用户名: 密码: 验证码:
曲面数控加工仿真多层次细节建模与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
某大型轧钢厂加工轧辊需要各种成形车刀刀片,有些刀片的形状很复杂。目前采用手工打磨,与样板比对的方法进行刃磨,精度差,效率低,劳动强度大。需要用数控磨削对其手工刃磨的加工方法进行改造,以提高加工精度和效率,并减轻工人的劳动强度。作为数控磨削系统的一部分,为了避免数控程序的错误和返工,有必要建立虚拟数控磨削加工仿真系统,在实际加工前对数控程序进行验证。为了建立轧辊成形车刀刀片的数控磨削系统,需要对轧辊成形车刀刀片的加工方法以及刀具轨迹的优化方法进行研究。为了建立轧辊成形车刀刀片的虚拟磨削系统,需要对刀片加工仿真的实体模型和加工仿真方法进行研究。在研究过程中发现数控加工过程仿真模型的复杂化面临的问题之一是仿真过程的逼真性与实时性的矛盾。为解决这些问题,本文所进行的研究及其创新性成果有:
     提出并构建了一种用于曲面数控加工仿真的多层次细节模型(G-LOD)。基于G-LOD的数控加工过程仿真能根据不同的仿真目的在模型上的不同区域和细节层次上进行,从而节省了不必要的计算时间和数据存储空间。加工过程仿真中,在得到加工曲面实体模型的同时,能够对曲面加工误差进行评估。G-LOD是在离散刀触点(CC)轨迹上建立的,采用G-LOD模型的数控加工过程仿真能较好地逼真实际加工过程。作为在物理仿真中的应用,对基于G-LOD的动态切削力的仿真进行了研究。仿真的结果表明,根据不同的仿真目的应采用不同细节层次的模型,可以大大减少计算机的计算量。
     提出了一种新的CC轨迹的优化方法。该方法在等参数CC轨迹的基础上,采用自适应网格的方法对离散CC轨迹进行优化,得到的优化CC轨迹在满足一定加工精度要求的前提下,具有等残余高度CC轨迹的特点,且比等残余高度CC轨迹有较少的离散CC轨迹数量和更高的加工效率。在优化过程中,利用本文建立的仿真模型和加工仿真方法对曲面进行加工仿真,然后根据仿真结果和对加工误差的分析对网格参数进行调整,并对优化结果进行验证。本文采用等参数CC轨迹和自适应网格优化CC轨迹分别对一个曲面进行了实际加工实验。检测结果显示:在加工效率相同的情况下,采用自适应网格优化CC轨迹加工得到的曲面比采用等参数CC轨迹加工得到的曲面的加工误差要小。
     为了建立辊成形车刀刀片的磨削加工系统,对轧辊成形车刀刀片的磨削加工方法进行了研究。提出了辊成形车刀刀片的2.5D CNC的最少轴数控磨削加工方法。并提出了一种采用浮动极坐标的2.5D CNC磨削加工方法。有利于降低数控磨削联动轴数和增强磨削过程稳定性。
     集成本文的研究成果,开发了轧辊成形车刀刀片的虚拟磨削原型系统。该原型系统在输入刀片刀刃曲线型值点的基础上,可以拟合刀刃曲线,生成离散CC轨迹,对离散CC轨迹进行优化,生成刀片后刀面曲面的G-LOD模型,采用最少轴数控磨削方法对轧辊成形车刀刀片进行了磨削加工仿真,对加工得到的刀刃曲线和刀具后角进行验证。
With the increasing complexity of simulation model, machining process simulations have to face the increasing conflict between simulation in real-time and the computational and storage capacity of the computer. In order to deal with this problem, the research work and innovative achievements presented in this dissertation are as follows:
     A novel simulation model for surface CNC machining process simulation, named G-LOD, is proposed and established. Simulations based on G-LOD can be carried out at different levels of detail and areas on surface models corresponding to different simulation aims, and this will save unnecessary computational time and storage space of the computer. Simulations based on G-LOD can obtain the machined solid model and vector-based model of surface simultaneously, so it can be used to evaluate the machining errors of machining process and verify CNC program. Because G-LOD is constructed on the basis of discrete CC path, machining simulations based on G-LOD will accord with the real machining processes more properly. Some simulation examples of surface CNC machining are completed. As an application in physical simulations, the method of dynamic cutting-force simulation of CNC machining is explored. From the simulation results it is found that using models of different levels of detail the computational time of computer will be decreased largely.
