用户名: 密码: 验证码:
高钙云母型含钒页岩焙烧及浸出机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含钒页岩是我国特有的含钒资源,分布广泛且储量巨大。从含钒页岩中提钒主要有传统钠化焙烧水浸、无添加剂焙烧酸浸、直接酸浸等工艺。高钙云母型含钒页岩是我国具有代表性的一类含钒页岩,由于钒在其中特殊的赋存状态,提钒难度大,采用上述工艺效果均不理想,而且对其焙烧过程及钒的浸出机理方面,如添加剂对云母类矿物晶格的破坏作用,焙烧过程中钒酸钙的形成特征,以及浸出的动力学过程等方面,都缺乏系统深入的研究。
     针对以上问题,本研究在国家“十二五”科技支撑计划重点项目“典型含钒页岩高效提钒技术及示范”(编号:2011BAB05801)的资助下,选取湖北某地高钙云母型含钒页岩为原料,进行了无添加剂焙烧和添加剂焙烧研究,探讨了焙烧对白云母晶体结构的破坏,钒氧化与钒浸出等之间的关系,以及钙含量对钒水浸率的影响机理,此外,还探讨了钒浸出的动力学和热力学过程。主要结论及研究成果如下:
     1、白云母纯矿物加入添加剂(NaCl、Na2SO4)焙烧后铝的浸出率均比无添加剂焙烧明显提高,同样添加剂也能促进含钒白云母结构破坏,促进钒的浸出。
     2、高钙云母型含钒页岩无添加剂焙烧过程
     (1)原矿直接用20%硫酸浸出3h,钒浸出率为24%;同样的浸出条件,9000C无添加剂焙烧样浸出率达到70%。无添加剂焙烧的最佳条件为焙烧温度:900℃,焙烧时间:2h。
     (2)含钒白云母脱除羟基的反应在830℃以上。随着羟基脱除,八面体结构失稳,钒浸出率大幅升高,温度过高,含钒物质会被玻璃态物质包裹,浸出率急剧下降,900℃无添加剂焙烧样中仍存在白云母,因此稀酸浸出效果不好。
     3、高钙云母型含钒页岩复合添加剂焙烧过程
     (1)原矿采用传统NaCl焙烧工艺,钒的水浸率不到30%;采用复合添加剂可以降低NaCl用量,保证总浸率同时提高水浸率,最终采用的复合添加剂配比为6%NaCl加上10%Na2SO4,在此条件下钒的水浸率为45.01%,钒的总浸率可达77.61%。
     (2)增加五价钒(V(Ⅴ))的氧化率是提高水浸率的前提,四价钒(V(Ⅳ))的氧化前段受界面化学反应过程控制,反应后段受内扩散控制,且有如下结论:1)温度是决定反应发生的重要因素;2)反应速率与颗粒粒径成反比;3)在氧气含量一定的情况下,增加气流速度对钒氧化无影响;4)复合添加剂可以明显降低反应活化能,界面化学控制阶段的表观活化能由173.230kJ/mol降至104.690kJ/mol;5)氧气的内扩散过程也十分重要,如果出现烧结必然会影响到钒的氧化。
     (3)复合钠盐添加剂焙烧产物主要晶态物相为钾钠长石和石英,钒酸盐与钾钠长石伴随而生,白云母转化为钾钠长石的量越多,钒总浸率越高,只有一定的温度才能生成钾钠长石物相,但焙烧温度过高会生成玻璃态物质包裹钒而使总浸率急剧下降,因此合适的焙烧温度范围为:850℃-900℃。
     (4)该矿石采用添加单一NaCl焙烧会生成大量钒酸钙,导致水浸率较低;通过纯V205和CaCO3的试验得出以下结论:1)过量CaCO3(mCaCO3:mV2O5>3)与V205反应,850℃时产物为Ca3V2O8,700℃焙烧时会有部分Ca2V2O7生成。2)在CaCO3相对V205过量(mCaCO3:mV2O5>3)的条件下,添加NaCl焙烧时并不能阻碍钒酸钙的生成。而添加Na2SO4在850℃时能使部分V205生成NaVO3,而减少难溶的钒酸钙的生成,起到提高钒水浸率的作用。
     (5)氯气气氛下焙烧能加速含钒白云母晶体结构的破坏,同时对钒酸盐的生成起到催化的作用,这也是复合添加剂中NaCl的作用机理。
     4、原矿及焙烧样浸出过程
     对原矿,无添加剂焙烧样,复合添加剂焙烧样三种样品进行的浸出动力学研究表明:
     (1)原矿酸浸(30%H2S04,以下均为体积浓度)过程钒浸出的表观活化能为48.63kJ/mol,属于化学反应控制,温度对反应速率影响显著;表观反应级数为1.2075。硫酸浓度在33%以下时,钒浸出反应处于化学控制区,提高硫酸浓度,化学反应速率增大,浸出率提高。当硫酸浓度高于33%时,反应处于内扩散控制区,继续提高硫酸浓度作用不明显。
     (2)无添加剂焙烧样酸浸时,表观反应级数为1.04335,比原矿直接酸浸要低,因此从化学反应控制转变为内扩散控制所需的硫酸浓度降低。当硫酸浓度高于20%时,反应处于内扩散控制区域。
     (3)复合添加剂焙烧样水浸过程满足液膜非稳态扩散模型,而水浸渣采用2%H2S04酸浸时,其过程就已属于内扩散控制,因此,添加剂焙烧能显著降低钒浸出反应级数,降低酸的用量。
Vanadium-bearing black shale is a unique vanadium resource in China, and the total reserve of vanadium-bearing black shale is abundant. It is widely distributed in many provinces of China. The typical techniques of vanadium extraction from vanadium-bearing black shale include:traditional high salt roasting-water leaching technique, direct acid leaching technique and blank oxidation roasting-acid leaching technique. High calcium mica-type vanadium-bearing black shale is a representative type of black shale in China, it is difficult to extract vanadium for the special occurrence state of vanadium in this type of balck shale. The mechanism of roasting and vanadium leaching for high calcium mica-type vanadium-bearing black shale, such as the effect of additives on the mica crystal lattice, the characteristics of the formation of calcium vanadate during roasting process, and the kinetics of leaching process of vanadium are not studied well.
