用户名: 密码: 验证码:
干酪根自动制备系统关键技术研究和设备设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油勘探研究中,对矿样中分离出的干酪根进行分析检测是一项重要手段和依据。然而,迄今为止,干酪根的分离提取绝大部分仍依赖于手工操作,存在效率低、耗时长、对环境和操作人员健康威胁大等缺点。因此,干酪根制备的自动化、智能化是未来石油勘探研究亟需解决的重大课题。本文将以此为目标,探讨干酪根制备工艺流程的自动化与智能化设计与实现。
     论文首先分析了干酪根的传统制备工艺流程,在此基础之上,对干酪根制备系统设计做出需求分析,并提出了适合于自动化实现的、新的制备工艺流程;最后对总体方案进行了规划,对其中的重点与难点进行了详细深入研究。
     在此之后,根据其实现的不同功能对总体设计方案进行了细分,划分为五部分。主要抓住两个核心:即反应容器设计和平面振动平台设计;以及三个硬件支撑系统:即管路系统、废液处理系统和机柜设计。并有所侧重地分别加以讨论分析。
     第三章提出了新的反应容器的密封结构设计,并分析了材料对密封结构的影响;第四章提出两种基于偏心曲轴的过约束运动平台结构设计,对它们的运动平稳性作了分析比较;并分析了影响运动平稳性的因素,改进了结构设计;之后详述了运动平台系统的具体结构设计。第五章对管路系统的密封方式做了介绍,并提出一种改进密封结构;之后对废液处理系统的控制方案进行了探讨,讨论了搅拌装置设计的关键技术;最后对系统机柜的设计及器件布局进行了规划。
     系统硬件构建完成后,结合控制系统对各功能模块和整个系统进行了大量的调试和实验,取得了较满意的结果。
     本系统设计实现了干酪根制备的自动化和智能化,提高了制备效率,降低了技术人员的劳动强度。其整体规划设计方法可用于同类复杂系统设计。其中,反应容器设计中关于材料和密封结构的讨论,同样适用于其它复杂条件下使用的密封容器;所设计的平面运动平台机构亦可用作其它平面运动机械设计的参考。
In the research of oil exploration, the detection and analysis of kerogen separated from Ore samples is an important means. However, till now, the separation of kerogen still depends on manual operation, which is inefficient, time-consuming and a serious threat against the environment and health of operators. Therefore, the intelligentizing and automation of the separation of kerogen, is a significant subject which desiderated to be solved in the research of oil exploration. Aiming at it, the article will discuss the automatic and intelligent design and realization of the technology of the separation of kerogen.
     Firstly, this article analyses the traditional technology of separation of kerogen. Based on it, a requirements analysis in detail is made on the design of the separation devices of kerogen, and a new method of separation is proposed which suits the automation of it. Finally, a general project is planned, and a deep research is performed on the emphasis and difficulty of the project.
     According to the different functions, the general project is divided into five parts, including two key points and three hardware support systems. The two key points are the design of reaction vessels and the motion platform, and the three support systems are the pipeline system, the design of cabinet and wastewater treatment system. And all these are discussed on different pivots
     In chapter 3, a new sealing structure design of reaction vessels is proposed, and the influence of materials on sealing structure is discussed. In chapter 4, a comparison of kinetic stability is made between two kinds of over constraint motion platforms with eccentric shafts. The factors impacting the stability of motions are analyzed, and then an optimized design is presented. Following that, a detailed description of the structural design of the platform is presented. In chapter 5, it introduces the sealing forms of pipeline system generally, and puts forward an improved sealing structure. Afterwards, a discussion is carried out on the control project of wastewater treatment, with a focus on the key technology of mixing fittings. At the end of it, it makes a plan on the cabinet design and layout of devices.
     After the completion of system hardware, a wide and complete debugging combined with the control system is performed on the function modules and the whole system, and it achieves a great success.
     The design makes the automatic and intelligent control of the separation of kerogen come true, and it also enhances the efficiency and reduces the laboring intensity.
