用户名: 密码: 验证码:
中秦岭山阳—柞水地区岩浆岩及其成矿构造环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中秦岭山阳-柞水地区广泛出露燕山期花岗(斑)岩体和闪长(玢)岩脉、印支期花岗岩基以及新元古代岩块,围绕燕山期花岗(斑)岩体普遍发育斑岩-矽卡岩型Cu-Mo-Fe矿化。本文选取山阳-柞水地区9个典型花岗(斑)岩体和三处闪长(玢)岩脉进行了研究,通过详细的野外地质考察、岩相鉴定、矿物电子探针分析、LA-ICPMS锆石U-Pb同位素成岩年代测定、岩石地球化学测试以及锆石Lu-Hf同位素分析,探讨区内燕山期花岗(斑)岩体的源区性质、岩石成因以及成岩构造背景,进而探讨斑岩-矽卡岩型成矿环境。同时对凤镇-山阳断层开展了40Ar-39Ar法同位素地质年龄测定,以此对研究区构造活动与岩浆作用及成矿间的关系进行研究。取得的认识和成果如下。
     山阳-柞水地区存在新元古代、印支期和燕山期三期岩浆活动。新元古代岩浆活动(864.4-680Ma)以紧贴凤镇-山阳断层带南侧断续分布的板板山杂岩、十里沟二长花岗岩、冷水沟杂岩以及迷魂阵杂岩等岩块为代表,其主要岩性组合包括辉长-辉绿岩、二长花岗岩、钾长花岗岩以及石英闪长岩等基性-中酸性岩类,在秦岭造山带的俯冲-增生作用过程中,形成了中秦岭地区一条增生混杂岩。印支期岩浆活动(227-199Ma)以研究区北部及西部的东江口、柞水、曹坪以及沙河湾等花岗岩基为代表,主要岩性组合为二长花岗岩、黑云母二长花岗岩、花岗闪长岩、奥长环斑花岗岩等,岩体中普遍含辉长质-闪长质暗色包体。燕山期岩浆活动(141.5~150.2Ma)以广泛出露于全区的花岗(斑)岩枝、岩株以及闪长玢岩脉为代表,由闪长岩、石英闪长岩、花岗闪长岩以及二长花岗岩等岩性组成,主要矿物成分为斜长石、钾长石、石英等,主要暗色矿物有角闪石和黑云母,副矿物有锆石、磷灰石、磁铁矿和榍石等。
     山阳-柞水地区燕山期花岗(斑)岩体以及闪长(玢)岩脉为I型花岗岩,总体显高钾钙碱性(少数为钾玄质)准铝质-弱过铝质花岗岩类。Mg#值变化于19-68之间,大多数介于45~60之间;岩体中黑云母的FeO/(FeO+MgO)与MgO投图结果、角闪石的Ti02和A1203投图结果;池沟岩体中包含有闪长质包体,这些均表明山阳-柞水地区燕山期花岗(斑)岩的岩浆源区为壳-幔混合。花岗(斑)岩体的稀土元素分异显著,LREE/HREE介于9.14~17.92,(La/Sm)N比值大于3,(Gd/Lu)N介于1-2之间,无明显Eu异常;富集K、Rb和Ba等大离子亲石元素,亏损Nb、Ta、Ti和P等高场强元素;具有高Sr低Y和Yb、高La/Yb、高Sr/Y等微量元素组成,显示一定的埃达克质特征。锆石εHf(t)值为-4.50~2.17,平均-1.11暗示浆源区为高度混合的壳-幔混合岩浆,且以地壳熔融组分为主;Hf同位素二阶段模式年龄(TDM2)为0.9-1.6Ga,集中于1.2-1.4Ga,说明南秦岭中-新元古代地壳增生形成的基性物质重熔岩浆应为研究区燕山期花岗(斑)岩体的岩浆源区。
     矿物学特征以及岩石地球化学组成共同表明山阳-柞水地区燕山期花岗(斑)岩体形成于碰撞后伸展的构造背景之下,属碰撞后花岗岩。随着晚侏罗世-早白垩世(J3-K1)秦岭造山带南北向外部挤压作用消失,造山带转为强烈的伸展,引发大规模岩浆活动,形成壳-幔混合型岩浆,上升侵位形成了研究区的燕山期花岗(斑)岩体。
     山阳-柞水地区广泛发育钾化、硅化、绢英岩化、绿泥石化等斑岩型蚀变,并已发现池沟、冷水沟等多个斑岩型矿床(点),花岗(斑)岩体的地质特征、岩石地球化学特征都与大陆碰撞型斑岩矿床相近,成岩构造背景也与大陆碰撞型斑岩矿床相吻合。但花岗(斑)岩体的侵位深度较深(8~14km), Rb、Ba等大离子亲石元素富集不明显,花岗(斑)岩体Sr含量不够高,Mn值较高,Y、Yb值较高,Sr/Y和La/Yb比值相对较低等,与国内外典型的斑岩型矿床存在一定差异,制约了本区斑岩成矿作用,导致斑岩-矽卡岩型矿化强度普遍不高,可能蕴藏着中-小型斑岩-矽卡岩型矿床。
A large number of Yanshanian granite (porphyry) bodies, Indosinian graniteand dioritic porphyrite veins are widely exposed in the Shanyang-Zhashui area, middle Qinling Orogenic Belt. Most of those Yanshanian granite (porphyry) bodies are surrounded by porphyry-skarn Cu-Mo-Fe and Cu-Au-Fe mineralization. Nine typical granite (porphyry) bodies and three dioritic porphyrite veins in the Shanyang-Zhashui area were selected to be systematic studied in this thesis. Basic on the field geologic investigation, petrographic examination, electron microprobe analysis, LA-ICP-MS zircon U-Pb ages determination, geochemical analysis and Lu-Hf isotopic analysis, the source natures, petrogenesis and petrogenic tectonic setting for these granite (porphyry) bodies were studied in this paper. Finally, metallogenic geological setting for porphyry-skarn deposits was discussed. In order to study the relationship between the tectonic activity and magmatism and mineralization,40Ar-39Ar ages of the Fengzhen-Shanyang fault was determined in the thesis. According to previous works, this thesis yielded following understandings and results.
     The granitoid magmatism can be divided into three periods (Neoproterozoic age, Indosinian and Yanshanian, respectively) in the researched region. The first period (Neoproterozoic magmatism:864.4-680Ma) was represented by the Banbanshan magmatic complex, Shiligou monzonitic granite, Lengshuigou magmatic complex and Mihunzhen magmatic complex, etc., all of them are small rock blocks interruptedly distributed along the southern side of Fengzhen-Shanyang fault. These rock blocks, consisted of gabbro, diabase, quartz diorite, moyite, and monzogranite, fromed the Fengzheng-Shanyang accretionary complex-melange in Middle Qinling Orogenic Belt during the process of subduction-accretionary. The second period (Indosinian magmatism:227-199Ma) was represented by the granitic batholiths (including Dongjiangkou, Zhashui, Caoping and Shahewan). These granitic batholiths located in the northern part of Shanyang-Zhashui area, and consisted of monzogranite, biotite monzogranite, granodiorite, rapakivi granite, and so on. Mafic microgranular enclaves are common in these batholiths. The last period (Yanshanian magmatism:150.2-141.5Ma):Showing as the granite (porphyry) apophysis or stock, widely exposed in the researched region. Most of them consisted of diorite, quartz diorite, granodiorite and monzonitic granit; contain plagioclase, potassium feldspar, quartz and other major mineral; also contain dark minerals such as hornblende and biotite; and include accessory minerals like zircon, apatite, magnetite and titanite.
     Geochemical analysis indicated that plutons (porphyry) in Shanyang-Zhashui area belong to high-K calc-alkaline series (less samples belong to shoshonite series) with the metaluminous (most samples) to peraluminous (less samples) feature; geological and mineralogical characteristics testify their Ⅰ-type granite nature. Mg#ranging from19to68(most between45~60), correlation of biotite between FeO/(FeO+MgO) ratio and MgO, correlation of hornblende between TiO2and Al2O3and microgranular enclaves in the Chigou pluton proved the crust mantle migmatization in their magma source. Chondrite-normalized REE patterns showed 'shovel' feature, no manifest Eu anomaly, enriched in large ion lithophile elements (such as K, Rb and Ba), and depleted in high field strength elements(e.g. Nb, Ta, Ti and P), indicated these plutons possess the common features belong to adakite and arc magmatic rocks; but the northern small plutons (porphyry) belong primarily to Adakite. Zircon εHf(t) range from-4.5to2.17, indicating that the magma may sourcing from high degree of magma mixing by crustal material and mantle material, and crustal melting are main ingredients. Hf isotopes two-stage model ages (TDM2),09~1.6Ga (most1.2~1.4Ga), indicated the magma formed by the melting of southern Qinling Orogenic Belt mafic lower crustal which formed in the period of Neoproterozoic to Mesoproterozoic can be the source of plutons (porphyry) from Shanyang-Zhashui area.
     Both mineralogical and geological characteristics show that these small plutons occurred under the tectonic setting from post-collision to extension, and belong to post-collision granitoid. After the north-south direction compressive stress disappeared in the period of late Jurassic to early Cretaceous, Qinling Orogenic Belt turned into the strong extension; large-scale magma activity were triggered; formed huge amount of crust-mantle mixed magma; finally ascended and emplaced to produce these plutons (porphyry) in Shanyang-Zhashui area.
