S. K., Jain R. K. (2000) Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem Biophys Res Commun 274:626-630
    Bishop, E. J., Mitra S. (2007) Measurement of nitrophenols in air samples by impinger sampling and supported liquid membrane micro-extraction. Anal Chim Acta 583:10-14
    Bo, L., Quan X., Chen S., Zhao H., Zhao Y. (2006) Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Res 40:3061-3068
    Boopathy, R., Kulpa C. F. (1993) Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain). Can J Microbiol 39:430-433
    Bruhn, C., Lenke H., Knackmuss H. J. (1987) Nitrosubstituted Aromatic Compounds as Nitrogen Source for Bacteria. Appl Environ Microbiol 53:208-210
    Cecinato, A., Di Palo V., Pomata D., Tomasi Sciano M. C., Possanzini M. (2005) Measurement of phase-distributed nitrophenols in Rome ambient air. Chemosphere 59:679-683
    Chauhan, A., Chakraborti A. K., Jain R. K. (2000) Plasmid-encodeddegradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun 270:733-740
    Cui, Z., Zhang R., He J., Li S. (2002) Isolation and characterization of a p-nitrophenol degradation Pseudomonas sp. strain P3 and construction of a genetically engineered bacterium. Wei Sheng Wu Xue Bao 42:19-26
    Errampalli, D., Tresse O., Lee H., Trevors J. T. (1999) Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp. G21 encapsulated cells. FEMS Microbiol Ecol 30:229-236
    Gemini, V.L., Gallego A., de Oliveira V.M., Gomez C.E., Manfio G.P., Korol S.E. (2005) Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis. Int. Biodeterior. Biodegrad. 55:103-108
    Guliy, O. I., Ignatov O. V., Makarov O. E., Ignatov V. V. (2003) Determination of organophosphorus aromatic nitro insecticides and p-nitrophenol by microbial-cell respiratory activity. Biosens Bioelectron 18:1005-1013
    Gvozdiak, P. I., Livke V. A., Udod V. M., Bykova S. P., Dmitrenko G. N. (1982) p-Nitrophenol transformation by bacteria of the genera Bacillus and Pseudomonas. Mikrobiol Zh 44:12-15
    Haigler, B. E., Suen W. C., Spain J. C. (1996) Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT. J Bacteriol 178:6019-6024
    Hanne, L. F., Kirk L. L., Appel S. M., Narayan A. D., Bains K. K. (1993) Degradation and induction specificity in actinomycetes that degrade p-nitrophenol. Appl Environ Microbiol 59:3505-3508
    Holt, J G, Krieg NR, Sneath PH, Staley JT, Williams S T (1994) Bergey's Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins, Baltimore, MD
    Hryhorczuk, D. O. et al. (2002) Urinary p-nitrophenol as a biomarker of household exposure to methyl parathion. Environ Health Perspect 110 Suppl 6:1041-1046
    Jain, R. K., Dreisbach J. H., Spain J. C. (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60:3030-3032
    Jinadasa, K. B., Mun C. H., Aziz M. A., Ng W. J. (2004) Acidogenic pretreatment of wastewaters containing 2-nitrophenol. Water Sci Technol 50:119-124
    Kadiyala, V., Spain J. C. (1998) A two-component monooxygenase catalyzesboth the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479-2484
    Karim, K., Gupta S. K. (2001) Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors. Bioresour Technol 80:179-186
    Karim, K., Gupta S. K. (2002) Effects of alternative carbon sources on biological transformation of nitrophenols. Biodegradation 13:353-360
    Karim, K., Gupta S. K. (2003) Continuous biotransformation and removal of nitrophenols under denitrifying conditions. Water Res 37:2953-2959
    Kitagawa, W., Kimura N., Kamagata Y. (2004) A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894-4902
    Koizumi, M. et al. (2001) Comparative study of toxicity of 4-nitrophenol and 2,4-dinitrophenol in newborn and young rats. J Toxicol Sci 26:299-311
    Kosaka, H., Nakamura S. (1990) Genotoxicity of synthetic dyes in umu test using Salmonella typhimurium TA1535/pSK1002 (1). Results of examination for acid dyes, direct dyes, disperse dyes and reactive dyes. Sangyo Igaku 32:89-104
    Kulkarni, M., Chaudhari A. (2006) Biodegradation of p-nitrophenol by P. putida. Bioresour Technol 97:982-988
    Kumar, S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5:150-163
    Labana, S., Singh O. V., Basu A., Pandey G., Jain R. K. (2005) A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100. Appl Microbiol Biotechnol 68:417-424
