用户名: 密码: 验证码:
聚铁基复合絮凝剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
絮凝剂是重要的水处理材料,是絮凝法水处理技术的关键和基础。目前,国内外主要使用铝盐絮凝剂。由于铝盐絮凝剂效率较低且存在环境问题,在我国及世界,絮凝剂的研究与应用水平都有待创新和提高。目前,世界上絮凝剂的研究主要向着高效低耗、安全无害、无二次污染方向发展。研究高效低耗、安全无害的铁系复合絮凝剂属于絮凝科学领域的研究前沿之一。本研究利用钛白副产物FeSO4·7H2O为原料,研究了聚铁基复合絮凝剂的制备与絮凝作用机理,为研究和应用铁系复合絮凝剂作了有益的探索和努力。
    主要研究内容有: 聚铁基无机高分子复合絮凝剂聚硅硫酸铁(PFSiS)的研究;聚铁基淀粉改性无机/有机复合絮凝剂(PFS-CSM)的研究。PFSiS和PFS-CSM的研究都包括了制备研究、絮凝作用机理研究、絮凝效果研究、水处理应用试验等。
    本研究中,制备PFSiS聚铁基复合絮凝剂的主要研究内容有:①、以钛白生产副产物七水硫酸亚铁为原料,合成无机高分子絮凝剂聚合硫酸铁;②、以水玻璃制出活化聚硅酸高聚物;③、聚合硫酸铁与活化聚硅酸复合制得新型高分子复合絮凝剂PFSiS。研究结果表明:SiO2(%)为1.4~2.0%,Fe/Si摩尔比为0.8~1.2,PFSiS的pH值为1.5~1.8,硅酸活化时间在l~18h,可获得絮凝性能优异且稳定性较好的絮凝剂。制备的PFSiS,因不含Al3+等环境污染物、原料为工业副产物,所以具有以下优点:①、安全无害、无二次污染;②、高效低耗,可部分取代价格昂贵的有机合成高分子絮凝剂且无毒性;③、成本低廉,附加值高。
    在絮凝作用机理研究方面,利用微电泳技术等,探索了PFSiS絮凝作用机理,揭示了起絮凝作用的优势形态,为絮凝剂的研制开发提供了依据。通过研究PFS、聚合硅酸(PSi)及PFSiS的pH变化规律发现:在制备初期,PFSiS并未达到化学平衡状态,而是存在一个相互作用、自行调整聚合的过程,表现在其pH值存在一个变化过程。本研究还利用紫外-可见光谱探索了聚铁基复合絮凝剂的作用机理。紫外-可见吸收光谱研究显示:在200~1000nm的波长范围,PSi无明显吸收。在200~400nm的波长范围,PFSiS和PFS有清晰的吸收光谱,但各自的光谱特征差异较大。在酸性环境中,随着pH值升高,差异越明显,这说明,当pH值偏高时,PFSiS中各成分的反应活性更强,PFS与PSi更容易发生化学反应而形成新的聚合物形态。通过紫外-可见光谱研究以及PFS、PFSiS与PSi的pH值随时间的动态变化规律研究表明: PFSiS 不是PFS、
    
    PSi的简单混合,是复合。在PFSiS中,硅与铁发生了不同程度的相互作用,使各自的形态发生了不同的变化。这种作用又与溶液的pH值有关。在不同pH值条件下,铁与硅相互作用程度不同。
    本文还研究了PFSiS中硅的形态分布与转化规律。通过Si-Mo逐时络合比色法研究表明:pH值较低(如pH为0.64)时,陈化一定时间后,在PFSiS中的PSi主要是高聚体或凝胶态(Sic);pH值较高(如pH为1.46和1.70)时,陈化一定时间后,PFSiS中的PSi中聚体(Sib)含量比较低pH值时要高。通过絮凝性能研究得出:PFSiS在pH值为1.46和1.70时絮凝效果比低pH值时更好,由此证明,PFSiS中,PSi的优势絮凝形态为中聚体(Sib)。
    Zeta电位测定研究表明:PFSiS的电荷特性受SiO2含量、Fe/Si摩尔比及酸度等因素影响。对PFSiS的絮凝作用机理研究表明:PFSiS的电中和作用不显著,其絮凝作用机理,表现出较明显的吸附架桥和网捕卷扫特征。
    通过PFSiS与PFS、PAC处理中药制药废水等的对比试验表明:PFSiS的絮凝效能最佳,对水中CODCr去除率最高,且对水质适应性较好。
    本研究中,制备PFS-CSM的主要研究内容如下:①、用钛白生产废渣七水硫酸亚铁为原料,合成无机高分子絮凝剂聚合硫酸铁。②、用少量有机胺和卤代烷合成有机阳离子絮凝剂CF,再利用CF对淀粉进行改性,制得阳离子改性淀粉CSM。 ③、用自制聚铁与阳离子改性淀粉合成聚铁基淀粉改性无机/有机复合絮凝剂(PFS-CSM)。通过正交对比实验等,确定了制备复合絮凝剂PFS-CSM的最佳工艺条件:有机胺与卤代烷摩尔比为1:1,反应温度为45℃,反应时间为1h,合成阳离子絮凝剂CF。淀粉预胶化过程中控制淀粉投加浓度为10%,NaOH固体加量为淀粉干基的5%,预胶化温度为65℃~75℃左右,预胶化时间为2h。阳离子絮凝剂CF与改性淀粉有效质量比为1.5:1,活化时间为30s,接枝温度恒定在50℃~60℃,接枝时间为2h左右。聚铁与阳离子改性淀粉的投料比(质量比)为3:1,反应温度为60℃,反应时间为3h。研究的PFS-CSM,具备以下优点:①、不含Al3+;②、成本低廉;③、通过无机/有机复合,可望发展出新的高效集成化混凝处理技术。
    由絮凝试验及显微照像技术得出:PFS-CSM絮凝过程主要表现为吸附架桥和网捕卷扫的典型特征。PFS-CSM的最佳絮凝pH范围为7.0~9.0,最佳絮凝形态是产生Fe(OH)4-后在此基础上进一步聚合成带正电的铁基高聚物。综合分析表明,其优异的絮凝性能是由其特殊的分子结构决定的,是电性中和与吸附架桥、网捕卷扫协同作用的结果。
    通过复合絮凝剂PFS-CMS对重庆啤酒集团第二分厂啤酒生产废水等絮凝效果试验得出,该絮凝剂在絮凝效果上优于常用的几种水处理絮凝剂,产生的絮体粗
    