     Potassic alteration, silicification, phyllic, chlorite and other porphyry alteration were widely developed in Shanyang-Zhashui area. Furthermore, Chigou porphyry deposits, Lengshuigou porphyry deposits and Xiaohekou porphyry deposits were discovered after the recent porphyry deposits studying and exploring in this area. Geological characteristics, lithogeochemical compostion and tectonic setting of these granite (porphyry) bodies are consistent with their counterpart of porphyry deposits in continental settings; but more deep depth of emplacement(8~14km), slightly enriched in Rb and Ba, no significant content of Sr, overmuch content of Mn, Y and Yb and relatively lower ratio of Sr/Y and La/Yb of these granite (porphyry) bodies differ from those characteristics of typical porphyry deposits at home and abroad. These differences are likely to be constraints on the mineralization intensity of porphyry-skarn deposits. As a result, there would be small to medium-sized porphyry-skarn deposits output in Shanyang-Zhashui area.
引文
①王宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ①王宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ①王宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ①王宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ①王宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ①陕西省地质矿产局.1990.1:5万陕西省区域地质调查报告(石嘴幅、凤凰咀幅).1-152
    ②陕西省地质矿产局.1992.1:5万陕西省区域地质调查报告(镇安县幅、大坪幅、沪家垣幅).1-119
    ①王宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ①壬宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ①陕西省地质矿产局.1990.1:5万陕西省区域地质调查报告(石嘴幅、凤凰咀幅).1-152
    ②陕西省地质矿产局.1992.1:5万陕西省区域地质调查报告(镇安县幅、大坪幅、沪家坦幅).1-119
    ①王宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ②陕西省地质矿产局.1990.1:5万陕西省区域地质调查报告(石嘴幅、凤凰咀幅).1-152
    ①陕西省地质矿产局.1990.1:5万陕西省区域地质调查报告(石嘴幅、凤凰咀幅).1-152
    ②(?)宗起,等.2011.西秦岭成矿地质背景与铅锌、银、铜、金资源评价技术研究(科研报告).1-662
    ①王宗起,闫全人,闫臻,等.2007.秦岭造山带结构与造山作用过程(科研报告).1-385
    ②谢桂青,等.2011.陕西省柞山盆地池沟-冷水沟铜钼矿区的成矿规律和找矿方向研究.科研报告,1-91
    Abdel-Rahman F M.1994. Nature of biotites from alkaline, calc-alkaline and peralumious magmas. Journal of Petrology,35(2):525-541.
    Albuquerque DCAR.1973. Geochemistry of biotites from granitic rocks, Northern Portugal. Geochimica et CosmochimicaActa,37(7):1779-1802
    Amelin Y, Lee DC and Halliday AN.2000. Early-Middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica Acta,64:4205-4225
    Amelin Y, Lee DC, Halliday AN and Pidgeon RT.1999. Nature of the Earth's earliest crust from hafnium isotpies in single detrital zircons. Nature,399:252-255
    Ames L, Tilton GR, Zhou G. 1993. Timing of collision of the Sino-Korean and Yangtse cratons:U-Pb zircon dating of coesite-bearing eclogites. Geology,21:339-342
    Ames L, Zhou G, Xiong B.1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15:472-489
    Anderson JL and Smith DR.1995. The effects of temperature and fo2 on the Al-in-hornblende barometer. American Mineralogist,80:549-559
    Anderson JL.1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society Edinburgh:Earth Sciences,87(1-2):125-138
    Annen C and Sparks RSJ.2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth and Planetary Science Letter,203(3-4):937-955
    Barbarin B.1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,46:605-626
    Batchelor R A and Bowden P.1985. Petrogenetic interpretation of granitoids rock series using multicationic parameters. Chemical Geology,48(1-4):43-55
    Beane RE and Titley SR.1981. Porphyry copper deposits:Part II:Hydrothermal alteration and mineralization. Economic Geology,75th Anniversary volume:235-269
    Bergantz GW.1989. Underplating and partial melting:implications for melt generation and extraction. Science, 245(4922):1093-1095
    Berger BR and Drew LJ.2002. Mineral-deposit models.in Fabbri A.G.,Gaal, G., and McCammon, R.B., eds., Deposit and geoenvironmental models for resource exploitation and environmental security:Boston, MA,Kluwer,121-134
    Blichert-Toft J and Albarede F.1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,148:243-258
    Blundy JD and Holland TJB.1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology,104:208-224
    Bonin B, Azzouni-Sekkal A, Bussy F and Ferrag S.1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism:Petrologic constraints and geodynamic settings. Lithos,45:45-70
    Buddington AF and Lindsley DH.1964. Iron-titanium oxide minerals and synthetic equivalents. Journal of petrology,5:310-357
    Burnham CW and Ohmoto H.1980. Late-stage processes of felsic magmatism. Mining Geology Special Issue, 8:1-11
    Burnham CW.1997. Magmas and hydrothermal fluids, in Barnes, H.L. (Eds), Geochemistry of hydrothermal ore deposits,3th edition. New York, John Wiley and Sons,63-123
    Candela PA and Holland HD.1984.The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta,48:373-380
    Candela PA.1991. Physics of aqueous phase evolution in plutonic environments.American Mineralogist,76: 1081-1091
    Candela PA.1997. A review of shallow, ore-related granites:Textures, volatiles andore metals. Journal of Petrolgoy,38:1619-1633
    Cantagrel JM, Didier J and Gourgaud A.1984. Magma mixing:origin of intermediate rock and "enclave from" volcanism to plutonism. Physics of the Earth and Planetary Interiors,35:63-76
    Carroll M and Rutherford JM.1987. The stability of igneous anhydrite experimental results andimplicationsforsulfurbehaviorinthe1982E1 Chichontrachyandesiteandotherevolved magmas. Journal of Petrology,28:781-801
    Carroll M and Rutherford MJ.1985. Sulfide and sulfate saturation hydrous silicate melts. Journal of Geophysics,90:601-612
    Castro A, Moreno-Ventas I and De la Rosa JD.1991. H-type (hybrid) granitoids:a proposed revision of the granite-type classification and nomenclature. Earth Science Review.31:237-253
    Castro AMI and Rosa JD.1990. Microgranular enclaveas indicator of hybridization process in granitoid rocks, Hercynian Belt, Span. Wally Pitcher Conference, University of Liverpool, Journal of Geology,25: 391-404
    Cathelineau M.1988. Cation Site occupancy in chlorites and illites as a function of temperature. Clay Mineral., 23:471-485
    Cathles LM, Guber AL and Lenagh TC, et al.1983. Kuroko-type massive sulfide deposits of japan:products of an aborted island arc rift. Economic Geology,78:96-114
    Catillo P R.2006. 埃达克岩成因回顾.科学通报,51(6):617-627.
    Chappell BW and White AJR.1974. Two contrasting granite types. Pacific Geology,8:173-174
    Chappell BW and White AJR.1992. I-and S-type granite in the Lachlan Fold Belt. Transactiona of the Royal Society of Edinburgh:Earth Sciences,83(1-2):1-26
    Chappell BW, Stephens W E.1988. Origin of infracrustal (I-type) granite magmas. Transactions of the Royal Society of Edinburgh:Earth Sciences,79:71-86
    Chappell BW, White AJR and Wyborn D.1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology,28:1111-1138
    Chappell BW.1996. Magma mixing and the production of compositional variation within granite suite: evidence from the granites of southeastern Australia. Journal of Petrology,37(3):449-470
    Chappell BW.1999. Aluminum saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos,46(3):535-551
    Chen J, Xie Z, Liu S, Li X and Foland KA.1995. Cooling age of Dabie orogen, China, determined by 40Ar-39Ar and fission track techniques. Science in China (B),38:749-757
    Chen YJ, Li C, Zhang J, Li Z and Wang HH.2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type. Science in China (ser. D),43(Supp.):82-94
    Chen Z.H., Lu S L, Li H K et al.2006. Constraining the role of the Qinling orogen in the assembly and break-up of Rodinia:Tectonic implications for Neoproterozoic granite occurrences. Journal of Asian Earth Sciences,28:99-115
    Chiaradia M, Vallance J, Fontbote, et al.2009. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador:implications for the Jurassic metallogenic belt of the Northern Andes. Miner Deposita,44:371-387
    Chung SL, Liu DY, Ji J, et al.2003. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet. Geology,31:1021-1024.
