用户名: 密码: 验证码:
X射线天体物理数据分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作涉及X射线天体物理学观测数据的分析处理和实验研究,包括数据处理方法研究、数据分析与物理模型研究和实验物理设计研究三个主要部分。
     硬度比是反映天体X射线辐射能谱信息的一个重要物理量。在论文的数据处理方法研究部分,针对低计数条件下数据处理的特殊性,提出了一种适用于低计数条件的估计硬度比的新方法。通过蒙特卡罗模拟,验证了新方法相对于传统方法在低计数条件时的优越性,并介绍和展望了新方法在X射线天体物理学上的应用。
     随后,在论文的数据分析与物理模型研究部分,对黑洞X射线双星系统XTE J1550-564在2000年的一次X射线辐射观测数据进行了分析研究。通过时变分析、能谱分析等手段,发现这个源的X射线辐射中存在着一般黑洞双星系统X射线辐射中很少见的毫秒量级光变和很软的能谱成份。同时,在这个源的同一次观测中还发现了一个长约100秒的耀发(flare)。基于对数据的分析,对吸积流上的物理过程和可能存在的大尺度磁场进行了讨论,提出了一个模型来解释这些观测现象。
     论文的实验研究部分主要针对我国正在进行的大型X射线天文实验工程项目——硬X射线调制望远镜HXMT的物理设计。在轨本底是HXMT的重要参数,直接影响卫星的主要科学性能。本文通过蒙特卡罗模拟的方法,对卫星高能探测器的在轨本底进行了分析计算,给出了本底分析结果。在此基础之上,对卫星的一些关键技术,如轨道倾角选择、准直器方案优化、荷电粒子反符合屏蔽系统设计、“大信号”计数率与死时间等,进行了物理优化设计。这些结果已经应用在HXMT工程中。
The thesis consists of three parts about the data analysis and experiment study of X-ray astrophysics: study of the data analysis method, scientific data analysis and physical modeling, design of X-ray astrophysical experiment.
     Hardness ratio is widely used in X-ray Astrophysics to show spectral properties. A new method is proposed to estimate the hardness ratio when the counts are low, and it is more reliable than the ratitional method. The applications in astrophysics of the new method are introduced.
     Then the observation of the X-ray emission from a black hole binary XTE J1550-564 is studied. The timing and spectral analysis results show that there are unusual millisecond variabilities and very soft spectral component in this observation, and a 100 s long flare is detected in the same observation. Based on the data analysis, the physical processes in the accretion flow and the possible large scale magnetic field are discussed, and a model is proposed to explain all the observations.
     The third part of the thesis is about the design of Chinese X-ray astrophysical project: Hard X-ray Modulation Telescope (HXMT). The background is an important parameter of HXMT, which influences the scientific performance of telescope significantly. By Monte-Carlo simulation the background of the high energy detector on HXMT is estimated, and the design of HXMT is optimized, including the orbit inclination, the optimized collimator scheme, the design of charged particle active shielding system, the“large signal”count rates and corresponding dead time. These results have already been used in HXMT project.
引文
[1] Tennant A F, Wu K, Ghosh K K, Kolodziejcazk J J, Swartz D A. Properties of the Chandra Sources in M81. Astrophys. J., 2001, 549: L43-L47.
    [2] Sivakoff G R, Sarazin C L, Carlin J L. Chandra Observations of Diffuse Gas and Luminous X-Rays Sources around the X-Ray-bright Elliptical Galaxy NGC 1600. Astrophys. J., 2004, 617: 262-281.
    [3] Li T P, Timing in the Time Domain: Cygnus X-1. Chin. J. Astron. Astrophys., 2001, 1: 313-324.
    [4] Sunyaev R, Revnivtsev M. Fourier power spectra at high frequencies: a way to distinguish a neutron star from a black hole. Astron. Astrophys., 2000, 358: 617-623.
    [5] Li T P, Muraki Y. Power spectra of X-ray Binaries. Astrophys. J., 2002, 578: 374-384.
    [6] Feng H, Li T P, Zhang S N. Diagnostics of neutron star and black hole binaries with X-ray shot widths. Astrophys. J., 2004, 606: 424-429.
    [7] Uttley P, McHardy I M, Vaughan S. Non-linear X-ray variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc., 2001, 323: 26-45.
    [8] Zhang S N. Similar phenomena at different scales: Black Holes, the Sun, Gamma-ray Bursts, Supernovae, Galaxies and Galaxy Clusters: Invited discourse of the 26th IAU General Assembly. Prague: IAU, 2006.
    [9] Bak P, Tang C, Wiesenfeld K. Self-organized criticality. Phys. Rev. A., 1988,38: 364-374.