The method of flocculation is the one of the most important technology controlling water pollution. Flocculants are the critical part and the core basis of the technology.At present,flocculants based on salt aluminium are chiefly used abroad and at home. Because the flocculant based on the aluminium salt is low efficiency and exists environment problems, in our country and all over the world, the research and application of flocculant are required to be innovated and raised. At present, the trench of development on the research of flocculant are chiefly :the high efficiency, low consumption, safety, no harmlessness and no two-time pollution. The research of iron system flocculate belongs to the forward position of flocculation science. In this paper, the by-product of titanium white manufacture, FeSO4·7H2O, is used as the raw materials to study the preparation of composite flocculant based on polyferric. A lot of explorations and efforts are made to study and apply high efficiency composite flocculant based on the polyferric in this paper.
    The major contents of research have: the research of inorganic composite flocculant polyferric silicate sulfate (PFSiS) based on the polyferric and cationic starch-modified inorganic-organic composite flocculant(PFS-CSM) based on the polyferric. They all include the research of preparation、flocculating action mechanism、 flocculating effect and water treatment application trial etc.
    In this paper, the major contents of preparing PFSiS are as follows: Firstly,the waste residue of titanium white manufacture ,FeSO4·7H2O, is served as the raw material to synthesize inorganic high molecular flocculant polyferric sulfate. Secondly, water glass is used to produce the activated poly silicic acid polymer.Finally,polyferric sulfate and activated poly silicic acid are compounded to make the new type of inorganic high molecular composite flocculant PFSiS. The research result is shown that the percentge of SiO2 is between 1.4~2.0%, the mol ratio of iron to silicon is between 0.8~1.2, the pH value of PFSiS is 1.5~1.8, the activated time of silicic acid is between 1~18 hours, the flocculant has excellent flocculation and better stability. PFSiS, that contains no pollutant of environment ,has huge molecular weight and uses the by-product of industry as the raw material, has the following merits: one is safety、no harmlessness、no two-time pollution. The others are that it has high efficiency and low consumption;and it can partly replace the organic synthesis high polymer flocculate
    
    that price is expensive and has toxicity. Another is that the cost is very cheap, and the additional value is very high.