    Cline JS and Bodnar RJ.1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research.96(B5):8113-8126
    Cline JS.1995. Genesis of porphyry copper deposits:the behavior of water, chlorideand copper in crystallizing melts, in Pierce FW and Bolm JG, eds., Porphyrycopper deposits of the American Cordillera. Arizona Geological Society Digest,20:69-82
    Collins WJ.1982. Nature and origin of A type granites with particular reference to southeastern Austrilia. Contributions to Mineralogy and Petrology,32:1057-1085
    Collins WJ.1994. Upper-and middle-crustal response to delamination:An example from the Lachlan Fold Belt, eastern Australia. Geology,22:143-146
    Collins WJ.1998. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids:Implications for crustal architecture and tectonic models. Australian Journal Earth Sciences,45:483-500
    Cooke DR, Hollings P and Walshe JL.2005. Giant porphyry deposits:characteristics, distribution, and tectonic controls. Economic Geology,100:801-818
    Costa S and Rey P.1995. Lower crustal rejuvenation and growth during post-thickening collapse:Insights from a crustal cross section through a Variscan metamorphic core complex. Geology,23:905-908
    de la Roche, H., Leterrier, J., Grand Claude, P. and Marchal, M.1980. A classification of volcanic and plutonic rocks using Ri-R2 diagrams and major element analysis-its relationships with current nomenclatrure. Chemical Geology,29:183-210
    Defant MJ and Drummond MS.1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,34:662-665
    Defant MJ.2002. Reply for comment by R. Conner on the "Evidence suggests slab melting in arc magmas". By M. Defant and P. Kepezhinskas (EOS,2001,82:65,68-69). EOS,66:256-257
    Desouky MD, Feely M and Mortr P.1996. Diorite-granite magma mingling and mixing along the axis of Galway Granite batholith, Ireland. Journal of the Society London,153:361-37
    Dewey J F and Bird P.1970. Mountain belts and the new global tectonics. Journal of Geophysical Research, 75(14),2625-2647
    Dilles JH.1987. Petrology of the Yerington Batholith, Nevada:Evidence for evolution of porphyry copper ore fluids. Economic Geology,82:1750-1789
    Dong YP, Zhang GW, Neubauer F, et al.2011. Tectonic evolution of the Qinling orogen, China:Review and synthesis. Journal of Asian Earth Sciences,41(3):213-237
    Dupuy C, Liotard JM, DostalJ.1992. Zr/Hf fractionation in intraplate basaltic rocks:carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta,56:2417-2423
    Eby G N.1992. Chemical subdivision of the A-type granites:Petrogenetic and tectonic implications. Geology, 20:641-644.
    Einaudi MT,1982. Description of skarns associated with porphyry copper plutons, southwestern North America, in Titley SR, ed., Advances in geology of the porphyry copper deposits, southwestern North America:Tucson, AZ, University of Arizona Press,139-184
    Einaudi MT, Meinert LD and Newberry RJ.1981. Skam deposits,75th Anniversary Volume-1905-1980. Economic Geology,317-391
    Elhlou S, Belousova E, Griffin WL, et al..2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, (Supp.l), A158
    Ernst WG.2002. Paragenesis and thermobarometry of Ca-amphiboles in the Barcroft granodioritic pluton, central White Mountains, eastern California. American Mineralogist,87:478-490
    Foley S, Tiepolo M and Vannucci R.2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature,417:837-840
    Force ER.1998. Laramide alteration of Proterozoic diabase:a likely contributor of copper to porphyry systems in the Dripping Spring mountains area, southeastern Arizona. Economic Geology,93:171-183
    Foster HJ, Tischendorf G and Trumbull BR.1997. An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos,40:261-293
    Foster MD.1960. Interpretation of composition of trioctahedral micas, U. S.Geol. Surv. Prof.,354-B:1-49
    FurmanT, Graham D.1999. Erosion of lithospheric mantle beneath the East African rift system:geochemical evidence from the Kivu volcanic Province. Lithos,48:237-262
    Gao YF, Hou ZQ and Wei RH.2003. Post-collisional adakitic porphyries in Tibet:Geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction. Acta Geologica Sinica,77:123-135
    Griffin WL, Belousova EA and Shee SR.2004. Crustal evolution in the northern Yilarn Craton:U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research,131(3-4):231-282
    Griffin WL, Pearson NJ, Belousova E, et al.2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta,64: 133-147.
    Griffin WL, Wang X, Jackson SE, et al.2002. Zircon chemistry and magma genesis, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan Igneous Compexes. Lithos,61:237-269
    Hammarstrom JM and Zen E.1986. Aluminum in hornblende:An empirical igneous geobarometer. American Mineralogist,71:1297-1313
    Han CM, Xiao WJ, Zhao GH, et al.2006. Geological characteristics and genesis of the Tuwu porphyry copperdeposit, Hami, Xinjiang, CentralAsia. Ore Geology Reviews,2:77-94
    Hanchar JM and Miller CF.1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images:Implications for interpretation of complex crustal histories. Chemical Geology,110(1-3):1-13
    Harris NBW, Pearce JA and Tindle AG.1986. Geochemical characteristics of collision-zone magmatism. In: Coward, M.P., Ries, AC (eds), Collision Tectonica, Vol.19. Geological Society, London, Special Publications,67-81
    Hawkesworth CJ and Kemp AIS.2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology,226:144-162
    Hedenquist JW and Lowenstern JB.1994. The role of magmas in the formation ofhydrothermal ore deposits. Nature,370:519-527
    Hendry DAF, Chivas AR, Reed SBT, et al.1989. Geochemical evidence for magmatic fluid in porphyry copper mineralization, part Ion-probe analysis of Cu contents of mafic minerals, koloula igneous complex. Contributions to Mineralogy and Petrology,86:404-412
    Hey MH.1954. A new review of the chlorites. Mineral. Mag.,30:277-292
    Hofmann A, Jochum K, Seufert M and Wllite M.1986. Nb and Pb in oceanic basalts:New constraints on mantle evolution:Earth Planetary Science Letters,33:33-45
    Hofmann AW.1988. Chemical differentiation of the Earth:the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters,90:297-314
    Holland T and Blundy J.1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology,116:433-447
    Hollanda MHBM and Pimentel MM, Oliveira DC and Jardim EF.2006. Lithosphere-asthenosphere interaction and the origin of Cretaceous tholeiitic magmatism in Northeastern Brazil:Sr-Nd-Pb isotopic evidence. Lithos,86(1-2):34-49
    Hollister LS, Grissom G C, Peters, et al.1987. Confirmation of the empirical correlation of A1 in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist,72:231-239
    Hong DW, Wang SG, Han BF, et al.1996. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences,13:13-27
    Hoskin PWO and Black LP.2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology,18(4):423-439
    Hou ZQ, Gao YF, Qu XM, et al.2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters,220:139-155
    Hou ZQ, Ma HW, Za WK, et al.2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology,98:125-145
    Hou ZQ, Yang ZM, Qu XM, et al.2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews,36:25-51
    Hsu KJ and Wang Q.1987. Tectonic evolutionof Qinling Mountains, China. Eclogae geol. Helv,80(3): 735-752
    Huang T K.1945. On major tectonic forms of China. 《Geo.Memoirs》, Ser. A,1-165
    Huppert E, Stephen R and Sparks J.1988. The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust.29(3):599-624
    Imai A,Istanco EL and Fujii T.1993. Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mount Pinatubo, Philippines. Geology,21:699-702
    Imai A.2002 Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines:K-Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks. Resource Geology,52:147-161
    Imai A.2004. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs:Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs. Resource Geology,54:357-372
    Ishihara S.1977. The magnetite-series and ilmentite-series granitic rocks. Mining Geology,27:293-305
    Ishihara S.1981. The granitoid series and mineralization. Economic Geology 75th Anniv. Vol.,458-484
    James D and Sacks IS.1999. Cenozoic formation of the central Andes:Ageophysical perspective. Society of Economic Geologists Special Publication 7:1-25
    Jiang YH, Jiang SY, Zhao KD, et al.2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters,241:617-633
    Jiang YH, Jin GD, Liao SY, Qing Z and Peng Z.2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China:Implications for a continental arc to continent-continent collision. Lithos,117(3-4):183-197
    Johannes W and Holtz F.1996. Petrogenesis and experiment petrology of Granitic rocks. Berlin:Springer, 1-254
    Johnson MC and Rutherford MJ.1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology,17:837-841
    Jowett EC.1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Annual Meeting (Tront) Abstract, A62
    Kamber BS, Ewat A, Collerson KD, et al.2002. Fluid-mobile trace element Constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology, 144:38-56
    Kay RW.1978. Aleutian magnesian andesites:Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research,4:117-132
    Keay S, Collins WJ and McCulloch MT.1997. A three-component mixing model for granitoid genesis: Lachlan Fold Belt, eastern Australia. Geology,25:307-310
    Keleman BP.1995. Genesis of high Mg# andesites and the continental crust.Contributions to Mineralogy and Petrology,120(1):1-19
    Kelemen PB, Hang K, and Greene, AR.2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry,3:593-659
    Kemp AIS, Hawkesworth CJ, Foster GL, et al.2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science,315:980-983
    Kemp AIS, Hawkesworth CJ, Paterson BA and Kinny PD.2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature,439:580-583
    Kerrich R, Goldfarb R, Groves D, et al.2000. The geodynamics of world-class gold deposits:Characteristics, space-time distributions, and origins:Reviews in Economic Geology,13:501-551
    King PL, Chappell BW, Allen CM and White AJR.2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal Earth Sciences,48: 501-514
    King PL, White AJR, Chappell BW and Allen CM.1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol.,38:371-391
    Kinny PD and Mass R.2003. Lu-Hf and Sm-Nd isotope systems in zircon. In:Hanchar JM and Hoskin PWO(eds.). Zircon. Reviews in Mineralogy Geochemistry,53:327-341
    Kirkham RV and Sinclair WD.1995. Porphyry copper, gold, molybdenum, tungsten, tin, silver, in Eckstrand, OR, Sinclair, WD, and Thorpe, RI, eds., Geology of Canadian Mineral Deposit Types:Geological Survey of Canada. Geology of Canada,8:421-446
    Kirkham RV.1972. Porphyry deposits, in Blackadar, RG, eds., Report of Activities Part B, November 1971 to March 1972:Geological Survey of Canada, Paper 72-1 b:62-64
    Kirkham RV.1998. Tectonic and structural features of arc deposits:Metallogeny of volcanic arcs. British Columbia Geological Survey, B1-45
    Kundesn TL, Griffin WL, Hartz EH, et al.2001. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland:a record of repated crustal reworking. Contributions to Mineralogy and Petrology,141:83-94
    Lang JR and Titley SR.1998. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits. Economic Geology,93:138-170
    Leake BE, Wooley AR, Birch WD, et al.2004. Nomenclature of amphiboles:Additions and revisions to the International Mineralogical Association's amphibole nomenclature. American Mineralogist,89:883-887
    Leake BE, Woolley AR, Arps CES, et al.1997. Nomenclature of amphiboles:Report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. American Mineralogist,35:219-246
    Li JX, Li GM, Qin KZ, et al.2012. Mineralogy and mineral chemistry of the cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco Arc, Northern Tibet. Resource Geology,62(1):19-41
    Liang HY, Sun WD, Su WC, et al.2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology,104:587-596
    Liu SW, Li QG, Tian W, Wang ZQ, Yang PT, Wang W, Bai X and Guo RR.2011. Petro-genesis of Indosinian granitoids in middle-segment of south Qinling tectonic belt:constraints from Sr-Nd isotopic systematics. Acta Geologica Sinica:English Edition,85(3):610-628
    Liu YS, Hu ZC, Gao S, et al.2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,257(1-2):34-43
    Loiselle MC and Wones DR.1979. Characteristics and origin of anorogenic granites. Geol Soc Am Bull,11: 468.