     In orde to resolve these problems, this work, which was financially supported by the National Key Technologies R&D Program of China (No.2011BAB05B01), investigated the non-additive roasting and additive roasting processes for high calcium mica-type vanadium-bearing black shale in Hubei. Furthermore, the change of vanadium compounds in roasting process was studied, and the effect of roasting to mica crystal lattice, vanadium oxidation to vanadium leaching and the content of calcium to water leaching rate was also discussed. By using compound additives roasting, the high leaching rate of vanadium was achieved, and the acid consumption was reduced. The main conclusions are as follows:
     1. The leaching rate of aluminum from mica was higher by addtive (NaCl, Na2SO4) roasting than it by non-additive roasting. Accordingly, The additive roasting also can enhance the decompose of mica structure and improve and leaching rate of vanadium (LRV).
     2. The effect of non-additive roasting on the mineral structure and the LRV
     (1) The LRV was only24%when the raw black shale was leached by20%H2SO4for3h, but the LRV can reach70%after the raw ore was roasted at900℃. The optimum conditions of oxidation roasting were roasting temperature:900℃, roasting time:2h.
     (2) The dehydroxylation of mica occurs when the roasting temperature is above 830℃. The LRV increases apparently along with the dehydroxylation of mica, but the LRV decreases dramatically when the roasting temperature is too high and the vanadium-bearing materials is wrapped in newly formed aluminosilicate and sintered materials, which causes vanadium is hard to leach. It is less effective for vanadium leaching with dilute acid because mica is also found in the sample roasted at900℃with non-additive.
     3. The study on the compound additive roasting
     (1) The water leaching rate of vanadium (WLRV) is below30%using conventional high sodium roasting. By using compound additive roasting it can reduce the salt consumption and increase WLRV at the same time. The WLRV is45.01%, and the overall leaching rate can reach77.61%by roasting with6%NaCl and10%Na2S04
     (2) The premise of increasing the WLRV is increasing the content of pentavalent vanadium (V(V)), and the oxidation process of tetravalent vanadium is controlled by interface chemical reaction in the forepart, and by internal diffusion in later of the roasting process. The conclusions are as follows:1) Temperature is the key factor of the vanadium oxidation reaction.2) The reaction rate is in inverse proportion to particle size of reactant.3) When the oxygen concentration is fixed, The increase of the air velocity has no effect on vanadium oxidation.4) The compound additive can reduce activation energy barrier of interface chemical reaction, from173.230kJ/mol to104.690kJ/mol.5) The internal diffusion of oxygen is also important, the oxidation of V(IV) can be impeded if the materials is sintered.