    [10] Christensen K, Olami Z, Bak P. Deterministic 1/f noise in nonconserative models of self-organized criticality. Phys. Rev. Lett., 1992, 68: 2417-2420.
    [11] Albert R, Barabasi A L. Statistical mechanics of complex networks. Phys. Rev. Lett., 2002, 74: 47-97.
    [12] Li T P, Wu M. A direct restoration method for spectral and image analysis. AP&SS., 1993, 206: 91-102.
    [13] Li T P, Zhang S N, Lu F J. The Hard X-ray Modulation Telescope (HXMT) Mission. Chinese Journal of Space Science, 2006, 26(Supplement): 30-49.
    [14] Kass R E, Wasserman L. The selection of prior distributions by formal rules. J. Amer. Statis. Assoc., 1996, 91: 1343-1370.
    [15] Wu J F, Zhang S N, Lu F J, Jin Y K. A Statistical Analysis of Point-like Sources in the Chandra Galactic Center Survey. Chin. J. Astron. Astrophys., 2007, 7: 81-90.
    [16] Park T, Kashyap V L, Siemiginowska A, van Dyk D A, Zezas A, Heinke C, Wargelin B J.Bayesian Estimation of Hardness Ratios: Modeling and Computations. Astrophys. J., 2006, 652: 610-628.
    [17] Orosz J A, Groot P J, van der Klis M, McClintonck J E, Garcia M R, Zhao P, Jain R K, Bailyn C D, Remillard R A. Dynamical Evidence for a Black Hole in the Mircoquasar XTE J1550-564. Astrophys. J., 2002, 568: 845-862.
    [18] Sobczak G J, McClintock J E, Remillard R A, Levine A M, Morgan E H, Baylin C D, Orosz J A. X-Ray Nova XTE J1550-564: RXTE Spectral Observations. Astrophys. J., 1999, 517: L121-L127.
    [19] Homan J, Wijnands R, van der Klis M, Belloni T, van Paradijs J, Klein-Wolt M, Fender R, Mendez M. Correlated X-Ray Spectral and Timing Behavior of the Black Hole Candidate XTE J1550-564: A New Interpretation of Black Hole States. Astrophys. J. S., 2001, 132: 377-403.
    [20] Tomsick J, Corbel S, Karret P. X-Ray Observations of XTE J1550-564 during the Decay of the 2000 Outburst. I. Chandra and RXTE Energy Spectra. Astrophys. J., 2001, 563: 229-239.
    [21] Rodriguez J, Corbel S, Tomsick J. Spectral Evolution of the Microquasar XTE J1550-564 over its Entire 2000 Outburst. Astrophys. J., 2003, 595: 1032-1039.
    [22] Tomsick J, Smith E, Swank J, Wijnands R, Homan J. XTE J1550-564. IAU Circ, 2001, 7575.
    [23] Belloni T, Colombo A, Homan J, Campana S, van der Klis M. A low/hard state outburst of XTE J1550-564. Astron. Astrophys., 2002, 390: 199-204.
    [24] Dubath P, Revnivtsev M, Goldoni P, von Kienlin A, Lund N, Grebenev S, Kuulkers E. XTE J1550-564. IAU Circ, 2003, 8100.
    [25] Kaaret P, Corbel S, Tomsick J A, Fender R, Miller J M, Orosz J A, Tzioumis A K, Wijnands R. X-Ray Emission from the Jets of XTE J1550-564. Astrophys. J., 2003, 582: 945-954.
    [26] Strohmayer T, Bildsten L. New Views of Thermonuclear Bursts//Lewin W H G, van der klis M. Compact Stellar X-ray Sources. New York: Cambridge Univ. Press, 2003: 113-156.
    [27] Priest E R, Forbes T G. The magnetic nature of solar flares. Astron. Astrophys. Rev., 2002, 10: 313-377.
    [28] Zhang S N, Cui W, Chen W, Yao Y, Zhang X, Sun X, Wu X B, Wu H. Three-Layered Atmospheric Structure in Accretion Disks Around Stellar-Mass Black Holes. Science, 2000, 287: 1239-1241.
    [29] Merloni A, Fabian A C. Accretion disc coronae as magnetic reservoirs. Mon. Not. R. Astron. Soc., 2001, 321: 549-552.
    [30] Frank J, King A, Raine D. Accretion Power in Astrophysics. 2nd ed. New York: CambridgeUniv. Press, 1992.
    [31] Shakura N I, Sunyaev R A. Black holes in binary systems: Observational appearance. Astron. Astrophys., 1973, 24: 337-355.
    [32] Shakura N I, Sunyaev R A. A theory of the instability of disk accretion on to black holes and the variability of binary X-ray sources, galactic nuclei and quasars. Mon. Not. R. Astron. Soc., 1976, 175: 613-632.