    Lowell JD and Guilbert JM.1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology,65(4):373-408
    Lowenstern JB.1994. Dissolved volatile concentrations in an ore-forming magma. Geology,22:893-896
    Ludwig KR.2001. Isoplot-a geochronological toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Certer Special Pulication, No. la,1-58
    Luhr JF.1990. Experimental phase relations of water-and-sulfur-saturated arc magmas and the eruptions of 1982 El Chichon volcano. Journal of Petrology,31:1071-1114
    Maniar PD and Piccoli PM.1989.Tectonic discrimination of granitoids. Geological Society of America Bulletin,101:635-943
    Mathes EA.1976. Sulfur solubility and magmatic sulfldes in submarine basalt glass. Journal of Ceophyslell Research,81:4269-4276
    Mattauer M, Matte Ph, Malavieille, et al.1985. Tectonics of the Qinling belt:build up and evolution of eastern Asia. Nature,317:496-500
    McInnes BIA and Cameron EM.1994. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth and Planetary Science Letters,122(1-2):125-141
    Meng QR and Zhang GW.1999. Timing of collision of the North and South China blocks:controversy and reconciliation. Geology,27:123-126.
    Metrich N and Rutherfood MJ.1992. Experimental study of chlorine behavior in hydrous silicmelts. Geochim et Cosmochimica Acta,56:607-616
    Meyer, C and Hemley JJ.1967. Wall rock alteration, in Barnes, H L. eds., Geochemistry of hydrothermal ore deposits:New York, Holt. Rinehart and Winston,166-235
    Middlemost EAK.1994. Naming materials in magma/igneous rock system. Earth Science Review,37: 215-224
    Miller CF. McDowell SM and Mapes RW.2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Earth and Planetary ScienceLetters,64(2):295-304
    Misra KC.2000. Understanding mineral deposits. Kluwer Academic Publishers, Boston,353-449
    Mitehell AHG.1973. Metallogenic belt and angle of dip of Benioff zones. Nature.245:49-52
    Moyen JF.2009. High Sr/Y and La/Yb ratios:Themeaning of the "adakitic signiture". Lithos,112:556-574
    Mungall JE.2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology,30(10):915-918
    Munker C, Pfallder JA, Weyer S, Buchl A, et al.2003. Evolution of Planetary cores and the Earth-Moon system from Nb/Ta Systematies. Scienee,301:84-87
    Munoz JL.1992. Calculation of HF and HCl fugacities from biotite compositions:revised equations. Geol. Soc. Am., Abstract Programs 24:A221
    Mysen BO and Popp RK.1981. Solubility of sulfur in CaMgSi2O6 and NaAlSi3O8 melts at high pressure and temperature with controlled. American Journal of science,280:78-92
    Nachit H, Ibhi A, Abia EA, Ohoud MB.2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience,337(16):1415-1420
    Nagaseki H and Hayashi K.2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology,36:27-30
    Nasdala L, Hofmeister W, Norberg N, et al.2008. Zircon M257:A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research,32(3):247-265
    Oyarzun R, Marquez A, Lillo J, et al.2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile. Adakitic versus normal calc-alkaline magmatism:Mineralium deposit,36:794-798
    Oyarzun R, Marquez A, Lillo J, et al.2002. Reply to discussionon "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal calc-alkaline magmatism" by Oyarzun, R., Marquez A., Lillo J, et al.2001. Mineralium Deposita,37(8):795-799
    Pasteris JD.1996. Mount Pinatubo volcano and "negative"'porphyry copper deposits. Geology,24:1075-1078
    Patino Douce AE.1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In:Castro A, Femand ez C and Vignereses JL (eds). Understanding granites: intergrating mew and classical techniques. Geology,168:55-75
    Patino-Douce AE and McCarty TC.1998. Melting of crustal rocks during continental collision and subduction. In:Hacker BR and Liu JG(des.).When Continents Collide:Geodynamics of Ultrahigh Pressure Rocks. Netherlands:Kluwer Academic Publisher,27-55
    Pearce JA, Harris NBW and Tindle AG.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology,25:956-983
    Pearce JA.1996. Sources and settings of granitic rocks. Episodes,19:120-125
    Peccerillo A and Taylor S R.1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology,58:63-81
    Peng G, Luhr JF and MeGee JJ.1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist,82:1210-1224
    Perugini PG and ProSperini N.2002. Morphometric analysis of magmatic enclaves:A tool for understanding magma vesiculation and ascent. Lithos,61(3-4):225-235
    Petford N and Gallagher K.2001.Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic of basaltic magma.Earth and Planetary Science Letters,193:483-499
    Petford N, Cruden AR, McCaffrey KJW and Vigneresse JL.2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature,408:669-673
    Ping XQ, Zheng JP, Zhao JH, et al.2013. Heterogeneous sources of the Triassic granitoid plutons in the southern Qinling orogen:An E-W tectonic division in central China. Tectonics, in press
    Pitcher WS, Atherton MD, Cobbing EJ and Beckinsale RD.1985. Magmatism at a plate edge:The Peruvian Andes. Glasgow:Blackie Halsted Press,1-328
    Pitcher WS.1982. Granite type and tectonic environment. In:Hsu K (eds) Mountain Building Proeess London, 19-40
    Pitcher WS.1997. The Nature and Origin of Granite. Chapman & Hall, London,1-386
    Proffett, JM,2009. High Cu grades in porphyry copper deposits and their relationship to emplacement depth of magmatic sources:Geology,37:675-678
    Qin JF, Lai SC, Grapes R. Diwu CR, Ju YJ and Li YF.2010. Origin of Late Triassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China:Implication for subduction of continent crust. Lithos,120(3-4):347-367
    Qin JF, Lai SC, Grapes, Diwu CR, Ju YJ and Li YF.2009. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen(central China). Lithos,112(3-4):259-276
    Qin JF, Lai SC and Li YF.2013. Multi-stage granitic magmatism during exhumation of subducted continental lithosphere:Evidence from the Wulong pluton, South Qinling. Gondwana Research, in press
    Rapp RP and Watson EB.1995. Dehydration melting of metabasalts at 8-32 kbar:Implications for continental growth andcrust-mantle recycling. Journal of Petrology,36:891-931
    Rapp RP, Shimizu N, Norman MD.2003. Growth of early continental crust by partial melting of eclogite. Nature,425,605-609
    Rapp Rp.1997. Heterogeneous source regions for Archean granitoids. In:(de.) Wit MJ. Ashwal LD(ed.). Greenstone Belts. Oxford:Oxford University Press,35-37
    Reich M, Parada MA, Palacios C, et al.2003. Adakite-like signature of late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:Metallogenic implications. Mineral Deposit,38:876-885
    Richards JP and Kerrich R.2007. Adakite-like rocks:Their diverse origins and questionable role in metallogenesis. Economic Geolgoy,102:537-576
    Richards JP, Boyce AJ and Pringle MS.2001. Geologic evolution of the Escondida area, northern Chile:a model for spatial and temporal location of porphyry Cu mineralization. Economic Geology,96:271-306
    Richards JP.2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology,98:1515-1533
    Richards JP.2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits, in Porter, T.M., ed., Super porphyry copper and gold deposits:A global perspective:Volume 1:Linden Park, South Australia, Porter Geoscience Consulting Publishing,7-25
    Richards JP.2009. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere. Geology,37(3):247-250
    Robb L.2005. Introduction to ore-forming process. Oxford:Blackwell,1-166
    Roedder E.1992. Fluid inclusion evidence for immiscibility in magmatic differentiation.Geochimica et Cosmochimica Acta,56(1):5-20
    Rowley DB, Xue F, Turker RD, et al.1997. Ages of ultrahigh pressure metamorphism and protolith of orthogneisses from the eastern Dabie Shan:U/Pb Zircon geochemistry:Earth and Planetary Science Letters,151:191-203
    Rudniek RL, MeDonough WF and Chapell BW.1993. Carbonatite metasomatism in the northern Tanzanian mantle:Petrographic and geochemical characteristics. Earth and Planetary Science Letter,114:463-475
    Scherer E, Muenker C and Mezger K.2001. Calibration of the Lutetium-hafnium clock. Washington, DC. American Association of Advanced Science,293:683-687
    Schmidt MW.1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology,110:304-310
    Scott DJ and St-Onge MR.1995. Constraints on Pb closure temperature in titanite based on rocks from the Sial AN, Toselli AJ, Saavedra J, MA Parada and VP Ferreira.1999. Emplacement, petrological andmagnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazi, Argentina and Chile. Lithos,46:367-392
    Sengor AMC.1990. Plate tectonics and orogenic research after 25 years:A Tethyan perspective. Earth Science Reviews,27(1-2):1-201
    Shao JA, Zhai MG, Li DM.2004. Identification of five stages of dike swarms in the Shaxi-Hebei-Inner Mongolia border area and its implication. Acta Geologica Sinica,78(1):320-330
    Shinohara H, Kazahaya K and Lowenstern JB.1995. Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization. Geology,23:1091-1094
    Sillitoe RH.1972. A plate Tectonic model for the origin of porphyry copper deposits. Economic Geology,67: 184-197
    Sillitoe RH.1973. Geology of the Los Pelambres porphyry copper deposits, Chile. Economic Geology,67: 1-10
    Sillitoe RH.1988. Epochs of intrusion-related copper mineralization in the Andes. Journal of South American Earth Sciences,1:89-108
    Sillitoe RH.1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences,44:373-388
    Sillitoe RH.2010. Porphyry copper systems. Economic Geology,105:3-41.