     (3) The crystal phase in roasted sample by adding compound additive are K-Na feldspar and quartz. The more K-Na feldspar in roasted sample the more the LRV is. The K-Na feldspar grow well at the conditions of enough high temperature and additive content, but the LRV decreases dramatically when the temperature is too high, because the vanadium-bearing materials is wrapped in glass-like state material. So the appropriate temperature for roasting is850~900℃.
     (4) A mass of calcium vanadate will be generated when the raw ore is roasted with NaCl, and it is the reason for the lower WLRV due to calcium vanadate is insoluble in water. Through the roasting experiment using pure V2O5and CaCO3, some conclusions can be drawn as follows:1) the reaction products of excess content of CaCO3(mCaCO3:mV2O5>3) with V2O5was Ca3V2O8, and a part of Ca2V2O7will be generated at lower temperature.2) the calcium vanadate can not be impeded in the process of roasting with NaCl at the condition of excess CaCO3. The calcium vanadate can not be partly impeded in the process of roasting with Na2SO4additive, and a part of V2O5can form NaV03accordingly, hence, the Na2SO4in the compound additive can enhance the WLRV.
     (5) Chlorine can promote the decomposition of vanadium-bearing mica crystal lattice and the generation of metal vanadates.
     4. The study on the process of leaching vanadium from the raw ore and roasted sample
     The researches of leaching kinetics of raw ore, non-additive roasted sample and additive roasted samples show:
     (1) The apparent activation energy and apparent reaction order of the reaction direct acid (30%H2SO4, volume concentration) leaching vanadium from raw ore are48.63kJ/mol and1.2075, respectively. The kinetic results show that the reaction rate is controlled by chemical process. Leaching temperature affect the reaction rate apparently. When the acid concentration is below33%, the reaction rate of vanadium leaching is controlled by chemical process. Increasing the acid concentration accelerates the chemistry reaction rate. When the acid concentration is above33%, the leaching reaction is in internal diffusion control area and it is less effective to enhance leaching rate by increasing the acid concentration.
     (2) The apparent reaction order of the reaction that leaching vanadium from blank oxidation roasted sample is1.04335. It is lower than of direct acid leaching reaction. Non-additive roasting can reduce acid concentration when the reaction is transfered from chemical control to internal diffusion control. As acid concentration is above20%, the reaction is controlled by internal diffusion.
     (3) The process of leaching vanadium with acid from additive roasted sample is controlled by unsteady-state diffusion of liquid film. The process of leaching vanadium with acid (2%H2SO4) from water leached residue belongs to shrinking unreacted core model, and it is controlled by internal diffusion. Therefore, non-additive roasting and additive roasting both can reduce the apparent reaction order and the acid consumption.
引文
[1]Zhang Y. M., Bao S.X., Liu T., et al. The technology of extracting Vanadium from stone coal in China:History, current status and future prospects[J]. Hydrometallurgy,2011, 109(1-2):116-124.
    [2]包申旭,张一敏,刘涛,等.全球钒的生产、消费及市场分析[J].中国矿业,2009,18(7):12-15.
    [3]胡杨甲,张一敏,刘涛,等.回转窑动态氧化焙烧石煤提钒研究[J].矿冶工程,2011,31(1):70-72.
    [4]Moskalyk R.R., Alfantazi, A.M. Processing of vanadium:a review[J]. Minerals Engineering, 2003,16(9):793-805.
    [5]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985,45-46.
    [6]何东升.石煤型钒矿焙烧—浸出过程的理论研究[D].中南大学,2009.
    [7]李凌璞.含钒工业废水中钒的分离回收方法研究[D].中南大学,2009.
    [8]陈鉴,何晋秋,林京,等.钒及钒冶金[M].四川:攀枝花资源综合利用领导小组办公室,1983,11-15.
    [9]《有色金属提取治金手册》编辑委员会编.有色金属提取冶金手册[M].北京:冶金工业出版社,1999,276-350.
    [10]梁江龙.粘土钒矿中钒提取工艺研究[D].中南大学,2006.
    [11]The economics of vanadium[R]. England:Roskill Information Services Ltd,1992.
    [12]胡克俊,锡金,席歆.国外钒的应用现状及对攀钢钡产品开发的建议[J].四川冶金,2000,4:50-58.
    [13]锡淦,雷鹰,胡克俊,等.国外钒的应用概况[J].世界有色金属,2000,2:13-21.