    For the first time, micro-electrophoresis technology is used to explore the flocculating mechanism of PFSiS, reveal the superiority form of flocculating action and provide the science basis for developing the flocculant.
    The pH change laws of PFS、 PSi and PFSiS are investigated. It is found that the pH value of PFSiS will change with aging time. The results show that there is interaction between PFS and PSi, and the pH value may affect the degree of their interaction. The results also show that their reaction is not in equilibrium when the flocculant is newly prepared. In acid condition, the pH value changes smoothly when the prime pH is 1.46. But when the prime pH value is higher (1.70) or lower (0.64), the pH value of PFSiS shows apparent relaxation change. The results show that the species of PFSiS will change when the prime pH value is higher or lower. Otherwise, the Fe/Si molar ratio can affect the pH relaxation of PFSiS. When Fe/Si is higher, the pH relaxation of PFSiS changes as PFS does; and when Fe/Si is lower, the pH relaxation of PFSiS changes as PSi does.
    The ultraviole-visible spectrometric determination shows that, polysilicate (PSi) almost has not abvious absorbence in the range of 200~1000nm wavelength; the absorption spectrometric of PFSiS and PFS is different in the range of 200~400nm wavelength. In acid condition, when the pH value rises, because the a
引文
[1] 郑怀礼、龙腾锐、舒型武.论可持续发展战略与水污染控制系统规划. 世界科技研究与发展,2001, 23 (6) :26- 30
    [2] 郑怀礼,袁宗宣,郑泽根.论三峡库区的水环境问题和水环境保护对策.重庆建筑大学学报,1999,21(4):91
    [3] 国家环境保护总局.2001年中国环境状况公报.环境保护,2002,(7):3~11
    [4] [苏]E·Д·巴宾科夫著.郭连起译.论水的混凝[M].第一版.北京:中国建筑工业出版社,1982
    [5] 严瑞瑄等.水处理剂应用手册.北京:化学工业出版社,2000
    [6] 姚重华.混凝剂与絮凝剂.第一版.北京:中国环境科学出版社,1991
    [7] 汤鸿霄.无机高分子复合絮凝剂的研制趋势. 中国给水排水,1999,15(2):1~5
    [8] 汤鸿霄.无机高分子絮凝剂的基础研究. 环境化学,1990,9(3):1~10
    [9] 崔蕴霞等.铝盐絮凝剂及其环境效应.工业水处理,1998,18(3):6~9
    [10] 樊冠球.自来水厂用混凝剂存在的问题和解决途径.中国给水排水,1998,14(3):42~43
    [11] Hasegawa T et al., Method and Flocculant for Water Treatment,U. S. Patent,PN:4923629,1990
    [12] Hase D et al., Polymeric Basic Aluminum Silicate-Sulphate. U. S. Patent,PN:4981675,1991
    [13] segawa T et al., Characteristics of Metal-Polysilicate Coagulants. Water Sci. Tech., 1991, 25: 1713
    [14] 李和平,袁宗宣,郑怀礼等.活性硅酸聚合硫酸铁的研究.重庆建筑大学学报,2000,22(1):39~42
    [15] Takao Hasegawa et al.Water Nagoya'89,ASPCIWSA.1989,31S-05-152A