    Simon AC, Pettke T, Candela PA, et al.2004. Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochimica et Cosmochimica Acta,68:4905-4914
    Sinclair WD.2007. Porphyry deposits, in Goodfellow WD, eds., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods:Geological Association of Canada, Mineral Deposits Division, Special Publication No.5: 223-243
    Singer DA, Berger VI, Menzie WD, et al.2005. Porphyry copper deposit density, Economic Geology,100: 491-514
    Sisson TW, Ratajeski K and Hankins WB.2005. Voluminous granitic magmas from common basaltic sources. Contribution to mineralogy and Petrology,148:635-661
    Skewes MA and Stern CR.1995.Genesis of the giant late Mioceneto Pliocene copper deposits of central Chile in the context of Andean magmatic and tectonic evolution. International Geology Review,37(10):893-909
    Slama J, Kosler J, Condon DJ, et al.2008. Plesovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology,249(1-2):1-35
    Smithies RH.2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letter,182:115-125
    Solomon M.1990. Subduction, arc reversal and the origin of porphyry copper-gold deposits in island arcs. Geology,18:630-633
    Stefanini B and Williams-Jones AE.1996. Hydrothermal evolution in the Calabona porphyry. Copper System (Sardinia, Italy):The path to an uneconomic deposit.Economic Geology,91:774-791
    Stein E and Dietl C.2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology,72: 185-207
    Streck MJ and Dilles JH.1998. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copperbatholith. Geology,26:523-526
    Sun SS and MeDonough WF.1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders A D, Norry M J (eds). Magmatism in the ocean basins. Geological Society, London, Special Publications,42:313-345
    Sun WD, Arculus RJ and Kamenetsky VS.2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature,431:975-978
    Sun WD, Li SG, Chen YD and Li YJ.2002. Timing of synorogenic granitoids in the south Qinling, central China:Constraints on the evolution of the Qinling-Dabie Orogenic Belt. Geology,110:457-468
    Sun WD, Ling MX, Yang XY, et al.2010. Ridge subduction porphyry copper-gold mineralization:an overview. Science China Series Earth Science,53:475-484
    Sylvester PJ.1998. Post-collisional strongly peraluminous granites. Lithos,45:29-34
    Takagi T, Orihashi Y, Naito K and Watanabe Y.1999.Petrology of a mantle-derived rhyolite, Hokkaido, Japan. Chemical Geology,160:425-445
    Taylor SR and Mclennan SM.1985. The Continental Crust:its Composition and Evolution. Blackwell, Oxford, pl-312
    Taylor SR and McLennan SM.1995. The geochemical evolution of the continental crust. Review in Geophysics,33:241-265
    Thieblemont D, Stein G and Leseuyer JL.1997. Epithermal and porphyry deposits:the Adakite connection. CRACAD:SCIIA325:103-109
    Thompson AB.1999. Some time-space relationships for crustal melting and granitic intrusion at various depths. In:Castro A, Fernandez C and Vigneresse JL (eds). Understanding granites:Intergrating new and classical techniques. Geol Soc London Spec Publ,168:7-25
    Tiepolo M, Vannucci R, Oberti R, et al.2000. Nb and Ta in corporation and fractionation in titanian pargasite and kaersutite:crystalchemical constraints and implications for natural systems. Earth and Planetary Science Letter,176:185-201
    Troitzsch U and Ellis DJ.2002. Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4-CaAlFSiO4. Contributions to Mineralogy and Petrology,142(5):543-563
    Tropper P, Manning CE and Essenel EJ.2002. The Substitution of Al and F in Titanite at High Pressure and Temperature:Experimental Constraints on Phase Relations and Solid Solution Properties. Journal of Petrology,43(10):1787-1814
    Uchida E, Endo S and Makino M.2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology,57:47-56
    Uyeda S and Kanamori H.1979. Back-arc opening and the model of subduction. Journal of Geophysical Research,84:1040-1061
    Vemon RH.1984. Microgranitoid enclaves:Globules of hybrid magma quenched in a plutonic environment. Nature,304:438-439.
    Vervoort JD and Blicher-Toft J.1999. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta,63:533-556
    Vervoort JD, Patchett PJ, Albarede F, et al.2000. Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters,181:115-129
    Wang Q, Frank McDermott, Xu JF, et al.2005. Cenezoic K-rich adakitic volcanic rock in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting. Geology,33(6):465-468
    Wang Q, Xu JF, Jian P, et al.2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China:Implications for the Genesis of Porphyry Copper Mineralization:Journal of Petrology,47:119-144
    Wang XC, Li XH, Li WX, et al.2008. The Bikou basalts in the northwestern Yangtzeblock, South China: Renmants of 820-810Ma continental flood basalts? Geological Society of America Bulletin,120: 1478-1492
    Wang XX. Wang T, Zhang CL.2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China:constraints on orogenic process. Journal of Asian Earth Sciences, (In press)
    Watson EB and Harrison TM.1983. Zircon saturation revisited temperature and composition effects in a variety of crustal magma type. Earth and Planetary Science Letters,64:295-304
    Wendlandt RF.1982. Sulfur saturation of basalt and andesite melts at high pressures temperatures. American Mineralogist,67:877-885
    Whalen JB and Chappell BW.1988. Opaque mineralogy and mafic mineral chemist ry of I-and S-type granites of Lachlan fold belt, southeast Australia. American Mineralogist,73(3):281-296
    Whalen JB Currie KL and Chappell BW.1988. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Pletrology,95(4):407-419
    White A J R and Chappell B W.1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America Memoir,159:21-34
    Whitney JA and Stomer JC.1983. Igneous sulfides in the Fish Canyon Tuff and the role of sulfur in calc-alkaline magmas. Geology,11:99-102
    Whitney JA.1975. Vapor generation on a quartz monzonite magma:a syntheticmodel with application to porphyry copper deposits. Economic Geology,70:346-358
    Whitney JA.1984. Fugacities of sulfurous gases in pyrrhotite-bearing magmas. American Mineralogist,60: 69-78
    Wolf MB and Wyllie PJ.1992. The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10kbar. Eos,70:506-518
    Wones DP and Eugeter HP.1965. Stability of biotite:experiment, theory, and application. The American Mineralogist,50:1228-1272
    Wones DR.1989. Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist,74:744-749
    Wong WH.1929. The Mesozoic orogenic movement in eastern China. Bull. Geol. Soc. China,8:33-44
    Wu FY, Yang YH and Xie LW.2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology,234:105-126
    Wu FY, Jahn BW, Wilde SA, et al.2003. Highly fractionated I-type granites in NE China (I):geochronology and petrogenesis. Lithos,66(3/4):241-273
    Wu YB and Zheng YF.2013. Tectonic evolution of a composite collision orogen:An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research,23(4): 1402-1428
    Wyllie PJ.1977. Crustal anatexis:an experimental review. Tectonophysics,43:41-71
    Yan Z, Wang ZQ, Yan QR, Wang T and Guo XQ.2012. Geochemical Constraints On the Provenance and Depositional Setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the Tectonic Evolution of the Qinling Orogenic Belt. Journal of Sedimentary Research, 82(1):9-20
    Yan Z, Wang ZQ, Yan QR,Wang T, et al.2006. Devonian sedimentary environments and provenance of the Qinling Orogen:Constraints on late paleozoic southward accretionary tectonics of the north China Craton. International Geology Review,48(7):585-618
    Yang JH, Wu FY, Wilde SA, et al.2007.Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons.Contributions to Mineralogy and Petrology,153:177-190
    Yang Pengtao, Liu Shuwen, Li Qiugen, et al.2012. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the south Qinling belt, Central China:Constraints on petrogenesis and geodynamic processes. Journal of Asian Earth Sciences,61:166-186
    Yogodzinski GM and Kelemen PB.1998. Slab melting in the Aleutians:Implication of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth and Planetary Science Letter,158:53-65
    Yogodzinski GM, Kay RW, Volynets ON, et al.1995. Magnesian andesite in the western Aleutian Komandorsky region:Implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin,107(5):505-519.