    [14]黄道鑫.提钒炼钢[M].北京:冶金工业出版社,2000.
    [15]Catalytic component based on vanadium and its use in the preparation of EP(D)M[P]. US 5773539,1998.
    [16]Desulfurization of sulfur compound - containing gases with vanadiumcatalysts[P]. US 5604173,1997.
    [17]Vanadium-free, lithium - free, aluminum alloy suitable for sheet and plate aerospace products[P]. US 5800927,1998.
    [18]Yamasaki Y. Microstructures and mechanical properties of vanadium - containing MO2NiB2 hard alloys[J]. Journal of the Japan Society of Powder and Powder Metallurgy,1995,42 (4): 438-442.
    [19]孙聪.从石煤矿中提取五氧化二钒的工艺研究[D].东北大学,2009.
    [20]滕祥国,赵永涛,席靖宇,等.钒电池充放电过程离子变化规律研究[J].电源技术,2008,32(8):539-542.
    [21]田波,严川伟,区庆,等.钒电池电解液的电位滴定分析[J].电池,2003,4:261-263.
    [22]常芳,孟凡明,陆瑞生.钒电池用电解液研究现状及展望[J].电源技术,2006,10:860-862.
    [23]崔艳华,孟凡明.钒电池储能系统的发展现状及其应用前景[J].电源技术,2005,29(11):776-781.
    [24]Methods of treating hypertension with vanadium compositions[P]. US 5620967,1997.
    [25]Vanadium compounds in the treatment of elevated blood sugar levels[P]. US 5888993, 1999.
    [26]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展[J].湖南有色金属,2006,6:17-20.
    [27]唐玲,张英.钒类化合物的抗糖尿病作用[J].中国临床药理学杂志,2001,4:298-299
    [28]欧阳国强.微波对石煤提钒的影响[D].湘潭大学,2008.
    [29]高剑辉.转炉提钒工艺对钒渣质量的影响[J].承钢技术,2008,(4):8-11.
    [30]杨雨浓.国外钒生产及钒资源再生处理技术[J].稀有金属和硬质合金,1989,4:49-52.
    [31]Murase K.,Nishilawa K.L., Ozaki T., et al. Recovery of Asrelated to its Biological Functions[J]. Coordination Chemistry Reviews,1999, (182):297-322.
    [32]Nriagu, J. O. in Vanadium in the environment, part one:chemistry and biochemistry[M]. New York,1998, Chapter 1.
    [33]杜鹤桂.高炉冶炼钒钛磁铁矿原理[M].北京:科学出版社,1996:1-19.
    [34]王喜庆.钒钛磁铁矿高炉冶炼[M].北京:冶金工业出版社,1994:1-8.
    [35]龙运波,张裕书.低品位钒钛磁铁矿选铁尾矿综合回收钛试验研究[J].矿业快报,2007,459:22-24.
    [36]余德麒.石煤灰渣二次焙烧酸浸提钒工艺的试验研究[D].浙江大学,2011.
    [37]赵红杰,任学佑.美国的钒工业[J].稀有金属,1994,18(3):220-224.
    [38]Busch P.M.. Vanadium, A Materials Survey [M]. B. M. I. C.1961.
    [39]陈兴龙,肖连生,徐劫,等.从废石油催化剂中回收钒和钼的试验研究[J].矿冶工程,2004,24(3):47-49.
    [40]USGS, Mineral Commodity Summaries 2012, http://www.usgs.gov
    [41]《有色金属提取治金手册》编辑委员会编.有色金属冶金提取手册(下)[M].北京:冶金工业出版社,1999.
    [42]邵彦海.由废铝基催化剂制备高纯超细氧化铝的理论及技术研究[D].中南大学,2008.
    [43]陈迪,张强.我国钒产业概况及其环境问题[J].冶金丛刊,2009,5:39-42.
    [44]王忠,王军.国内外五氧化二钒市场状况与分析[J].矿冶,2007,16(2):47-51.
    [45]齐小鸣.钒消费前景看好—国内外钒的资源—生产和市场预测[J]世界有色金属,2008,5:38.
    [46]孙朝晖.充分认清形势,促进中国钒产业的可持续发展[J].铁合金,2008,6:44-48.
    [47]潘勇,于吉顺,吴红丹.石煤提钒的工艺评价[J].矿业快报,2007,4:10-13.
    [48]漆明鉴.从石煤中提钒现状及前景[J].湿法冶金,1999,4:1-10.