    [16] 吴早春等.新型聚磷氯化铝在污水处理中的特性,工业水处理,1996,16(5):15~17
    [17] 日本特许公告昭 61-1113
    [18] 张莉,李本高.水处理絮凝剂的研究进展.工业用水与废水,2001,32(3):5~7
    [19] 郑怀礼,龙腾锐,袁宗宣.聚合硫酸铁制备方法研究及其发展..环境污染治理技术与设备,2000,1(5):21~28
    [20] Mikami Y,Takei I. Iron.Poly.sulfate Solution.JP:1974,(195):49-53
    [21] 高文德.聚合铁生产中出现的问题和处理见解.西南给排水,1998,(5):34
    [22] 张明权等.聚合硫酸铁絮凝剂合成新方法及性能研究.工业水处理,1994,(1)
    [23] 白玉兴等.聚合硫酸铁合成中催化剂的研究.工业水处理,1996,16(2):9~11
    [24] 李凤亭等.雾化法制备聚合硫酸铁新工艺.工业水处理,1996,16(3):20~21
    [25] 李凤亭.国外氮氧化物催化法合成聚合铁的新工艺.工业水处理,1998,18(5):9~11
    
    
    [26] 日本 阳光药化株式会社 JK 8-253326
    [27] 汪多仁.化工环保,1997,17(4):211~214
    [28] 日本 特许公报昭 55─104925
    [29] 张敬东等.用硫铁矿制备系净水剂实验研究.适用技术市场,1996.(2):3~5
    [30] JP 86.286.228
    [31] CN 1049487A
    [32] 吴济华.一种新型净水剂--聚氧 . 硫酸高铁.四川大学学报,1997,(3):46~47
    [33] 方莉等.东北工学院学报,1998,19(1):80~82
    [34] Tang H X, Luan Z K, Wang D S et al. Composite inorganic polymer flocculants. In:Hahn H H, Hoffman E,Odegaard H ed. Chemical Water and Wastewater Treatment:V. Springer-Verlag,1998.25-34
    [35] Tang H X, Luan Z K. The differences of behaviour and coagulating mechanism between inorganic polymer flocculants and traditional coagulants.In: Hoffman E, Odegaard H ed. Chemical Water and Wastewater Treatment:IV. Springer-Verlag,, 1996, 83-93
    [36] 曲久辉.水厂高效絮凝技术集成系统研究方向.中国给水排水,1999,15:20~22
    [37] 高宝玉等.聚硅酸硫酸铁混凝剂的性能研究.环境科学,1997,18(2):46
    [38] 高宝玉等.用透射电镜研究聚硅酸硫酸铁混凝剂的形态.环境化学,1998,7(2):170
    [39] 刘峙嵘等.无机高分子复合絮凝剂的研制趋向.工业水处理,1999,19(1):19~20
    [40] 田宝珍等.铝铁共聚复合絮凝剂的研制及应用.工业水处理,1998,18(1):17~20
    [41] 吕新之.铝的污染和危害.环境保护,1998,(5):38
    [42] 曲久辉,路光杰,汤鸿霄.电解法制备高效聚合铝的溶液化学因素 .环境化学,1997,16(6):522~527
    [43] 蒋馥华,张萍,申照全.碱法从铝土矿制备聚合氯化铝 .环境工程,1994,12(4):50~53
    [44] 王士才,李宝霞.聚合硫酸铝絮凝剂的研究及其在水处理上的应用 .工业水处理,1997,17(2):17~19
    [45] 高宝玉,何晓镇,王春省等.PACS絮凝剂的制备及其性能研究 .环境科学,1990,11(3):34~37
    [46] 高宝玉,于慧,岳钦艳等.PACS的结构特性及絮凝机理研究 .环境化学,1994,13(2):113~118
    [47] 郑怀礼,舒型武,刘名崇等.含磷复合絮凝剂的制备与应用研究 .水处理技术, 2001,27(5):274-27
    [48] 高宝玉,王秀芬,于慧等.聚合氯化铝铁的性能研究 .环境化学,1994,13(5):415~420
    
    
    [49] 甘光奉,张依华,甘莉.高分子铁盐混凝剂的开发与应用进展 .工业水处理,1997,17(5):1~2
    [50] 栾兆坤,刘振儒,赵春禄.聚铝铁硅絮凝剂的合成方法及其混凝效能 .环境化学,1997,16(6):546~551
    [51] 胡翔,周定.聚硅酸系列混凝剂混凝过程的动力学和机理研究 .水处理技术,1999,25(2):114~117
    [52] 岳钦艳.含铝离子的聚硅酸絮凝剂研究 .环境化学,1990,11(5):37~41
    [53] 胡翔,周定.聚硅酸铁处理低温低浊水的研究 .工业水处理,1997,17(5):13~14
    [54] 栾兆坤,宋永会.聚硅酸金属盐絮凝剂的制备和絮凝性能 .环境化学,1997,16(6):534~539
    [55] 舒型武,郑怀礼.阳离子有机絮凝剂研究进展 .现代化工,2001,21(10):13~16