     A new CC path optimization method is presented. The optimized CC path is generated on the basis of iso-parametric CC path by using adaptive grid generation method. The optimized CC path possesses the merits of iso-scallop CC path and less number of discrete path than iso- scallop CC path, and so that it is a kind of optimal CC path. In the optimization process, the simulation model and method presented in this dissertation can be adopted to adjust grid factors and verify optimization results. The examples of real surface machining based on optimized CC path and iso-parametric CC path respectively have been completed. From the measurement results, it can be observed that the machining errors obtained by the optimized CC path are smaller than that obtained by iso-parametric CC path.
     The least-axis CNC grinding method for formed bits of mill roller is developed, and a 2.5 CNC grinding method is presented.
     Integrating the research fruits of this dissertation a prototype system of virtual grinding of formed bit of mill roller is developed. The system can fit the cutting edge profiles based on the given formed points, generate discrete CC path, optimize the generated CC path, produce G-LOD model of the bit, use the least-axis CNC machining method to simulate grinding the formed bit, and verify the obtained cutting edge profiles and clearances in the simulation.
引文
[1] R. B. Jerard, R. L. Drysdale, K. E. Hauck, etc. Methods for detecting errors in numerically controlled machining of sculptured surfaces. IEEE Computer Graphics and Applications, 1989, 9: 26-39.
    [2] Shih-Ming Wang, Chu-Hsiang Chiou, Yuan-Ming Cheng. An improved dynamic cutting force model for end-milling process. Journal of Materials Processing Technology, 2004, 148: 317–327.
    [3] Yi Zhang, Yuan Luo, Ji Feng Wang, etc. on the fractal of surface topography of grinding. International Journal of Machine Tools & Manufacture, 2001, 41: 2045–2049.
    [4] Henri Paris, Gre’ goire Peigne, Rene’ Mayer. Surface shape prediction in high speed milling. International Journal of Machine Tools & Manufacture, 2004, 44: 1567–1576.
    [5] A. D. Spence, Z. Li. Parallel Processing for 2-1/2 D Machining Simulation. Solid Modeling, ACM, 2001, 140-148.
    [6] Jerard R. B., Drysdale R. L., Hauck K., etc. Methods for Detecting Errors in Sculptured Surface Machining. IEEE Computer Graphics and Applications, 1989, 9(1): 26-39.
    [7] Menon J. P. and Robinson D. M. Advanced NC Verification via massively Parallel Raycasting. Manufacturing Review, 1993, 6(2): 141-154.
    [8] Suzak H., Koresawa H., and Sakamoto M. Development of the Real Time CAM System based on Parallel Processing and the Inverse Offset Method. Trans. NAMRI/SME, 1993, XXI, 303-309.
    [9] Menon J. P., and Robinson D. M. High Performance NC Verification Via Massively Raycasting: Extension to New Phenomena and Geometric Domains. In Proceedings of ASME Winter Annual Meeting, Anaheim, California, 1992, 179–194.
    [10] 刘文炜, 李锦涛. 虚拟环境恒定帧频率自适应显示算法. 计算机学报(增刊), 1996,84-89.
    [11] 刘学慧,吴恩华. 虚拟现实的图形生成技术. 中国图象图形学报,1997, 2(4): 205-212.
    [12] Carl Erikson, Dinesh Manocha. Hierarchical Levels of Detail for Fast Display of Large Static and Dynamic Environments. UNC-CH Technical Report TR00-012, 2000.
    [13] H.Hoppe. Progress Meshes. In Proceedings of SIGGRAPH'96, 1996, 99-108.
    [14] H.Hoppe. View-Dependent Refinement of Progressive Mesh. In Proceedings of SIGGRAPH'97, 1997, 168-177.