     The method of planning and design on this system can be used on the similar complex system design, and the conclusion of the discussion on materials and sealing structure, can be used to direct the design of sealing vessels used in complex environments. In the same way, the motion platform designed in this article can be reference to other motion machines.
引文
[1]张继武.高技术与石油勘探开发.石油科技论坛, 2005, (02): 17-19.
    [2] Sackett W M, Poag C W, Eadie B J. Kerogen Recycling in the Ross Sea, Antarctica. Science, 1974, 185(4156): 1045-1047.
    [3] Iagafarova G G, Safarov A K, Il E G, et al. Effect of shale kerogen oxidation products on biodegradation of petroleum and petroleum products in soil and water. Prikl Biokhim Mikrobiol, 2002, 38(5): 518-522.
    [4] Ran Y, Xing B, Rao P S, et al. Sorption kinetics of organic contaminants by sandy aquifer and its kerogen isolate. Environ Sci Technol, 2005, 39(6): 1649-1657.
    [5]朱美茜.硫酸亚铁、硫酸高铁分离法及干酪根与黄铁矿结合形式的研究.石油实验地质, 1981, (04): 299-306.
    [6]叶金华,朱美茜,丁晓晨,等.干酪根制备方法的研究.石油实验地质, 1983, (04): 321-326.
    [7] GB/T 19144-2003.沉积岩中干酪根分离方法.中华人民共和国国家质量监督检验检疫总局, 2003-5-23.
    [8] Kawamura K, Tannenbaum E, Huizinga B J, et al. Volatile organic acids generated from kerogen during laboratory heating. Geochem J, 1986, 20: 51-59.
    [9]林峰,廖细明,吕中育,等.一种新型干酪根自动制备仪的应用.西南石油学院学报, 2003, (06): 12-16.
    [10]刘俊利.氢氟酸的用途、危害及预防.安全, 2003, (05): 27.
    [11]宋延经,郭并宝,金四清,等.耐氢氟酸材料的选择.腐蚀与防护, 2006, (02): 87-89.
    [12]宋延经,郭并宝,张晋霞.耐氢氟酸腐蚀涂料.上海涂料, 2005, (06): 32-34.
    [13]高素云,王辉.耐氢氟酸/硝酸玻璃钢贮罐的研制.玻璃钢/复合材料, 1997, (03): 34-35.
    [14]闫永跃,李庆周,于树新.智能PID控制综述.可编程控制器与工厂自动化, 2006, (12):9-13.
    [15]彭响方,高文龙,兰庆贵.超声振动对聚合物结构性能的影响.塑料工业, 2004, (07): 4-6.
    [16] Hong C, Elliott S J. Local feedback control of light honeycomb panels. J Acoust Soc Am, 2007, 121(1): 222-233.
    [17]张子良. CAD产业的发展趋势.上海电机学院学报, 2007, (04): 319-321.
    [18]王成刚.对“二维”与“三维”工程图的思考.湖北工业大学学报, 2007, (06): 86-89.
    [19] Kishor B. Computer Aided Mechanical Vibration Analysis and Synthesis, Ganga Kaveri Publishing House, 1997.
    [20]郑伯学,吴俊海.基于Pro/E的三维机械设计与运动仿真.煤矿机械, 2007, (12): 94-96.
    [21]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程,北京:清华大学出版社, 2005.
    [22]宁芊,殷国富,徐雷.机电系统虚拟样机协同建模与仿真技术研究.中国机械工程, 2006, (13): 1404-1407.
    [23] Miller E. Effective use of virtual prototyping in device design. Med Device Technol, 2006, 17(5): 25-26.
    [24] Weiqun R, Weiqun R, Miaohua H, et al. Virtual prototype technology in automotive concurrent design. 1999: 421-424.
    [25]二代龙震工作室. Pro/ENGINEER Wildfire 2.0基础设计,北京:电子工业出版社, 2004. 568.
    [26]刘成武.橡胶密封圈破裂原因及预防.润滑与密封, 1994, (01): 66-67.