    [49]吴惠玲.常压下从含钒石煤中浸取钒的新技术研究[D].昆明理工大学,2008.7.
    [50]杨绍利,刘国钦,陈厚生.钒钛材料[M].北京:冶金工业出版社,2007.
    [51]蔡晋强,巴陵.石煤提钒的几种新工艺[J].矿产保护与利用,1983,5:30-33.
    [52]夏玉丹,宋辉,杨斌.浅谈五氧化二钒的市场状况和生产工艺[J].贵州化工,2011,36(4):17-18.
    [53]USGS,2010 Minerals Yearbook, http://www.usgs.gov
    [54]杨绍利,刘国钦,陈厚生.钒钛材料[M].北京:冶金工业出版社,2007.
    [55]杨守春.南非的钒生产[J].现代材料动态,2004,4:15-16.
    [56]王梧.冶金动态[J].冶金管理,2006,11:53-56.
    [57]Smirnov L. Vanadium:A rare element abundant in russia[J]. Eurasian Metals,2002,3:7-12.
    [58]Troitsky V. Assistance regarding non-ferrous and rare metals plus industrial minerals[R]. Infromine research group,2003.
    [59]杨守志.钒冶金[M].北京:冶金工业出版社,2010.
    [60]Kirk O. L. Encyclopaedia of chemical technology[M].4th edn.,1997,24:786.
    [61]Navarro R., Guzman J., Saucedo I., et al. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes[J]. Waste Management,2007,27(3):425-438.
    [62]Aarabi K. M., Rashchi F. N. Leaching of vanadium from LD converter slag using sulfuric acid[J]. Hydrometallurgy,2010, (102):14-17.
    [63]Masud A., Abdel L. Recovery of vanadium and nickel from petroleum flyash[J]. Minerals Engineering,2002,15:953-961.
    [64]Lozano L.J., Juan D. Leaching of vanadium from spent sullphuric acid catalysts[J]. Minerals Engineering,2001,14(5):543-546.
    [65]Vitolo S., Seggiani M., Filippi S., et al. Recovery of vanadium from heavy oil and Orimmulsion fly ashes[J]. Hydrometallurgy,2000,57:141-149.
    [66]魏昶,吴惠玲,樊刚,等.酸浸法从高碳石煤中提钒[J].钢铁钒钛,2009,1:7-11.
    [67]孙朝晖.钒产业发展之我见[J].攀枝花科技与信息,2009,2:24-29.
    [68]李昌林.难处理石煤提钒工艺及相关理论研究[D].中南大学,2010.
    [69]Bunting R.M. Vanadium-Recent developments in supply and demand[C]. The International Titanium Association Annual Conference, Orlando, FL, October 9,2007.
    [70]刘建朋,张一敏,陈铁军,等.石煤提钒水浸过程的动力学研究[J].有色金属(选矿部 分),2008,4:15-17.
    [71]吕纪霞,张一敏,刘涛,等.石煤提钒水浸渣酸浸液的除杂试验研究[J].金属矿山,1008,4:149-151.
    [72]王建平,戚开静,刘俊.我国黄金产业发展的思考[J].中国矿业,2009,7:5-8.
    [73]时亮.石煤提钒浸出渣制取陶粒和建筑用砖的工艺研究[D].昆明理工大学,2009.
    [74]钟蕴英,关梦殡,崔开仁,等.煤化学[M].徐州:中国矿业大学出版社,1989.245-249.
    [75]《煤矿环境保护》编辑委员会编.煤矿环境保护优秀论文集(一)[M].北京:煤炭工业出版,1999.178~179.
    [76]马士强,刘世森.石煤提钒工艺评述[J].湖南有色金属,1998,14(7):21-24.
    [77]胡能勇,夏浩东,戴塔根,等.湘西北下寒武统黑色岩系中的沉积型钒矿[J].地质找矿论丛,2010,25(4):296-302.
    [78]许国镇,夏华,戈西愕.江西贩大石煤中钒的价态初步研究[J].矿产综合利用,1983,(4):39-44.
    [79]Chen T.J., Zhang Y.M., Song S.X. Improved extraction of vanadium from a Chinese vanadium-bearing stone coal using a modified roast-leach process[J]. Asia-Pacific Journal of Chemical Engineering,2010,5:778-784.
    [80]朱晓波,张一敏,刘涛,等.含钒页岩提钒配煤焙烧试验研究[J].矿冶工程,2010,30(1):51-53.