    [15] Huaizhong Li, Xiaoping Li. Modelling and simulation of chatter in milling using a predictive force model. International Journal of Machine Tools & Manufacture, 2000, 40: 2047–2071.
    [16] C. J. Chiou, Y. S. Lee. A shape-generating approach for multi-axis machining G-buffer models. Computer-Aided Design, 1999, 31: 761–776.
    [17] Won Soo Yun, Jeong Hoon Ko., Han Ul Lee., etc. Development of a virtual machining system, part 3: cutting process simulation in transient cuts. International Journal of Machine Tools & Manufacture, 2002, 42: 1617–1626.
    [18] G. M. Kim, P. J. Cho, C. N. Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map. International Journal of Machine Tools & Manufacture, 2000, 40: 277–291.
    [19] Duffey M. R., Dixon J. R. Automating extrusion design: a case study in geometric and topological reasoning for mechanical design. Computer-Aided Design, 1988, 20(10): 112-120.
    [20] Cunninghan J. J., Dixon J. R. Designing with features: the origin of features. In Proceedings of ASME Computers in Engineering Conference, San Francisco, ASME, 1988, 201-211.
    [21] Voelcker H. B. and Hunt W. A. The Role of Solid Modeling in Machining - Process Modeling and NC Verification. SAE Technical Paper 810195, 1981.
    [22] Spence A. D. and Altintas Y. A Solid Modeler Based Milling Process Simulation and Planning System. Trans. ASME, J. of Engineering for Industry, 1994, 116: 61-69.
    [23] Chuan Jun Su, Fuhua Lin, Lan Ye. A new collision detection method for CSG-represented objects in virtual manufacturing. Computers in Industry, 1999, 40: 1–13.
    [24] Braid I. C. Designing with Volumes. University of Cambridge, London, 1973.
    [25] Bailey T. E., Jenkins D. M., Spence A. D., etc. Integrated Modeling for Metal Removal Operations. In Proceedings of IMECE, DSC-58, Nov. 1996, ASME, 191-198.
    [26] Saturley P. V. and Spence A. D. Integration of Milling Process Simulation with On-Line Monitoring and Control. Int. J. Adv. Manuf. Technol. 2000, 16: 92-99.
    [27] B. M. Imani, M. A. Elbestawi. Geometric Simulation of Ball-End Milling Operations. ASME Journal of Manufacturing Science and Engineering, MAY 2001, 123: 177-184.
    [28] Li S, Jerard RB. 5-Axis machining of sculptured surfaces with a flatend cutter. Computer-Aided Design, 1994; 26(3):165–78.
    [29] Jerard RB, Angleton JM, Drysdale RL. Sculptured surface tool path generation with global interference checking. In Proceedings of the ASME Design Productivity International Conference, Honolulu, Hawaii, February 1991, 734–42.
    [30] Chappel IT. The use of vectors to simulate material removed by numerically controlled milling. Computer-Aided Design, 1983, 15 (3): 156–158.
    [31] Oliver J. H., Goodman ED. Direct dimensional NC verification. Computer-Aided Design, 1990, 22 (1): 3–10.
    [32] Oliver J. H. Efficient Intersection of Surface Normals with Milling Tool Swept Volumes for Discrete Three-Axis NC Verification. Trans ASME J. Mechanical Design, 1992, 114: 283-287.
    [33] Saito T, Takahashi T. NC machining with G-buffer method. Computer Graphics, 1991, 25(4): 207–16.
    [34] D. Dragomatz, S. Mann. A classified bibliography of literature on NC milling path generation. Computer-aided Design, 1997, 29 (3): 239-247.
    [35] Catania, G. A computer-aided prototype system for NC rough milling of free-form shaped mechanical part-pieces. Computers in Industry, 1991, 20(2): 275-293.
    [36] Cox J. J., Takezaki Y., Ferguson H. R. P. Space-filling curves in tool-path applications. Computer-Aided Design, 1994, 26(3): 215-224.
    [37] J. E. Bobrow. NC machine tool path generation from CSG part representation. Computer-Aided Design, 1985, 17 (2): 69–76.
    [38] Y. D. Chen, J. Ni, S. M. Wu. Real-time CNC tool path generation for machining IGES surfaces. ASME Journal of Engineering for Industry, 1993, 115: 480–486.