    Yogodzinski GM, Lees JM, Churikova TG, et al.2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plates edges. Nature,409:500-504
    Zen E.1989. Plumbing the depths of batholiths. American Journal of Science,289:1137-1157
    Zhang G, Yu Z, Sun Y, et al.1989.The majorsuturezoneof the Qinlingorogenic belt. Journal of Southeast Asian Earth Science,3:63-76
    Zhang HF.2009. Peridotite-melt interaction:A key point for the destruction of cratonic lithosphere mantle. Chinese Science Bulletin,54(19):3417-3437
    Zhang SH. Zhao Y and Song B.2006. Hornblende thermobarometry of the Carboniferous granitoids from the InnerMongolia Paleo-uplift:Implications for the geotectonic evolution of the northern margin of North China block. Mineralogy and Petrology,87 (1-2):123-114
    Zheng YF, Wu RX, Wu YB, et al.2008. Rift melting of juvenile arc-derived crust:geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China:Precambrian Research,136:351-383
    Zheng YF., Zhang SB., Zhao ZF., et al.2007, Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust. Lithos,96:127-150
    Zoback ML.1992. First-and second-order patterns of stress in the lithosphere:the world stress map project. Journal of Geophysical Research,97:11703-11728
    #12
    曹东宏,朱赖民,李淼,杨登美.2009.陕西省柞水县王家沟卡林型金矿床地质特征及成因初探.地质与勘探,45(1):23-29
    陈光远,孙岱生,周殉若,等.1993.胶东郭家岭花岗闪长岩成因矿物学与金矿化.武汉:中国地质大学出版,1-130
    陈国安,周殉若.1996.漳州地区白垩纪型和A型花岗岩中黑云母的矿物学特征.矿物岩石,16(2):25-30
    陈文,张彦,金贵善,张岳桥.2006.青藏高原东南缘晚新生代幕式抬升作用的热年代学证据.岩石学报,22(4):867-872
    陈衍景.2006.造山型矿床、成矿模式及找矿潜力.中国地质,33(6):1181-1196
    陈衍景.2010.秦岭印支期构造背景、岩浆活动及成矿作用.中国科学,37(4):854-865
    崔建堂,赵长缨,王炬川.1999.南秦岭东江口、柞水岩体岩石谱系单位划分及演化.陕西地质,17(2):7-15
    代华五,申萍,沈远超,等.2010.西准噶尔包古图含矿岩体矿物学特征及意义.新疆地质,28(4):440-447
    戴自希.1996.全球超巨型金属矿床(区).见:中国地质矿产信息研究院(编著)走向21世纪的地学与矿产资源.北京:地质出版社,35-42
    东前,杜杨松,曹毅,等.2011.江西武山花岗闪长斑岩中黑云母成分特征及其成岩成矿意义.矿物岩石,31(2):1-6
    董申保.1995.近代花岗岩研究的回顾.高校地质学报,1(2):1-12
    杜定汉.1986.陕西秦巴地区泥盆系研究.西安交通大学出版社,1-230
    樊忠平,任涛,王瑞廷,等.2011.陕西省山阳县夏家店金(钒)矿床成矿地质特征及找矿前景分析.矿产与地质,25(1):41-46
    方维萱,张国伟,胡瑞忠,等.2000.陕西二台子铜金矿床钠长石碳酸(角砾)岩类特征及形成构造背景分析.岩石学报,16(3):392-400
    方维萱,张国伟,李亚林.2001.南秦岭晚古生代伸展构造特征及意义.西北大学学报(自然科学版),31(3):235-240
    方维萱,刘家军.2013.陕西柞-山-商晚古生代拉分断陷盆地动力学与成矿作用.沉积学报,31(2):193-217
    冯益民,曹宣铎,张二朋,等.2002.西秦岭造山带结构造山过程及动力学——1:100万西秦岭造山带及邻区大地构造说明书.西安:西安地图出版社,1-150
    傅金宝.1981.斑岩铜矿中黑云母的化学组成特征.地质与勘探,9(1):16-19
    高菊生,朱华平,原连肖,等.2007.陕西山阳夏家店金矿床地质与流体地球化学.西北地质,40(3):68-74
    高永丰,侯增谦,魏瑞华,等.2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报,19:418-428
    弓虎军,朱赖民,孙博亚,李彝,郭波,王建其.2009b.南秦岭地体东江口花岗岩及其基性包体的锆石U-Pb年龄和Hf同位素组成.岩石学报,25(11):3029-3042
    弓虎军,朱赖民,孙博亚,李(?),郭波.2009a.南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素组成特征及其地质意义.岩石学报,25(2):248-264
    龚松林.2004.角闪石全铝压力计对黄陵岩体古隆升速率的研究.东华理工学院学报,27(1):52-58
    郭波,朱赖民,李彝,等.2009.华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景.岩石学报,25(2):265-281
    郭继春,胡受奚,卢欣祥,张正伟.1994.东秦岭灰池子花岗岩成岩机制的研究.地球化学,23(增刊):154-161
    韩宝福.2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘,14(3):64-72
    郝金华,陈建,田永革,等.2010.青海纳日贡玛斑岩钼(铜)矿含矿斑岩矿物学特征及成岩成矿意义.地质与勘探,46(3):367-376
    洪大卫,王式洗,韩宝福和靳满元.1995.碱性花岗岩的构造环境分类及其鉴别标志.中国科学(B辑),25(4):418-426
    侯鸿飞,曹宣铎,王士涛,等.2000.中国地层典(泥盆系).北京:地质出版社,1-119
    侯俭.1982.陕西也有斑岩型铜矿.矿床地质,90-90
    侯可军,李延河,田有荣.2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,28:481-492
    侯可军,李延河,邹天人,等.2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2595-2604
    侯增谦,莫宣学,高永丰,等.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质,22(1):1-12
    侯增谦,潘小菲,杨志明,等.2007.初论大陆环境斑岩铜矿.现代地质,21(2):332-351
    侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带.中国地质,28(10):27-30
    侯增谦,杨志明.2009.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型.地质学报,82(12):1779-1817
    侯增谦,钟大赉,邓万明,等.2004.青藏高原东缘斑岩铜钼金成矿带的构造模式.中国地质,31(1):1-14
    侯增谦.2004.斑岩Cu-Mo-Au矿床:新认识与新进展.地学前缘,11(1):131-144
    胡健民,崔建堂,孟庆任,赵长缨.2004.秦岭柞水岩体锆石U-Pb年龄及其地质意义.地质论评,50(3):323-329
    胡受奚,林潜龙,陈泽铭.1988,华北与华南古板块拼合带地质和成矿.南京:南京大学出版社,1988:1-558
    胡西顺,原莲肖,朱红周,等.2010.陕西龙头沟金矿床的地质地球化学特征及成因探讨.黄金科学技术,18(2):1-5
    黄汲清,任纪舜,姜春发,张之梦,许志琴.1977.中国大地构造基本轮廓.地质学报,51(2):117-135
    姜春发,张庆贵,张玉岫,朱志直.1963.东秦岭地槽型印支运动的存在.地质论评,21(3):116-121
    姜春发,朱志直,孔凡宗.1979.留凤关复理石.地质学报,(3):203-218
    姜春发,王宗起,李锦轶,等.2000.中央造山带开合构造.北京:地质出版社.1-154
    金玉轩,范影年,王向东等.2000.中国地层典(石炭系).北京:地质出版社,1-139
    康志强,冯佐海,王睿.2010.角闪石黑云母全铝压力计的可靠性对比-以广西姑婆山-花山花岗岩为例.桂林理工大学学报,30(4):474-479
    雷敏.2010.秦岭造带东部花岗岩成因及其与造山带构造演化的关系(博士学位论文).北京:中国地质科学院,1-162
    李超,陈衍景.2002.东秦岭一大别地区中生代岩石圈拆沉的岩石学证据评述.38(3):431-439
    李春昱,刘仰文,朱宝清,等.1978.秦岭及祁连山构造发展史.国际交流地质学术论文集(1).区域构造、地质力学,北京:地质出版社,174-187
    李春昱,王荃,刘雪亚,汤耀庆.1982.亚洲大地构造图及说明书.北京:地图出版社,1-49
    李大鹏,杜杨松,张静,等.2011.安徽铜山矿区花岗闪长斑岩矿物化学特征及成因探讨.地质与勘探,47(5):865-876
    李汉光.2009.云南宝兴厂富碱斑岩型铜钼金多金属矿床构造-岩浆-成矿时空结构(博士学位论文).北京:中国地质大学(北京),1-161
    李怀坤,陆松年,陈志宏,等.南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学.地质通报,22(10):775-781
    李靠社.1990.陕西山阳一商南耀岭河群地层时代的讨论.西北地质,8(2):53-58
    李亮.2011.河北省安妥岭辉钼矿黑云母、绿泥石特征研究.中国地质大学(北京)硕士学位论文,1-65
    李诺,陈衍景,张辉,等.2007.东秦斑岩铝矿带的地质特征和成矿构造背景.地学前缘,14:186-198
    李曙光,李惠民,陈移之,等.1997.大别山-苏鲁地体超高压变质年代学——II.锆石U-Pb同位素体系.中国科学(D辑),27:310-322
    李曙光,孙卫东,张国伟,等.1996.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学——古生 代洋盆及其闭合时代的证据.中国科学(D辑),26(3):223-230
    李廷栋,肖序常.1996.青藏高原地体构造分析.青藏高原岩石圈结构构造和形成演化.北京:地质出版社,6-20
    李先梓,严阵,卢欣祥.1993.秦岭——大别山花岗岩.北京:地质出版社,1-218
    李献华,李武显,李正祥.2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报,52(9):981-991
    李永峰,毛景文,刘敦一,等.2006.豫西雷门沟斑岩铝矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义.地质论评,52(1):122-131
    李永峰.2005.豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用(博士学位论文).北京:中国地质大学(北京),1-135
    梁祥济.1995.江西德兴斑岩铜矿成矿物质来源的实验研究.地质论评,41:463-471
    林文蔚,殷秀兰.1998.玲珑花岗质杂岩体形成的物理化学条件及其地质意义.地球学报,19(1):40-49
    凌文黎,程建萍,王歆华,等.2002a.武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示.岩石学报,18(1):25-36.