    [56] Mallon R D. Cationic Water-Souble Polymers Precipitation in Salt Solution. US, 6013708. 2000-01-11
    [57] 肖锦,杞永亮. 我国絮凝剂发展的现状与对策 . 现代化工,1997,17(2):52~55
    [58] Cai J Y, Axelos M . Method for Manufacturing Grafted Polyacrylamide Flocculant of Cationic/ Ampholytic. US, 5990216. 1999-11-23
    [59] 甘光奉,甘莉.我国改性淀粉絮凝剂的开发与应用 .工业水处理,1996,16(6):1~2
    [60] 赵彦生,李万捷,沈敬之等. 淀粉--丙烯酰胺接枝共聚物的合成及其性能 . 水处理技术,1994,20(6):370~374
    [61] 郭玲香,胡明显,郭世全. 新型阳离子聚合物治理煤泥废水的应用研究 . 上海环境科学,1999,18(3):127~132
    [62] 尹华,彭辉,刘慧璇,张娜. 淀粉改性阳高子絮凝凝剂的制备及其絮凝性能研究 . 环境科学与技术,2000,(1):13~15
    [63] 严瑞瑄,胡宇,桤永亮,鲍其鼎. 我国水处理剂的现状及发展战略 . 现代化工,1999,19(2):3~7
    [64] Ractor.Ludufg.Lignin Cosiposttion Process for its Preparation.US 3912706,1975-12-14
    [65] Qu Rongjun,Liu Qingjian. Preparation and Adsorption Properties for Metal Ions of Chitosan Crosslinked by PEG Bisglycidyl Ethers. Environmenal Chemistry, 1996,15(1):41
    [66] Chai Ponghai, Zhang Wenqing, Jin Xinrong. The New Exploiting and Researching Theds of Chitin/Chitosan[J]. Chemistry,1999(7):8
    [67] 李琳,冯易君,谢家理,单书香. 橡宛单宁去除水中有毒重金属离子的研究 . 环境工程,1997,15(5):14
    [68] 赵立志,杨旭. 阳离子丹宁絮凝剂的制备及其性能评价. 重庆环境科学,1993,15(6):33
    [69] 曹炳明. CS-1型絮凝剂的制备及其在污水处理方面的应用. 工业水处理, 1987, 7(6):
    
    27~29
    [70] 吴冰艳. 新型脱色絮凝剂木质素季胺盐的研制及其絮凝性能与机理的研究. 化工环保, 1997, 17(5):268
    [71] Wong Shing. Hydrophilic Dispersion Polymers of Diallyldimethyl Ammonium chloride and Acrylamide for the Clarification of Drinking Process Waters[P]. US,6019904. 2000-02-01
    [72] 陆兴章,高华星,孙蕴美等. HC型阳离子高分子絮凝剂的絮凝性能及其应用研究. 环境污染与防治,1994,16(6):6~10
    [73] 高华星,陆兴章,赵德仁. 阳离子高分子絮凝剂用于印刷油墨废水处理.环境污染与防治,1995,17(3):9~12
    [74]肖遥,邓皓,陈尚冰. 有机高分子絮凝剂的合成及应用. 工业水处理,1994,14(3):17~19
    [75] 黎钢,张松梅. 高密度电荷阳离子聚电解质的制备及应用. 中国环境科学,1999,9(2):145~148
    [76] 杨通在,刘亦农,杨君. 阳离子改性高分子絮凝剂对轻工废水的处理. 工业水处理,1998,18(3):27~29
    [77] 朱红,施秀屏,欧泽松.新型阳离子有机絮凝剂的研究. 工业水处理,1996,16(1):24~27
    [78] 董银卯,于馄,梁瀛洲.新型阳离子有机絮凝剂的研制. 工业水处理,1996,16(2):20~22
    [79] 栾兆坤等. 微絮凝--深床过滤理论与应用研究.环境化学,1997,16(6):590
    [80] 杨智宽等.污染控制化学.武汉:武汉大学出版社,1998
    [81] Amirtharajah A, Asce M, Tuusler SL, Destabilization of particles by Turbulent Mixing. J.Envir Engeg Div-ASCE, 1986, 112:1085
    [82] AWWA Coagulation Committee Report: Coagulation as An Integrated Water Treatment Process. J. Am Water Works Assoc, 1989,81(10):72
    [83] 王绍文等.混凝动力学的涡旋理论探讨. 中国给水排水(上,下),1991,7(1):4,7(4):8