    [33] Pessah M E, Chan C K, Psaltis D. Local Model for Angular-Momentum Transport in Accretion Disks Driven by the Magnetorotational Instability. Phys. Rev. Lett., 2006, 97: 221103.
    [34] Balbus S A, Hawley J F. A powerful local shear instability in weakly magnetized disk. I-Linear analysis. II-Nonlinear evolution. Astrophys. J., 1991, 376: 214-233.
    [35] Gehrels N. Instrument Background in Gamma Ray Spectrometers flown in Low Earth Orbit. Nuclear Instruments and Methods in Physics Research, 1991, A313: 512-528.
    [36] Thompson D J. A Three-Dimensional Study of 30 to 300 MeV Atmospheric Gamma Rays, Journal of Geophysical Research, 1974, 79: 1309-1320.
    [37] Dean A J, Lei F, Byard K, Goldwurm A, Hall C J. The gamma-ray emissivity of the earth’s atmosphere. Astron. Astrophys., 1989, 219: 358-361.
    [38]冯骅.黑洞高能辐射的观测与研究[博士学位论文].北京:清华大学工程物理系, 2004.
    [39]李刚.硬X射线调制望远镜空间运行环境与本底研究[硕士学位论文].北京:中国科学院高能物理研究所, 2007.
    [40] Mizuno T, Kamae T, Godfrey G, Handa T, Thompson D J, Lauben D, Fukazawa Y, Ozaki M. Cosmic-Ray Background Flux Model Based on a Gamma-Ray Large Area Space Telescope Balloon Flight Engineering Model. Astrophys. J., 2004, 614: 1113-1123.
    [41]李刚,吴枚,张澍,金颖康. HXMT的空间环境本底计算.空间科学学报,已接收.
    [42] AMS Collaboration. Protons in near earth orbit. Phys. Lett., 2000, B472: 215-226.
    [43] Peter K F. Cosmic Ray At Earth: Research’s Reference Manual and Data Book. Grieder institute of Physics University of Bern Switzerland, 2001.
    [44] Armstrong T W, Chandler K C, Barish J. Calculations of neutron flux spectra produced in the earth’s atmosphere by galactic cosmic rays. J. Geophys. Res. 1973, 78: 2715-2726.
    [45] Morris D J, Aarts H, Bennett K, Lockwood J A, McConnell M L, Ryan J M, Sch?nfelder V, Steinle H, Peng X. Neutron measurements in near-Earth orbit with COMPTEL. Journal of Geophysical Research, 1995, 100: 12243-12249.
    [46] Gledhill J A. Aeronomic effects of the South Atlantic anomaly. Rev. of Geophys. And Space Phys., 1976, 14: 173-187.
    [47] Pinto O J, Gonzalez W D, Pinto I R C, Gonzalez A L C, Mendes O J. The South AtlanticMagnetic Anomaly– Three decades of research. Journal of Atmospheric and Terrestrial Physics, 1992, 54: 1129-1134.
    [48] Porras E. Production rate of proton-induced isotopes in different materials. Nuclear Instruments and Methods in Physics Research. 2000, B160: 73-125.
    [49] Space Environment Information System. [2006-01-08]. http://www.spenvis.oma.be.
    [50] Dean A J, Bird A J, Diallo N, Ferguson C, Lockley J J, Shaw S E, Westmore M J, Willis D R. The Modelling of Background Noise In Astronomical Gamma Ray Telescopes. Space Science Reviews, 2003, 105: 285-376.
    [51] Lei F, Ferguson C, Bird J A, Lockley J J, Dean J A. The INTEGRAL Mass Model– TIMM. Astrophysical Letters and Communications, 1999, 39: 373.
    [52] Saab T, Fujimoto R, Kilbourne C A, Kelley R L. GEANT modeling of the low-earth-orbit cosmic-ray background for the Astro-E2 XRS instrument. Proc. SPIE., 2004, 5501:320.
    [53] Wunderer C B, Smith D, Weidenspointner G. Modeling of The Detector Background Spectrum for The Low-Earth Orbit Ge Spectrometer RHESSI with MGGPOD. Proc. 5th INTEGRAL Workshop, 2004, ESA SP-552: 913-916.
    [54] Lei F, Bird A J, Dean A J, Green A R, Dean A J. GGOD: A Comprehensive Monte-Carlo Simulation Package of Particle Interaction. Environment Modelling for Space-based Applications, 1996, ESA SP-392: 97-104.
    [55] Geant4: A toolkit for the simulation of the passage of particles through matter. [2004-09-01]. http://geant4.web.cern.ch/geant4.
    [56] Van allen J A. Radiation Belts around the Earth. San Francisco: Freeman. 1958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700