    凌文黎,王歆华,程建萍,等.2002b.南秦岭镇安岛弧火山岩的厘定及其地质意义.地球化学,31(3):222-229
    刘彬,马昌前,刘园园,熊富浩.2010.鄂东南铜山口铜(钼)矿床黑云母矿物化学特征及其对岩石成因与成矿的指示.岩石矿物学杂志,29(2):151-165
    刘仁燕,牛宝贵,和政军,任纪舜.2011.陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年.地质通报,30(2-3):
    刘树文,李秋根,杨恺,等.2010.西秦岭多金属成矿及相关地质作用年代学.研究报告,1-480
    刘树文,杨朋涛,李秋根,王宗起,张万益,王伟.2011.秦岭中段印支期花岗质岩浆作用与造山过程.吉林大学学报(自然科学版),41(6):1928-1943
    卢欣祥,董有,尉向东,等.1999b.东秦岭吐雾山A型花岗岩的时代及其构造意义.科学通报,44(9):975-978
    卢欣祥,董有,常秋岭,肖庆辉,李晓波,王晓霞.1996.秦岭印支期沙河湾奥长环斑花岗岩及其动力学意义.中国科学(D辑),26(3):244-248
    卢欣祥,王晓霞,肖庆辉,邢作云.2007.秦岭-昆仑造山型环斑花岗岩与世界典型环斑花岗岩的对比.地质科技情报,26(1):1-10
    卢欣祥,尉向东,肖庆辉,张宗清,李惠民,王卫.1999a.秦岭环斑花岗岩的年代学研究及其意义.高校地质学报,5(4):372-377
    陆丽娜,范宏瑞,胡芳芳,等.2011.胶西北郭家岭花岗闪长岩侵位深度:来自角闪石温压计和流体包裹体的证据.岩石学报,27(5):1521-1532
    罗德正.1995.陕西冷水沟—下官房—带中酸性侵入体成铜特征.河南地质,13(2):91-94
    罗照华,柯珊,谌宏伟.2002.埃达克岩的特征、成因及构造意义.地质通报,21(7):436-440
    马昌前,王人镜,邱家骧.1992.花岗质岩浆起源和多次岩浆混合的标志:包体——以北京周口店岩体为例.地质论评,38(2):109-119
    马昌前,杨坤光,唐仲华,等.1994.花岗岩类岩浆动力学:理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社,1-260
    马国良.1993.陕西桐木沟锌矿床中沉积喷气成矿作用的早期产物—钠长角砾岩.西北地质,14(2):12-17
    毛景文,谢桂青,张作衡,李晓峰,等.2005.中国北方大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-188
    毛景文,叶会寿,王瑞廷,等.2009.东秦岭中生代铝铅锌银多金属矿床模型及其找矿评价.地质通报,28(1):72-79
    莫宣学,罗照华,肖庆辉.2002.花岗岩类岩石中岩浆混合作用的识别与研究方法.见:肖庆辉,邓晋福,马大锉,等著.花岗岩研究思维与方法.北京:地质出版社,53-70
    牛宝贵,和政军,任纪舜,等.2006.秦岭地区陡岭-小茅岭隆起带西段几个岩体的SHRIMP 锆石U-Pb测年及其地质意义.地质论评,52(6):826-835
    牛宝贵,和政军,宋彪,任纪舜.2003.张家口群火山岩SHRIMP定年及其重大意义.地质通报,22(2):140-141
    彭海练,杨永成,王惠民,等.2004.镇安县云镇小磨岭岛弧火山岩地球化学及其大地构造意义.西北地质,22(1):12-16
    齐文,王向利,王炜红.2002.南秦岭凤凰山地区元古代构造基底特征.陕西地质,20(2):9-19
    祈思敬,李英等.1993.秦岭热水沉积型铅锌(铜)矿床.北京,地质出版社.1-167
    秦江锋.2010.秦岭造山带晚三叠世花岗岩类成因机制及其动力学背景(博士学位论文).西安:西北大学.1-266
    秦克章,李光明,赵俊兴,等.2008.西藏首例独立铝矿——冈底斯沙让大型斑岩铝矿的发现及其意义.中国地质,35:1101-1112
    秦克章,张连昌,丁奎首,等.2009.东天山三岔口铜矿床类型、赋矿岩石称因与矿床矿物学特征.岩石学报,25(4):845-861
    秦志鹏,汪雄武,唐菊兴,等.2012.西藏甲玛埃达克质斑岩的地球化学特征及意义.吉林大学学报(自然科学版),42(增刊1):267~280
    曲晓明,王鹤年.1997.郭家岭岩体壳-幔岩浆混合作用与侵位机制的动力学研究.地质科学,32(4):445-453
    任纪舜,陈廷愚,牛宝贵,等.1990.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社,58-66
    任纪舜,姜春发,张正坤,等.1980.中国大地构造及其演化.北京:科学出版社,1-124
    任纪舜,牛宝贵,和政军,等.1998.中国东部的构造格局和动力演化.见:任继舜,杨巍然主编:中国东部岩石圈结构与构造岩浆演化.北京:原子能出版社,1-12
    任纪舜,张正坤,牛宝贵,刘志刚.1991.论秦岭造山带——中朝与扬子陆块的拼合过程.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社.99-110
    任继舜,陈廷愚,牛宝贵,等.1992.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社,1-203
    芮宗瑶,黄崇柯,齐国明,等.1984.中国斑岩铜(钼)矿床.北京:地质出版社,1~140
    尚瑞钧,严阵.1988.秦巴花岗岩.武汉:中国地质大学出版社,1-229
    邵济安,张履桥.2002.华北部中生代岩墙群.岩石学报,18(3):312-318
    宋史刚,丁振举,姚书振,等.2008.甘肃武山温泉辉钼矿Re-Os同位素定年及其地质意义.西北地质,41(1):67-73
    苏春乾,胡健民,李勇,等.2006.南秦岭地区存在两种不同构造属性的耀岭河群.岩物岩石学杂志,25(4):287-298
    孙祥,郑有业,吴松冈,等.2013.底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因.岩石学报,29(4):1392-1406
    万义文.1980.山阳一带中酸性斑岩体的成矿特点与成矿模式.秦岭区测,(3):1-36
    王德滋,舒良树.2007.花岗岩构造岩浆组合.高校地质学报,13(3):362-370
    王德滋,周金城.1999.我国花岗岩研究的回顾与展望.岩石学报,15(2):161-169
    王德滋,周新民,徐夕生,等.1992.微粒花岗岩包体的成因.桂林冶金地质学院学报,(3):235-240
    王东生,王瑞廷,代军治,等.2009.秦岭造山带金属矿床的“二元控矿”特征.地质学报,83(11):1719-1729
    王鸿祯,徐成彦,周正国.1982.东秦岭古海域两侧大陆边缘区的构造发展.地质学报,3:270-279
    王集磊,何伯爆,等.1996.中国秦岭型铅锌矿床.地质出版社,1-264
    王婧,张宏飞,徐旺春,蔡宠明,2008,西秦岭党川地区花岗岩的成因及其构造意义.地球科学,33(4):475-486
    王强,许继锋,赵振华.2001.一种新的火成岩——埃达克岩的研究综述.地球科学进展,16(2):201-207
    王清晨,孙枢,李继亮,等.1989.秦岭的大地构造演化.地质科学,24(2):129-142
    王瑞廷,李剑斌,任涛,等.2008.柞水-山阳多金属矿集区成矿条件及找矿潜力分析.中国地质,35(6):1291-1298
    王涛.2000.花岗岩混合成因研究及大陆动力学意义.岩石学报,16(2):161-168
    王涛,王宗起,闫臻,等.2009.山阳色河花岗岩地球化学特征和锆石SHRIMP U-Pb年代学.地质学报,83(11):1657~1665
    王涛.2008.南秦岭增生杂岩带构造岩石组合及其形成过程(博士学位论文).北京:中国地质科学院.1-108
    王相,唐荣扬,李实,等.1996.秦岭造山与金属成矿.冶金工业出版社,1-326
    王晓霞,王涛,卢欣祥,肖庆辉.2003.北秦岭老君山和秦岭梁环斑结构花岗岩及构造环境——一种可能的造山带型环斑花岗岩.岩石学报,19(4):650-660
    王晓霞,王涛,Ilmari H,卢欣祥.2005.秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义-—元素和Nd、Sr同位素地球化学证据.岩石学报,21(3):935-946
    王宗起,王涛,闫臻,等.2002.秦岭晚古生代弧前增生的背驮型盆地体系.地质通报,21(8-9):456-464
    王宗起,闫全人,闫臻,王涛,等.2009a.秦岭造山带主要大地构造单元的新划分.地质学报,83(11):1527-1546
    王宗起,闫臻,王涛.2009b.秦岭造山带主要疑难地层时代研究的新进展.地球学报,30(5):561-570
    吴发富,王宗起,王涛,等.2012.南秦岭山阳板板山钾长花岗岩体SHRIMP锆石U-Pb年龄与地球化学特征.矿物岩石,32(2):63-73
    吴发富,王宗起,闫臻,等.2013.秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成.岩石学报, (待刊)