    [39] R. S. Lin, Y. Koren. Efficient tool-path planning for machining free-form surfaces. ASME Journal of Engineering for Industry, 1996, 118: 20–28.
    [40] K. Suresh, D. C. H. Yang. Constant scallop-height machining of free-form surfaces. ASME Journal of Engineering for Industry, 1994, 116: 253–259.
    [41] G. C. Loney, T. M. Ozsoy. NC machining of free form surfaces. Computer-aided Design, 1987, 19 (2): 85–90.
    [42] Noriyuki Koreta, Tsuneo Egawa, Motofumi Kuroda. Analysis of surface roughness generation by ball end mill machining. Japan Society for Precision Engineering, 1993, 59(9): 1537–1542.
    [43] Roug Shine Lin and Y. Koren. Efficient tool-path planning for machining free-form surface. Transactions ASME, 1996, 119: 20–28.
    [44] K. Suresh and D. C. H. Yang. Constant scallop-height machining of free-form surface. Journal of Engineering for Industry, 1994, 116: 253–259.
    [45] Kunio Natio, Kazutake Ogo, Tetsuro Konaga, etc. Development of ball end milling for fine finish high efficiency. Japan Society for Precision Engineering, 1993, 59(4): 649–654.
    [46] S. S. Makhanov, S. A. Ivanenko. Grid generation as applied to optimize cutting operations of the five-axis milling machine. Applied Numerical Mathematics, 2003, 46: 331-351.
    [47] J. S. Hwang. Interference-free tool-path generation in the NC machining of parametric compound surfaces. Computer-aided Design, 1992, 24 (12): 667–676.
    [48] Chih-Ching Lo. CNC machine tool surface interpolator for ball-end milling of free-form surfaces. International Journal of Machine Tools and Manufacture, 2000, 40: 307–326.
    [49] Jeong Hoon Ko, Won Soo Yun, Dong Woo Cho. Off-line feed rate scheduling using virtual CNC based on an evaluation of cutting performance. Computer Aided Design, 2003, 35: 383-393.
    [50] His Yung, Feng Ning Su. Integrated tool path feed rate optimization for the finishing machining of 3D plane surfaces. International Journal of Machine Tools &Manufacture, 2000, 40: 1557-1572.
    [51] S. Park, Y. T. Jun, C. W. Lee, etc. Determining the cutting conditions for sculptured surface machining. International Journal of Advanced Manufacture Technology, 1993, 8: 61–70.
    [52] R. M. Boogert, H. J. J. Kals, F. J. A. M. van Houten. Tool paths and cutting technology in computer-aided process planning. International Journal of Advanced Manufacture Technology, 1996, 11: 186–197.
    [53] S. H. Suh, Y. S. Shin. Neural network modeling for tool path planning of the rough cut in complex pocket milling. J. Manuf. Syst., 1996, 15 (5): 295–324.
    [54] J. Jeong, K. Kim. Generation of tool paths for machining free-form pockets with islands using distance maps. Adv. Manuf. Technol, 1999, 15: 311–316.
    [55] Zezhong C. Chen, Zuomin Dong, Geoffrey W. Vickers. Automated surface subdivision and tool path generation for 3 1212 -axis CNC machining of sculptured parts. Computers in Industry, 2003, 50: 319–331.
    [56] Sergey A. Ivanenko, Stanislav S. Makhanov, Mud-Armeen Munlin. New numerical algorithms to optimize cutting operations of a five-axis milling machine. Applied Numerical Mathematics, 2004, 49: 395–413.
    [57] Karim Abdel-Malek, Harn-Jou Yeh and Saeb Othman. Swept volumes: void and boundary identification. Computer-Aided Design, 1998, 30 (13): 1009–1018.
    [58] Karim Abdel-Malek, Walter Seaman, Harn-Jou Yeh. NC Verification of Up to 5 Axis Machining Processes Using Manifold Stratification. Journal of Manufacturing Science and Engineering, 2001, 123: 99-10。
    [59] Wang W. P., and Wang K. K. Geometric Modeling for Swept Volume of Moving Solids. IEEE Comput. Graphics Appl., 1986,12(6): 8–17.