    [84] Dentel SK, Gossett JM,Mechanisms of Coagulation. With Aluminum Salts. J Am Water, Works Assoc. 1988,80(4):187
    [85] Katz LE, Hayes KF, Surface Complexation. Modeling, ⅠⅡ,J. Colloid Interface Sci., 1995, 170;477
    [86] Dentel sk. Applieation of the Precipitation-Charge. Neutralization Model of Coation. J. Envirn, Sci, Technol.1988,22(7):825
    [87] 许保玖,龙腾锐. 当代给水与废水处理原理(第二版). 北京: 高等教育出版社,2000
    [88] 赫俊国等. 微涡旋混凝低脉动沉淀技术处理低温低浊水. 中国给水排水,1999,15(4):17
    [89] Akitt,J.W.and Elders,J.M.,J.Chem.Soc.Dalton Trans. ,1988:347
    [90] Jardine.P.M.,Zelazny,L.W., J.Soil Sci Soc.Am., 1986,51:895
    [91] Jardine.P.M.,Zelazny,LW., J.Soil Sci Soc.Am., 1986,51:889
    
    
    [92] Parker,D.R.,Kinraide,T.B.,Zelazny,L.W. ,J.Soil Sci.Soc.Am., 1988,52:438
    [93] Parker,D.R.,Kinraide,T.B.,Zelazny,L. J.Soil Sci.soc.Am., 1989,55:789
    [94] Furrer,G.,Ludwig.C.,Schindler,P.W.,J.Colliod Interf.Sci., 1992, 1:149
    [95] Parker,D.R.,Bertsch,P.M,Environ.Sci Technol., 1992,26:921
    [96] Akitt,J.W.,Prog.NMR Spectrpsc., 1989, 1:21
    [97] Parker,D.R., Zelazny,L.K., inraide,T.B., Soil Sci Soc.Am.J., 1988,52:67
    [98] Akitt,J.W., Farthing.A.,j.Chem.Soc. Dalton Trans., 1981:1617
    [99] 王绍文. 惯性效应在絮凝中的动力学作用.中国给水排水,1998,14(2):13
    [100] 武道吉等. 混合动力学机理及控制指标研究.中国给水排水,2000,16(1):54
    [101] 汤鸿霄. 无机高分子絮凝剂的几点新认识. 工业水处理,1997,17(4):1
    [102] Smith R W. Nonequilibrium systems in natural water chemistry. ACS, Advance in chem.. series, 1971, 106:250
    [103] Akitt J. W,Greenwood W.N etal.27Al NMR studies of acidic solutious of aluminum salt. Chem. soc, 1969:803
    [104] Iler R. K. The chemistry of silica. John Wiley&sons.Inc,1979:312~439
    [105] 郑怀礼,龙腾锐.混凝胶体学初探.《中国人口﹑资源﹑环境与可发展战略研究》北京.中国环境科学出版社, 2000:1555~1556
    [106] Benschoten J E V,Edzawald K,Chemical Aspects of Coagulation Using Aluminum Salts, Ⅰ,Ⅱ,Water Resch.1990,24(12):1519
    [107] 袁宗宣、郑怀礼、舒型武..絮凝科学与技术的进展. 重庆大学学报 ,2001,(2):143-147
    [108] 高宝玉等. PASC的形态分布及转化规律(Ⅰ,Ⅱ,Ⅲ).环境化学,2000,19(1):1
    [109] JIANG J-Q.,GRAHAM N.J.D. Observations of The Comparative Hydrolysis/Precipitation Behaviour of Polyferric Sulphate and Ferric Sulphate. Wat. Res, 1998,32(3):93
    [110] 汤鸿霄等. Al-Ferron络合比色法的动力学特性及PAC形态. 环境化学,1998,17(6):516
    [111] 王东升等. 激光光散射在混凝研究中的应用评述. 环境科学进展,1997,5(5):36
    [112] Akitt JW, Farthing A, Aluminum-27 NMR Studies of the Hydrolysis Aluminum(Ⅲ), Part2-5,J.C.S.Dalton. Trans., 1981,1606