    Lei, Y., Mulchandani A., Chen W. (2005) Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase. Biotechnol Prog 21:678-681
    Leung, K. T., Campbell S., Gan Y., White D. C., Lee H., Trevors J. T. (1999) The role of the Sphingomonas species UG30
    pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol Lett 173:247-253
    Leung, K. T., Moore M., Lee H., Trevors J. T. (2005) Effect of carbon starvation on p-nitrophenol degradation by a Moraxella strain in buffer and river water. FEMS Microbiol Ecol 51:237-245
    Liu, H., Zhang J. J., Wang S. J., Zhang X. E., Zhou N. Y. (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334:1107-1114
    Liu, Z., Yang C., Qiao C. (2007) Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett 277:150-156
    Loddo, B. (1962) Inhibition of the multiplication in vitro of poliomyelitis virus by the action of guanidine. XI. Lack of antagonism of 24-dinitrophenol and methylene blue against the antipoliomyelitic effect of guanidine. Boll Soc Ital Biol Sper 38:488-489
    Maeda, T., Nakamura R., Kadokami K., Ogawa H. I. (2007) Relationship between mutagenicity and reactivity or biodegradability for nitroaromatic compounds. Environ Toxicol Chem 26:237-241
    Marvin-Sikkema, F. D., de Bont J. A. (1994) Degradation of nitroaromatic compounds by microorganisms. Appl Microbiol Biotechnol 42:499-507
    Miyazawa, M., Kohno G., Okuno Y., Oda Y. (2006) Suppression of MeIQ-induced SOS response by allylbenzenes from Asiasarum heterotropoides in the Salmonella typhimurium OY1001/1A2 umu test. Nat Prod Res 20:671-675
    Moldeus, P., Vadi H., Berggren M. (1976) Oxidative and conjugative metabolism of p-nitroanisole and p-nitrophenol in isolated rat liver cells. Acta Pharmacol Toxicol (Copenh) 39:17-32
    Moore, M., Trevors J., Lee H., Leung K. T. (2005) Stress-survival responses of a carbon-starved p-nitrophenol-mineralizing Moraxella strain in river water. Can J Microbiol 51:223-229
    Munnecke, D. M., Hsieh D. P. (1974) Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol 28:212-217
    Nalecz-Jawecki, G., Sawicki J. (2003) Influence of pH on the toxicity of nitrophenols to Microtox and Spirotox tests. Chemosphere 52:249-252
    Ong, T. M., Stewart J., Wen Y. F., Whong W. Z. (1987) Application of SOS umu-test for the detection of genotoxic volatile chemicals and air pollutants. Environ Mutagen 9:171-176
    Oren, A., Gurevich P., Henis Y. (1991) Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl Environ Microbiol 57:3367-3370
    Pakala, S. B. et al. (2007) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73:1452-1462
    Pandey, G., Pandey J., Jain R. K. (2006) Monitoring Arthrobacter protophormiae RKJ100 in a 'tag and chase' method during p-nitrophenol bio-remediation in soil microcosms. Appl Microbiol Biotechnol 70:757-760
    Paul, D., Singh R., Jain R. K. (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ Microbiol 8:1797-1804
    Perry, L. L., Zylstra G. J. (2007) Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. J Bacteriol 189:7563-7572
    Prakash, D., Chauhan A., Jain R. K. (1996) Plasmid-encoded degradation of p-nitrophenol by Pseudomonas cepacia. Biochem Biophys Res Commun 224:375-381
    Rajan, J. et al. (1996) Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J Ind Microbiol 16:319-324
    Rehman, A., Raza Z. A., Afzal M., Khalid Z. M. (2007) Kinetics of p-nitrophenol degradation by Pseudomonas pseudomallei wild and mutant strains. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1147-1154
    Reifferscheid, G., Heil J., Oda Y., Zahn R. K. (1991) A microplate version of the SOS/umu-test for rapid detection of genotoxins and genotoxic potentials of environmental samples. Mutat Res 253:215-222
    Roldan, M. D., Blasco R., Caballero F. J., Castillo F. (1998) Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Arch Microbiol 169:36-42
    Rudolph, J., Stupak J. (2002) Determination of aromatic acids and nitrophenols in atmospheric aerosols by capillary electrophoresis. J Chromatogr Sci 40:207-213
    Sakagami, Y., Yamazaki H., Ogasawara N., Yokoyama H., Ose Y., Sato T. (1988) The evaluation of genotoxic activities of disinfectants and their metabolites by umu test. Mutat Res 209:155-160
    Sambrook, J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York.