    [60] Boussac, S., and Crosnier, A. Swept volumes generated from deformable objects application to NC verification. In Proceedings of the 13th IEEE International Conference on Robotics and Automation, Apr 22–28, 1996, Vol. 2, Minneapolis, MN, 1813–1818.
    [61] Liu C., and Esterling D. Solid Modeling of 4-Axis Wire EDM Cut Geometry, Comput.-Aided Des., 1997, 12(29): 803–810.
    [62] Weihang Zhu and Yuan-Shin Lee. Product Prototyping and Manufacturing Planning With 5-DOF Haptic. Sculpting and Dexel Volume Updating. In Proceeding of the 12th international symposium on haptic interfaces for virtual environment and teleoperator systems.
    [63] Blackmore D., Leu M. C., and Wang, L. P. Sweep-envelope differential equation algorithm and its application to NC machining verification. Comput.-Aided Des., 1997, 9(29): 629–637.
    [64] Leu M. C., Wang L., and Blackmore D. Verification program for 5-axis NC machining with general APT tools. CIRP Ann. Manuf. Technol., 1997, 1(46): 419–424.
    [65] 马小虎. 虚拟现实中多细节层次模型的研究. 浙江大学博士学位论文, 1997.
    [66] W. J. Schroeder, J. A. Zarge, and W. E. Lorenson. Decimation of triangle meshes. Computer Graphics, 1992, 26(2): 65-70.
    [67] B. Hamann. A data reduction scheme for triangulated surfaces. Computer Aided Geometric Design, 1994, 11(2): 179-214.
    [68] G. Turk. Re-tiling polygonal surfaces. Computer Graphics, 1992, 26(2): 55-64.
    [69] A. D. Kalvin, R. H. Taylor. Superfaces: Polygonal Mesh Simplification with Bounded Error. IEEE Computer Graphics and Applications, 1996, 64-77.
    [70] H. hoppe, T. De Rose, T. Duchamp, etc. Mesh optimization. In Proceedings of SIGGRAPH'93, 1993, 19-26.
    [71] H. Hoppe, T. DeRose, T. Duchamp, etc. Piecewise smooth surface reconstruction. In Proceedings of SIGGRAPH'94, 1994, 295-302.
    [72] Kumar S. and Manocha D. Hierarchical visibility culling for spline models. In Proceedings of Graphics Interface ’96, 1996, 142–150.
    [73] Kumar S. Manocha D. and Lastra A. Interactive display of large-scale NURBS models. In 1995 Symposium on Interactive 3D Graphics ,1995, ACM SIGGRAPH, 51–58.
    [74] Lindstrom P., Koller D., Ribarsky W. Real-time, continuous level of detail rendering of height fields. In Proceedings of Computer Graphics (SIGGRAPH ’96 Proceedings), 1996, 109–118.
    [75] Taylor D. C. and Barrett W. A. An algorithm for continuous resolution polygonalizations of a discrete surface. In Proceedings of Graphics Interface ’94, 1994, 33–42.
    [76] Lounsbery M., DeRose T., and Warren J. Multiresolution surfaces of arbitrary topological type. ACM Transactions on Graphics, 1997, 1(16): 34–73.
    [77] Cignoni P., Puppo E., and Scopigno R. Representation and visualization of terrain surfaces at variable resolution. In proceedings of In Scientific Visualization ’95, 1995, R. Scateni, Ed.,World Scientific, 50–68.
    [78] De Floriani L., Marzano P, and Puppo E. Multiresolution models for topographic surface description. The Visual Computer, 1996, 7(12): 317–345.
    [79] Scarlatos L. L. A refined triangulation hierarchy for multiple levels of terrain detail. In Proceedings. In proceedings of IMAGE V Conference, June 1990, 115–122.
    [80] VR CNC Milling. http: // www.denford.com.
    [81] Predator VIRTUAL CNC. http: // mis-group.com/virtualcnc/virtual.php.
    [82] virtual_nc. http: // www.delmia.com.
    [83] 周祖德, 陈幼平, 邱智明. 虚拟数控系统体系结构研究. 中国机械工程, 1999, 10(10): 1139-1142.