    [113] Baes, C. F, Jr. et al., The hydrolysis of Cations, P. 230, Wiley-Interscience, N. Y, 1976
    [114] Bertsch P M, Aqueous polynuclear Aluminum Species, in "The Environmental
    Chemistry of Aluminum", Sposito, G(eds), CRC Press, 1989, pp. 87-115
    [115] Flynn M C, The Hydrolysis of Inorganic Iron(Ⅲ) salts, Chemical Review, 1984, 84:31-41
    [116] Bottero J Yetal., Partial Hydrolysis of Ferric Chloride Salt. Langmuir, 1991, 7(5):1365
    [117] 崔福义,李圭白. 流动电流法混凝控制技术. 中国给水排水,1991,7(6):36
    [118] 于水利等. 一种新的高浊度水絮凝研究方法.哈尔滨建筑大学学报,1996,29(2):52
    [119] 李星等. 透光率脉动检测技术. 中国给水排水, 1997,13(6):26
    
    
    [120] 龙腾锐,郑怀礼,舒型武.利用钛白生产中的副产物制备聚合硫酸铁 .化工环保,2002,22(1):49~51
    [121] 邵维仁,朱传俊.聚合硫酸铁产品的质量检验 .工业水处理,1994,14(1):30~32
    [122] 黄文彬,周英钰,廖义兵.聚合硫酸铁中碱化度的测定.工业水处理,1992,12(1):32~35
    [123] 国家环境保护局等编. 水与废水检测分析方法(第三版).北京:中国环境科学出版社,1989
    [124] 卢建杭等. 无机絮凝剂制备技术的进展. 中国给水排水,1999,15(4):28
    [125] Moulik S P and Mullick D K. Catalysis in the Polymerization of Silicic Acid . J.Polymer Sci.,1966,part A-1,4:811
    [126] 朱明华. 仪器分析. 北京: 高等教育出版社,1992
    [127] 常青等. 聚合铁的形态特征和凝聚--絮凝机理. 环境科学学报,1985,5(2):185
    [128] Knight, R. J. et al., J. Inorg. Chem., 36,591(1974);37,779(1975)
    [129] Iler R K, J. coll. Inter. Sci., 1981,334
    [130] Iler R K, The Chemistry of Silica. Wiley N Y 1979
    [131] Parker D R. Identification and quantification of the "Al13" tridecameric polycatior using ferron[J].Environmental Science&Technology,1992,26(5):908-911
    [132] 马青山等. 絮凝化学与絮凝剂. 北京,: 中国环境科学出版社. 1988
    [133] Yokoyama T, Takahashi Y, Tarutani T. Retarding and Accelerting Effects of Aluminum on the Polysilic Acid Particle. J. Collo. and Inter. Sci., 1991,141(2):559
    [134] 谢飞. 二乙胺制得的聚季铵型浮选剂及其性能 .石油化工环境保护,1995,(1):12~15
    [135] Georg H,Dietmar B.Production of cationic starch ethers using an improved dry process. Starch/ Starke,1992,44(2):69~74
    [136] 田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征 .环境化学,1990,9(6):70~76
    [137] 郑怀礼,龙腾锐,舒型武. 聚合硫酸铁絮凝剂絮凝机理分析. 重庆环境科学, 2000, 22(5):51~54
    [138] 涂方祥,蒋展鹏.无机混凝剂的形态对混凝的影响 .中国给水排水,1996,12(4):4~6
    [139] 常青.絮凝科学的研究进展 .环境科学,1994,15(1):69~72
    [140] Flynn C.M. Hydrolysis of Inorganic Iron(Ⅲ) Salfs[J].Chemical Review,(84),1984
    [141] 汤鸿霄.无机高分子絮凝剂的科学与技术进展 .水处理信息导报,1997,77(4):36~49
    [142] 潘碌亭, 肖锦.天然高分子改性药剂FIQ-C的絮凝性能及作用机理研究 .水处理技术, 2001,27(2):84~86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700