    [81]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验[J].钢铁钒钛,2006,1:21-26.
    [82]彭声谦,侯兰杰,刘福生.四川广旺石煤提钒焙烧过程中钒价态的变化[J].中国矿业,1999,1:69-72.
    [83]余志伟,邢丽华.含钒石墨尾矿提钒技术研究[J].金属矿山,2008,8:142-144.
    [84]漆明鉴.酸浸法从石煤中提钒的中间试验研究[J].湿法冶金,2000,19:7-17.
    [85]Hu Y.J., Zhang Y.M., Bao S.X., et al. Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal[J]. International Journal of Minerals, Metallurgy and Materials,2012,19(10):893-898.
    [86]Fan B.W., Lin H.L. Effects of roasting process on extraction of vanadium from stone coal at Fangshankou[J]. Hydrometall, China,2001,20(2):79-83.
    [87]Dong J.H., Yang Z.L., Feng J.Y. On extracting pure vanadium pentoxide (V2O5) from the stone coal vanadium ore[J]. Journal of Xi'an Institute of Metallurgy and Construction Engineering,1993,25(1):105-110.
    [88]Li J.H., Zhang Y.M., Liu T., et al. Study on composite additives of roasting in extracting vanadium from stone coal[J]. Express Information Minning Industry,2008,468(4):43-45.
    [89]Hu Y.J., Zhang Y.M., Liu T., et al. Study on the effect of composite additive on the roasting for vanadium extraction from stone coal[J]. Metal Mine,2009,1:166-168.
    [90]汪会生.石煤提钒钠化焙烧技术分析[J].矿冶工程,1994,2:49-52.
    [91]刘世森.石煤提钒工艺评述[J].工程设计与研究(长沙),1995,4:12-16.
    [92]谭若斌.钒,钒化合物,钒合金的开发应用[J].钒钛,1995,1:1-16.
    [93]姬云波,童雄,叶国华.提钒技术的研究现状和进展[J].国外金属矿选矿,2007,5:10-13.
    [94]He, D., Feng, Q., Zhang, G., et al. Study on leaching vanadium from roasting residue of stone coal[J]. Minerals and Metallurgical Processing,2008,25 (4):181-184.
    [95]徐永新,杨欢.石煤提钒的最佳焙烧酸浸条件[J].有色金属,2008,60(3):74-76.
    [96]徐永新,侯运炳,杨欢.黑色页岩型银钒矿综合回收银钒试验研究[J].矿冶工程,2008,28(1):67-70.
    [97]Bie, S., Wang, Z.J, Li, Q.H., et al.2010. Review of vanadium extraction from stone coal by roasting technique with sodium chloride and calcium oxide [J]. Chinese Journal of Rare Metals,2010,34 (2):291-297.
    [98]Xu, Y.X., Hou, Y.B., Yang, H. Experimental study on the overall recovering silver and vanadium from the black shale-hosted silver and vanadium deposits [J]. Mining and Metallurgical Engineering,2008,28 (1):67-70.
    [99]Zou, X.Y., Peng, Q.J., Ouyang, Y.Z., et al. Research on the roasting process with calcium compounds for silica based vanadium ore[J]. The Chinese Journal of Process Engineering, 2001,1(2):189-192.
    [100]Wei, C, Li, X.B., Deng, Z.G., et al. Extraction of vanadium from acidic solution of stone coal using P204 and wastewater treatment[J]. Chinese Journal of Rare Metals,2010,34(3): 400-405.
    [101]邹晓勇,欧阳玉祝,彭清静.含钒石煤无盐焙烧酸浸生产五氧化二钒工艺的研究[J].化学世界,2001,3:117-119.
    [102]http://www.mining120.com/html/0906/20090616_15334.asp.
    [103]王明玉,王学文.石煤提钒浸出过程研究现状与展望[J].稀有金属,2010,34(1):90-97.
    [104]邹晓勇,彭清静,欧阳玉祝,等.高硅低钙钒矿的焙烧过程[J].过程工程学报,2001,2:189-192.
    [105]曾孟祥.石煤酸浸提钒及焙烧料浸出动力学研究[D].中南大学,2009:7.
    [106]张中豪,王彦恒.硅质钒矿氧化钙化焙烧提钒[J].新工艺化学世界,2000,41(6):290-292
    [107]黄晓毅,马玄恒,高爱民,等.石煤提钒工艺研究进展[J].甘肃冶金,2010,32(4):27-29.