    吴福元,李献华,杨进辉和郑永飞.2007a.花岗岩成因研究的若干问题.岩石学报,23(06):1217-1238
    吴福元,李献华,郑永飞,等.2007b. Lu-Hf同位素体系及其岩石学应用.岩石学报,23(02):185-220
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1604
    夏林圻,夏祖春,徐学义.1996.南秦岭中~晚元古代火山岩性质与前寒武纪大陆裂解.中国科学(D辑),26:237-243
    肖娥,胡建,张遵忠,等.2012.东秦岭花山复式岩基中蒿坪与金山庙花岗岩体岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素组成.岩石学报,28(12):4031-4046
    肖劲东,杜远生,辛建荣.1992.甘肃西成地区泥盆纪吴家山古岛屿地层模型及其意义.见:刘本培,肖劲光,周正国,等,主编.古大陆边缘地质文集.武汉:中国地质大学出版社,37-50
    肖庆辉,邓晋福,马大锉,等.2003.花岗岩研究思维与方法.北京:地质出版社,159-171
    肖庆辉,邱瑞照,邢作云,等.2007.花岗岩成因研究前沿认识,地质论评,53(增刊):17-26
    谢桂青,任涛,李剑斌,等.2012.陕西柞山盆地池沟铜铝矿区含矿岩体的锆石年龄和岩石成因.岩石学报,28(01):15-26
    徐克勤,胡受奚,孙明志,等.1983.论花岗岩的成因系列——以华南中生代花岗岩为例.地质学报,2:107-117
    徐克勤,孙鼐,王德滋,刘昌实,陈克荣.1982.华南两类不同成因花岗岩岩石学特征.岩石矿物及测试,1(2):1-12
    徐夕生.周新民,O'Reilly SY和唐红峰.1999.中国东南部下地壳物质与花岗岩成因探索.岩石学报, 15(2):217-223
    徐学义,夏祖春,夏林圻.2001.南秦岭元古宙板内火山作用特征及构造意义.岩石矿物学杂志,20(3):255-262
    许靖华,孙枢,王清晨,等.1998.中国大地构造相图.北京:科学出版社,1-155
    许志琴,卢一伦,汤耀庆,等.1988.东秦岭复合山链的形成.北京:中国环境科学出版社,1-193
    薛春纪.1997.秦岭泥盆纪热水沉积.西安:西安地图出版社,1-134
    闫全人,王宗起,闫全人臻,等.2007.秦岭勉略构造混杂带康县-勉略段蛇绿岩块-镁铁质岩块的SHRIMP年代及其意义.地质评论,53(6):755-763
    闫臻,王宗起,王涛,等.2007.秦岭造山带泥盆系形成构造环境:来自碎屑岩组成和地球化学方面的约束.岩石学报,23(5):1023-1042
    严阵.1985.陕西省花岗岩.西安:西安交通大学出版社,1-321
    杨恺,刘树文,李秋根,等.2009.秦岭柞水岩体和东江口岩体的锆石U-Pb年代学及其意义.北京大学学报(自然科学版),45(5):841-847
    杨恺.2010.西秦岭柞水-山阳地区花岗质岩浆作用及相关的成矿作用(硕士学位论文).北京:北京大学.1-91
    杨志华,等.1991.边缘转换断盆地的构造岩相与成矿.北京:科学出版社,1-228
    杨志明,侯增谦.2009.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质,28(5):515-538
    杨志明.2008.西藏驱龙超大型斑岩铜矿床——岩浆作用及矿床成因(博士学位论文).北京:中国地质科学院,1-145
    杨宗让,胡永祥.1990.陕西勉、略一带古板块缝合带存在标志及与南秦岭板块构造的演化关系.西北地质,2:13-21
    姚春亮,陆建军,郭维民.2007.江西省铜厂斑岩铜矿磷灰石世代和成分特征研究.矿物学报,27(1):31-40
    殷鸿福,彭元桥.1995.秦岭显生宙古海洋演化.地质科学,20(6):605-611
    翟明国,朱日祥,刘建明,等.2003.华北北东部中生代构造体制转折的关键时限.中国科学(D辑),33(10):913-920
    张本仁,陈德兴,李泽九,等.1989.陕西柞水山阳成矿带区域地球化学.武汉:中国地质大学出版社,1-221
    张成立,王涛,王晓霞.2008.秦岭造山带早中生代花岗岩成因及其构造环境.高校地质学报,14(3):304-316
    张成立,王晓霞,王涛,戴梦宁.2009.东秦岭沙河湾岩体成因——来自锆石U-Pb定年及其Hf同位素的证据.西北大学学报(自然科学版),39(3):453465
    张成立,周鼎武,金海龙,等.1999.武当地块基性岩墙及耀岭河群基性火山岩的Sr、Nd、Pb、O同位素 研究.岩石学报,15(3):430-437
    张二朋,牛道韫,霍有光,等.1992.1:100万秦岭-大巴山及邻区地质图.地质出版社
    张国伟,梅志超,李桃红.]988.秦岭造山带的南部古被动大陆边缘.见:张国伟等著.秦岭造山带的形成及其演化.西安:西北大学出版社,86-98
    张国伟,孟庆任,于在平,等.1996.秦岭造山带的造山过程及其动力学特征.中国科学,(D),26(3):193-200
    张国伟,张本仁,袁学诚,等.2001.秦岭造山带与大陆动力学.北京:科学出版社.1-855
    张国伟,张宗清,董云鹏.1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报,11(2):101-104
    张国伟,周鼎武,于在平,等.1991.秦岭造山带岩石圈组成、结构和演化特征.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社.121-138
    张宏飞,张本仁,林文黎,等.1997.南秦岭新元古代地壳增生事件:花岗质岩石钕同位素示踪.地球化学,26(5):16-24
    张宏飞,高山,张利,等.2000.桐柏北部二朗坪蛇绿岩片中花岗岩:地球化学、成因及对地壳深部物质的指示.地质科学,35(1):27-39
    张洪涛,陈仁义,韩芳林.2004.重新认识中国斑岩铜矿的成矿地质条件.矿床地质,23(2):150-163
    张静,陈衍景,舒桂明,等.2002.陕西西南部秦岭梁花岗岩体的矿物成分和相关问题讨论中国科学(D辑),32(2):113-119
    张旗,潘国强,李承东,金惟俊和贾秀勤.2007.花岗岩混合问题:与玄武岩对比的启示——关于花岗岩研究的思考之一.岩石学报,23(5):1141-1152
    张旗,王焰,刘伟,王元龙.2002.埃达克岩的特征及其意义.地质通报,21(7):431-435
    张旗,王焰,钱青,等.2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,17(2):236-244
    张旗,王元龙,金惟俊,等.2008.造山前、造山和造山后花岗岩的识别.地质通报,27(1):1-18
    张彦,陈文,陈克龙,刘新宇.2006.成岩混层(I/S) Ar-Ar年龄谱型及39Ar核反冲丢失机理研究—以浙江长兴地区P-T界线粘土岩为例.地质论评,52(4):556-561
    张银龙.2002.陕西省山阳县小河口地区酸性-中酸性岩体地质特征及其成矿地质条件分析.陕西地质,20(2):27-38
    张英利,王宗起.2011.西秦岭造山带徽县-成县盆地早白垩世沉积物源分析——锆石LA-ICP-MS U-Pb年代学的约束.地质学报,30(1):37-50
    张宗清,张国伟,唐索寒.2002.秦岭勉略带中安子山麻粒岩的年龄.科学通报,47(22):1751-1755
    赵振华.2010.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用.地学前缘,17(1):267-286
    郑永飞,陈仁旭,张少兵,等.2007.大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究.岩石 学报,23(2):317-330
    周新民,姚玉鹏,徐夕生.1992.浙东大衢山花岗岩中淬冷包体及其成因机制.岩石学报,8(3):234-242
    周雄,温春齐,费光春,等.2010.西藏邦铺斑岩型钼矿床二长花岗斑岩地球化学特征及构造意义.矿物岩石,30(4):48~54
    周询若,吴克隆.1994.漳州I-A型花岗岩.北京:科学出版社,1-148
    周正国,李翔,王成述,等.1992.东秦岭北带泥盆纪刘岭群陆棚碎屑沉积特征.古大陆边缘沉积地质文集.武汉:中国地质大学出版社,
    周作侠.1986.湖北丰山洞岩体成因探讨.岩石学报,2(1):59-70
    朱弟成,段丽萍,廖忠礼,潘桂棠.2002.两类埃达克岩(Adakite)的判别.矿物岩石,22(3):5-9
    朱华平,祁思敬.1996.陕西柞山地区铜矿找矿突破口的选择.西北地质,18(1):76-82
    朱华平.2004.柞山地区铜锌多金属矿床地质-地球化学-后生成矿作用的重要性(博士学位论文).北京:中国地质科学院.1-117
    朱赖民,张国伟,李淼和郭波.2008.秦岭造山带重大地质事件、矿床类型和成矿大陆动力学背景.矿物岩石地球化学通报,27(4):384-390
    朱茂旭,张庭川,张宏飞.1997.南秦岭东江口岩体闪长质包体地球化学特征及成因探讨.矿物岩石,17(2):28-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700