    [84] Won-Soo Yun, Jeong Hoon Ko., Han Ul Lee., Dong-Woo Cho., Kornel F. Ehmann. Development of a virtual machining system, part 3: cutting process simulation in transient cuts. International Journal of Machine Tools & Manufacture, 2002, 42: 1617–1626.
    [85] G. M. Kim, P. J. Cho, C. N. Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map, International Journal of Machine Tools & Manufacture, 2000, 40: 277–291.
    [86] Shih-Ming Wang, Chu-Hsiang Chiou, Yuan-Ming Cheng. An improved dynamic cutting force model for end-milling process. Journal of Materials Processing Technology, 2004, 148: 317–327.
    [87] Ismail Lazoglu. Sculpture surface machining:a generalized model of ball-end milling force system. International Journal of Machine Tools & Manufacture, 2003, 43: 453-462.
    [88] 任秉银, 唐余勇, 刘华明. 球头铣刀刃口曲线的求解及螺旋沟槽的二轴联动数控加工. 工具技术, 1999, 33(12): 11-14.
    [89] S.A. Ivanenko, G.V. Muratova. Adaptive grid shallow water modeling. Appl. Numer. Math 2000; 32 (4): 447–482.
    [90] J. F. Thompson, Z. U. A. Warsi and C. W. Mastin. Numerical Grid Generation: Foundations and applications. Elsevier North-Holland New York; 1985.
    [91] V. D. Liseikin. The construction of structured adaptive grids – A review. Comp. Methods in Math. Phys. 1996; 36 (1): 1-32.
    [92] His-Yung Feng, Huiweng Li. Constant scallop-height tool path generation for three axis sculptured sruface machining. Computer-Aided Design, 2002, 34: 647-654.
    [93] B. Lauwers, B. Dejonghi, J.P. Kruth. Optimal and collision tool posture in five-axis machining through the tight of tool path generation and machine simulation. Computer-Aided Design, 2003, 35: 421-432.
    [94] Yuan-Shin Lee. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Computer-Aided Design, 1998, 30(7): 559-570.
    [95] Y.J. Lin. T.S. Lee. An adaptive tool path generation algorithm for precision surface machining. Computer-Aided Design, 1999, 31: 237-247.
    [96] Lee, Y. S., Choi, B. K. and Chang, T. C. Cut distribution and cutter selection for sculptured surface cavity machining. International Journal of Production Research, 1992, 30(6): 1447–1470.
    [97] Marshall, S. and Griffiths, J. G. A survey of cutter path construction techniques for milling machines. International Journal of Production Research, 1994, 32(12): 2861–2877.
    [98] Elberg, G. and Cohen, E. Second-order surface analysis using hybrid symbolic and numeric operators. ACM Transactions on Graphics, 1993, 12(2): 160–178.
    [99] Jerard, R. B., Angleton, J. M., Drysdale, R. L. and Su, P. The use of surface point sets for generation, simulation and automatic correction of NC machining programs. Proceeding of NSF Design and ManufacturingSystems Conference, Tempe, AZ, January 1990, 143–148.
    [100] Lee, Y. S. and Chang, T. C., Application of computational geometry in optimizing 2.5 D and 3 D NC surface machining. Computers in Industry, 1995, 26(1), 41–59.
    [101] Kimb, B. H. and Chu, C. N. Effect of cutter mark on surface roughness and scallop height in sculptured surface machining. Computer-Aided Design, 1994, 26(3): 179–188.
    [102] Hwang, J. Interference-free tool path generation in the NC machining of parametric compound surfaces. Computer-Aided Design, 1992, 24(12): 667–677.
    [103] Suh, Y. S. and Lee, K. NC milling tool path generation for arbitrary pockets defined by sculptured surfaces. Computer-Aided Design,1990, 22(5): 273–283.
    [104] Lin, R. S. and Koren, Y. Efficient tool-path planning for machining free-form surfaces. Transactions of the ASME, 1996, 118(1): 20–28.
    [105] Lee, Y. S. Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining. Computer-Aided Design, 1997, 29(7): 507–521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700