    [108]Li M.T., Wei C., Fan G., et al. Extraction of vanadium from black shale using pressure acid leaching[J]. Hydrometallurgy,2009,98(3-4):308-313.
    [109]Amer, A.M. Hydrometallurgical processing of Egyptian black shale of the Quseir-Safaga region[J]. Hydrometallurgy,1994,36 (1):95-107.
    [110]Li, M.T., Wei, C., Qiu, S., et al. Kinetics of vanadium dissolution from black shale in pressure acid leaching[J]. Hydrometallurgy,2010,104:193-200.
    [111]Dai, W.C., Sun, S.Y. Research on new process of vanadium extraction from stone coal by wet leaching[J]. Hunan Nonferrous Metals,2009,25 (3):22-25.
    [112]Zhou, X.Y., Li, C.L., Li, J., et al. Leaching of vanadium from carbonaceous shale[J]. Hydrometallurgy,2009,99:97-99.
    [113]Li, M.T., Wei, C., Fan, G., et al. Extraction of vanadium from black shale using pressure acid leaching[J]. Hydrometallurgy,2009,98:308-313.
    [114]Li, M.T., Wei, .C, Fan, G., et al. Acid leaching of black shale for the extraction of vanadium[J]. International Journal of Mineral Processing,2010,95:62-67.
    [115]刘景槐,谭爱华.我国石煤钒矿提钒现状综述[J].湖南有色金属,2010,26(5):11-14.
    [116]郑祥明.石煤提钒新工艺研究[D].湘潭大学,2003.
    [117]肖太阳.氢氧致分解石煤生产五氧化二钒[P].中国,91102560,1991.
    [118]魏昶,邓志敢,李曼延,等.石煤直接氧压酸浸提钒新工艺[J].有色金属,2009,3:94-97.
    [119]蒋凯琦,郭朝晖,肖细元.中国钒矿资源的区域分布与石煤中钒的提取工艺[J].湿法冶金,2010,4:216-219.
    [120]惠学德,王永新,吴振祥.石煤提钒工艺的研究应用现状[J].中国有色冶金,2011,2:10-16.
    [121]陈铁军.循环氧化法石煤提钒工艺及焙烧过程基础研究[D].中南大学,2008.
    [122]张一敏,刘涛,陈铁军,等.一种从石煤中提取V205的方法[P].中国,101265524A,2008.
    [123]何东升,冯其明,张国范,等.含钒石煤的氧化焙烧机理[J].中国有色金属学报,2009,1:195-200.
    [124]许国镇.氯化钠在石煤提钒中的作用[J].矿冶工程,1988,4:44-47.
    [125]钱定福.湖北广石崖石煤钠化焙烧提钒相变机理的研究[J].矿产综合利用,1982,3:8-15.
    [126]许国镇,陈波珍.石煤钠盐焙烧气氛对钒转化的研究[J].现代地质,1990,4:91.112.
    [127]冯光熙,和树桐,葛书华,等.高钙含钒炉渣碳酸化提钒之研究[J].四川大学学报:工程科学版,1979,1:1-18.
    [128]宋瑞炎.从高钙质煤灰渣中综合回收钒、钼、铀的工艺探索[J].矿产综合利用,1981,(Z1):1-8.
    [129]靳晓珠.含钒碳质页岩中钒的物相分析[J].分析实验室,2000,2:50-52.
    [130]刘冲.微晶白云母高温结构变化及其对介电性能的影响[D].成都理工大学,2009.
    [131]闻辂.矿物红外光谱学[M].重庆:重庆大学出版社,1990.
    [132]李光辉.铝硅矿物的热行为及铝土矿石的热化学活化脱硅[D].中南大学,2000.
    [133]艾玲风.热处理过程中层状铝硅酸盐矿物中铝的结构变化及酸溶行为研究[D].中南大学,2008.
    [134]Jose H. A., Nagib F. S., Wilson A. et al. Thermal decomposition of illite[J]. Materials Research,2004,7(2):359-361.
    [135]周张健,杨中漪,陈代璋.浙南渡船头伊利石矿的热膨胀性及其机理研究[J].矿物岩石,1996,16(3):7-12.
    [136]中华人民共和国国家质量监督检验检疫总局.GB/T 8704.5—2007钒铁钒含量的测定硫酸亚铁铵滴定法和电位滴定法[S].北京:中国标准出版社,2008.
    [137]王含渊,孟凡中.含钒石煤钠化焙烧的研究[J].化工冶金,1992,4:338-346.