    [27]付长安,朱治国.如何正确使用密封胶圈.润滑与密封, 1998, (04): 60.
    [28]刘敬东.工程机械橡胶密封件损坏原因及预防措施.矿山机械, 2004, (10): 80-81.
    [29]成大先.机械设计手册,北京:化学工业出版社, 2002.
    [30]陈文. Application of Three Shafts Equal-thick Elliptical Screen Technology and Research on Self-synchronization:[硕士学位论文].湘潭大学, 2006.
    [31]韦林,周松鹤,唐晓弟.理论力学,上海:同济大学出版社, 2007.
    [32]徐征峰,陈洪斌,刘顺发.视轴偏心的三轴跟踪机架运动学动力学分析.机械设计与制造, 2006, (11): 10-12.
    [33]安培文,邵金龙.具有重复结构的平面连杆机构的过约束分析.机械设计与研究, 2006, (03): 34-35.
    [34]李晋山.平面机构中虚约束在实际工程中的应用分析.机床与液压, 2002, (03): 203-206.
    [35] Li L, Gruver W A, Zhang Q, et al. Kinematic control of redundant robots and the motion optimizability measure. IEEE Trans Syst Man Cybern B Cybern, 2001, 31(1): 155-160.
    [36] Otten E. Inverse and forward dynamics: models of multi-body systems. Philos Trans R Soc Lond B Biol Sci, 2003, 358(1437): 1493-1500.
    [37] Belanovic P, Belanovic P, Holzer M, et al. Automatic generation of virtual prototypes. 2004: 114-118.
    [38] Adams J D, Adams J D, Whitney D E. Application of screw theory to constraint analysis of assemblies of rigid parts. 1999: 69-74.
    [39]吴军,袁昌松,汤文成.基于ANSYS分析的机架优化设计.机械制造与自动化, 2006, (01): 35-37.
    [40]葛来薰.电动机架悬新型驱动装置的基本结构与分析比较.机车电传动, 2005, (02): 1-6.
    [41]于兴军,艾志久,刘春全.基于Pro/E的抽油机机架静态特性分析.机械研究与应用, 2006, (01): 88-89.
    [42]刘风明.滚动轴承尺寸选择的简捷方法.机械设计, 1984, (02): 34-41.
    [43]陈伟.振动筛用偏心轴的加工.机械工人(冷加工), 2006, (12): 22-23.
    [44]赵敬云,谌湘倩.磨床主轴结构中向心推力球轴承的应用.煤矿机电, 2006, (01): 81-82.
    [45]张国辉.延长振动机械轴承寿命的途径.轴承, 2005, (07): 42.
    [46] Pretlove A J. Basic Mechanical Vibrations (Butterworth Basic Series), Butterworth-Heinemann, 1985. 118.
    [47] Ferrari V. Applied Structural and Mechanical Vibrations, Taylor & Francis, 1999. 826.
    [48] Eklund G. Further studies of vibration-induced effects on balance. Ups J Med Sci, 1973, 78(1): 65-72.
    [49] Eklund G. General features of vibration-induced effects on balance. Ups J Med Sci, 1972, 77(2): 112-124.
    [50] Pellegrino J B. Storage rack vibration isolators and related storage rack systems. J Acoust Soc Am, 2008, 123(4): 1820.
    [51]郭树铭,路林忠,王凤和.管路连接密封装置.新技术新工艺, 2002, (09): 26.
    [52]王兆俊,相安宁.锥面密封管接头.起重运输机械, 1991, (09).
    [53]李峰林,李清泉.机柜设计中的结构形式.电子工艺技术, 1981, (12): 33-38.
    [54] Novikov V I, Chikirdin E G. A drying cabinet for X-ray film. Med Tekh, 1995, (6): 41-42.
    [55]张洪,凌志浩,李钫.机架对噪声影响的研究.中国安全科学学报, 2007, (05): 117-121.
    [56] Huang X Y, Nguyen N T, Jiao Z J. Nonlinear standing waves in a resonator with feedback control. J Acoust Soc Am, 2007, 122(1): 38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700