    Schlosser, P. M., Bond J. A., Medinsky M. A. (1993) Benzene and phenol metabolism by mouse and rat liver microsomes. Carcinogenesis 14:2477-2486
    Schmidt, S. K., Scow K. M., Alexander M. (1987) Kinetics of p-nitrophenol mineralization by a Pseudomonas sp.: effects of second substrates. Appl Environ Microbiol 53:2617-2623
    Shafer, W. E., Schonherr J. (1985) Accumulation and transport of phenol, 2-nitrophenol, and 4-nitrophenol in plant cuticles. Ecotoxicol Environ Saf 10:239-252
    Shani Sekler, M. et al. (2004) Monitoring genotoxicity during the photocatalytic degradation of p-nitrophenol. J Appl Toxicol 24:395-400
    Shimada, T., Yamazaki H., Oda Y., Hiratsuka A., Watabe T., Guengerich F. P. (1996) Activation and inactivation of carcinogenic dihaloalkanes and other compounds by glutathione S-transferase 5-5 in Salmonella typhimurium tester strain NM5004. Chem Res Toxicol 9:333-340
    Shimazu, M., Mulchandani A., Chen W. (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76:318-324
    Shinozaki, Y., Kimura N., Nakahara T. (2002) Difference in degrading p-nitrophenol between indigenous bacteria in a reactor. J Biosci Bioeng 93:512-514
    Simposon, R.J. (2003a) Nondenaturing PAGE of proteins. In: Proteins and proteomics: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 67-68
    Simposon, R.J. (2003b) Proteins and Proteomics: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York
    Spain, J. C., Gibson D. T. (1991) Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812-819
    Spain, J. C., Wyss O., Gibson D. T. (1979) Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun 88:634-641
    Sudhakar, Barik, Siddaramappa R., Wahid P. A., Sethunathan N. (1978) Conversion of p-nitrophenol to 4-nitrocatechol by a Pseudomonas sp. Antonie Van Leeuwenhoek 44:171-176
    Sultatos, L. G., Minor L. D. (1985) Biotransformation of paraoxon and p-nitrophenol by isolated perfused mouse livers. Toxicology 36:159-169
    Suresh, K., Prakash D., Rastogi N., Jain R. K. (2007) Clostridiumnitrophenolicum sp. nov., a novel anaerobic p-nitrophenol-degrading bacterium, isolated from a subsurface soil sample. Int J Syst Evol Microbiol 57:1886-1890
    Takeo, M., Yasukawa T., Abe Y., Niihara S., Maeda Y., Negoro S. (2003) Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Biosci Bioeng 95:139-145
    Tomei, M. C., Rossetti S., Annesini M. C. (2006) Microbial and kinetic characterization of pure and mixed cultures aerobically degrading 4-nitrophenol. Chemosphere 63:1801-1808
    Venera, G. D., Morisoli L. S., Rodriguez Garay E. A. (1978) Degradation of parathion to p-nitrophenol by livers of rats treated with phenobarbital. Farmaco [Prat] 33:549-553
    Wan, N. S., Gu J. D., Hao F. Q., Xiao X. Q. (2007a) Degradation of p-nitrophenol by a mangrove bacterial Rhodococcus sp. Ns. Huan Jing Ke Xue 28:431-435
    Wan, N. S., Gu J. D., Huang J. H., Gao C. D. (2007b) Isolation of Achromobacter xylosoxidans NS12 and degradation of nitrophenols. Huan Jing Ke Xue 28:422-426
    Wan, N.S., Gu J.D., Yan Y (2007c) Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. Int. Biodeterior. Biodegrad 59:90-96
    Wrobel, K., Wrobel K., Madai Colunga Urbina E., Munoz Romero J. (2000) The determination of 3-nitrophenol and some other aromatic impurities in 4-nitrophenol by reversed phase HPLC with peak suppression diode array detection. J Pharm Biomed Anal 22:295-300
    Yamazaki, H. et al. (1992) Participation of rat liver cytochrome P450 2E1 in the activation of N-nitrosodimethylamine and N-nitrosodiethylamine to products genotoxic in an acetyltransferase-overexpressing Salmonella typhimurium strain (NM2009). Carcinogenesis 13:979-985
    Zeyer, J., Kocher H. P., Timmis K. N. (1986) Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl Environ Microbiol 52:334-339
    万年升,顾继东,郝伏勤,肖翔群(2007) Rhodococcus sp. Ns对硝基苯酚的好氧生物降解.环境科学28:431-435
    王建波(2004)遗传学实验教程[M].武汉大学出版社
    崔中利,张瑞福,何健,李顺鹏(2002)对硝基苯酚降解菌P3的分离、降解特性及基因工程菌的构建.微生物学报42:19-26
    解秀平,闫艳春,刘萍萍(2006)甲基对硫磷彻底降解菌X4的分离、降解性及系统发育研究.微生物学报46:979-983
    东秀珠(2001)常见细菌系统鉴定手册.科学出版社,北京
    刘智,洪青,张小舟,徐剑宏,李顺鹏(2003)甲基对硫磷降解菌DLL-E4降解对-硝基苯酚特性.中国环境科学23:435-439
    刘萍萍,闫艳春,解秀平(2006)降解甲基对硫磷菌株YL8的分离、纯化及降解机理.中国环境科学26:206-209
    萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T (1989)分子克隆试验指南(第二版).科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700