    [138]郭汉杰.冶金物理化学教程[M].北京:冶金工业出版社,2004.
    [139]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2005.
    [140]许国镇,潘茂昌,司徒安力,等.石煤中钒的氧化动力学初步研究[J].现代地质,1988,2(4):507-515.
    [141]陈铁军,邱冠周,朱德庆.石煤循环氧化法提钒焙烧过程氧化机理研究[J].金属矿山,2008,6:62-66.
    [142]汪平,冯雅丽,李浩然,等.高碳石煤流态化氧化焙烧提高钒的浸出率[J].中国有色金属学报,2012,2:566-571.
    [143]陈铁军,邱冠周,朱德庆.石煤提钒焙烧过程钒的价态变化及氧化动力学[J].矿冶工程,2008,3:64-67.
    [144]韩其勇.冶金过程动力学[M].北京:冶金工业出版社,1983.
    [145]Madejova J., Bujdak J., Janek M., et al. Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite[J]. Spectrochimica Acta Part A, 1998,54:1400-1401.
    [146]Farmer V.C. The layer silicates. In:Farmer, V.C. (Eds), Infrared Spectra of Minerals[J]. Mineralogical Society, London,1974,331-362.
    [147]梁英教,车荫昌.无机物热力学手册[M].沈阳:东北大学出版社,1993.
    [148]叶大伦.实用无机物热力学数据手册(第2版)[M].北京:冶金工业出版社,2002.
    [149]许国镇.石煤中还原性矿物对钒的价态影响[J].矿冶工程,1987,7(1):35-39.
    [150]Dieter R. Biological and Medicinal Aspects of Vanadium[J]. Inorganic Chemistry Communi-cations,2003, (6):604-617.
    [151]余方新,谢佑卿,李小波,等.金属钒、铌、钽的电子结构和物理性质[J].稀有金属,2004,28(5):921-925.
    [152]Maglia F., Milanese C., Bertolino N. et al. Field Activated Combustion Synthesis of the Silicides of Vanadium [J]. Journal of Alloys and Compounds,2001,319(1-2):108-118.
    [153]Moskalyk R. R., Alfantazi A. M. Processing of Vanadium:a review[J]. Minerals Engineering,2003,16(9):793-805.
    [154]朱保仓.高碳石煤提钒新工艺研究[D].西安建筑科技大学,2007:7-8.
    [155]陈厚生.钒渣石灰焙烧法提取V205工艺研究[J].钢铁钒钛,1992,13(6):1-9.
    [156]Zhang Y.M., Hu Y.J., Bao S.X.. Vanadium emission during roasting of vanadium-bearing stone coal in chlorine[J]. Minerals Engineering,2012,30:95-98.
    [157]Kanaria, N., Mishra, D., Filippov, L., et al. Kinetics of hematite chlorination with Cl2 and Cl2+O2:Part I. Chlorination with Cl2[J].Thermochimica Acta,2010,501:52-59.
    [158]Gennari F.C., Pasquevich D.M. Kinetics of the chlorination of hematite [J]. Thermochimica Acta,1996,284:325-339.
    [159]Gonzalez J.A., Ruiz M. C. Bleaching of kaolins and clays by chlorination of iron and titanium[J]. Applied Clay Science,2006,33:219-229.
    [160]Eun Y. L., Kyung S. C., Hee W. R. Microbial refinement of kaolin by iron-reducing bacteria[J]. Applied Clay Science,2002,22:47-53.
    [161]Gupta C.K., Krishnamurthy N. Extractive Metallurgy of Vanadium[M]. Elsevier, Amsterdam.1992.
    [162]李洪桂.湿法冶金学[M].湖南:中南大学出版社,2002,15-19.
    [163]郑于炼.湿法冶金中的浸出过程[J].湿法冶金,1986,3:67-76.
    [164]何东升,冯其明,张国范,等.石煤钠化焙烧料酸浸动力学[J].北京科技大学学报,2008,9:977-980.
    [165]徐耀兵.中间盐法石煤灰渣酸浸提钒工艺的试验研究[D].浙江大学,2009.
    [166]占寿祥,郑雅杰.硫铁矿烧渣酸浸反应动力学研究[J].化学工程,2006,34(11):36-39.
    [167]张荣良,唐淑贞,佘媛媛,等HCl—NaCl浸出铅锑合金氧化吹炼渣过程中锑的浸出动力学[J].过程工程学报,2006,6(4):543-547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700